
Real-time Anomaly Detection for Flight Testing
using AutoEncoder and LSTM

Zhiqiang Que∗, Yanyang Liu†, Ce Guo∗, Xinyu Niu§, Yongxin Zhu‡, Wayne Luk∗
∗Dept. of Computing, Imperial College London, UK, {z.que, c.guo, w.luk}@imperial.ac.uk

† Lingnan Big Data Institute, China, {liuyanyang}@chiefdata.org
§ Corerain Technologies Ltd., China, {xinyu.niu}@corerain.com

‡ Shanghai Advanced Research Institute, Chinese Academy of Sciences, China, {zhuyongxin}@sari.ac.cn

Abstract—Flight testing is crucial in validating the function-
ality and safety in new commercial aircraft design before mass
production. The challenge is to support real-time analysis of high-
dimensional time series data generated from tens of thousands of
sensors around the aircraft during test flights. We propose a novel
2-stage approach, using a fine-tuned autoencoder to extract the
generic underlying features of high-dimensional data, followed
by a stacked LSTM using the learned features to predict aircraft
time series and to detect anomalies in real-time for flight testing.
A novel Timestep(TS)-buffer is introduced to avoid redundant
calculations of LSTM gate operations to reduce system latency.
Compared with a software implementation of the AutoEncoder-
LSTM on CPU and GPU, our FPGA design is respectively 36.3
and 23.9 times faster and consumes 247 and 499 times less energy.

I. INTRODUCTION

During a test flight of the COMAC (Commercial Aircraft

Corporation of China, Limited) C919 airplane, terabytes of

high dimension and high frequency data are collected. For

flight testing, we need to address three challenges. First,

anomaly cases are not easily available. Second, existing tech-

niques based on LSTM are insufficiently accurate in pre-

dictions with large dimensional outputs [1]. Third, detection

system should always complete operations within a specified

time. To address these challenges, this paper proposes a novel

approach where LSTM detects anomalies using transformed

flight vibration data produced by a fine-tuned autoencoder.

This approach minimises the negative impact of the curse

of dimensionality as shown in Fig. 1. Furthermore, we pro-

pose an FPGA-based architecture with many computation and

communication optimisations. A novel Timestep(TS)-buffer is

introduced to avoid recalculations of LSTM gate operations

to reduce latency. This work is motivated by flight vibra-

tion anomaly detection, but applies generally to many other

applications using multivariate time series data for anomaly

detection on FPGAs.

Although many hardware implementations of LSTM have

been reported [2, 3, 4, 5], there are very few reports about

AutoEncoder(AE)-LSTM on FPGAs. To the best of our

knowledge, we are the first to propose and implement a unified

AE-LSTM framework for anomaly detection on FPGAs.

Our contributions in this paper are as follows:

1) An new framework to build anomaly detection models

based on AE-LSTM for analysing high-dimensional time

series data for flight testing.

Fig. 1. The Flow of Anomaly Detection System

2) A novel real-time anomaly detection architecture with

computation and communication optimisations.

3) Evaluation of the proposed method and hardware archi-

tecture.

II. BACKGROUND AND PRELIMINARIES

A. Related Work

A popular machine learning technique for anomaly detec-

tion is Support Vector Machine (SVM). FPGA-based SVM

architectures have been proposed for anomaly detection in

cyber security [6]. Moss et al. [7] present an O(1) time-

complexity spectral anomaly detector that achievs a latency

of 68 ns. An anomaly detection algorithm for real-time hy-

perspectral imaging is implemented using FPGA and signif-

icantly outperforms the corresponding software version [8].

Furthermore, an FPGA-based autoencoder is proposed for real-

time anomaly detection of radio frequency signals in [9]. A

hardware architecture for anomaly detection using LSTM has

been reported [10], however it cannot handle large dimensions.

B. AutoEncoder & LSTM

An AutoEncoder (AE) is a type of artificial neural network

for learning efficient data codings in an unsupervised manner.

It learns to transform data from an input layer into a latent-

space representation, and then reconstructs the output of the

reduced latent representation as close as possible to its original

input. This makes the autoencoder suitable for dimensionality

reduction when the latent representation has fewer dimensions.

Note that in the general autoencoder framework, we can use

other forms of functions for the encoder or decoder such as

deep fully-connected networks with nonlinearity, Relu CNN

or others. In our work, the Batch normalization layer is added

in the encoder part to increase the accuracy of the following

379

2019 International Conference on Field-Programmable Technology (ICFPT)

978-1-7281-2943-3/19/$31.00 ©2019 IEEE
DOI 10.1109/ICFPT47387.2019.00072



Fig. 2. The Overview of the Neural Network for Anomaly Detection. Only
the encoder of AE is included as the decoder part is removed after AE is
trained.

LSTM network. After training, the decoder is removed while

the encoder is used to generate the reduced representations.

The LSTM architecture relies dedicated memory cells to

store information about long-term dependencies, which is well

suited for time series data. We follow the implementation of

LSTM in [3, 5] and the equations are shown below, where �
is an element-wise multiplication:

it = σ(Wi[xt, ht−1] + bi)

ft = σ(Wf [xt, ht−1] + bf )

ut = σ(Wu[xt, ht−1] + bu) (1)

ot = σ(Wo[xt, ht−1] + bo)

ct = ft � ct−1 + it � ut

ht = ot � tanh(ct)

i, f, u and o represent the input, forget, update and output

gate respectively. We combine the input vector and hidden

vector so that W represents the single weight matrix for both

input and hidden elements and b is the bias term. This work

will focus on the optimisation of the standard LSTM but the

proposed techniques can be applied to other RNN and LSTM

variants.

III. DESIGN AND IMPLEMENTATION

In this section, an overview of the proposed design is first

presented. Then several software and hardware optimisation

techniques are proposed.

A. Design Overview

Our proposed approach is shown in Fig. 1. The basic

structure of our network is similar to previous LSTM anomaly

detector [11], however the input data from flight test vibration

sensors are high-dimensional data. So we introduce an autoen-

coder to reduce the dimensionality of the data. An overview

of the neural network used in our anomaly detection system

is shown in Fig. 2. Only the encoder of the AutoEncoder is

shown in the figure as the LSTM inference procedure does

not require data reconstruction. The encoder generates 32-

dimensional data using the 1024-dimensional original data.

The LSTM-based predictive model makes a prediction for

each 32-dimensional data point from the autoencoder. The

predictive model comprise two LSTM layers, each containing

64 hidden units. The system flags a data point as an anomaly

if the absolute difference between the real and the predicted

values is sufficiently high.

Fig. 3. LSTM Inputs in different timesteps

B. Computation optimisation

There are many redundant calculations of processing in-

put activation (xt in equations (1)) multiplying LSTM gate

weights (W in equations (1)) in each inference when the

timestep of LSTM is larger than 1, as shown in Fig 3.

Timesteps in LSTM system are the ticks of time. In our sys-

tem, a time step is associated with one sample vector from the

sensors with a sampling rate of 8 kHz. When timestep is larger

than 1, the shape of the input is [timestep, input activation]
and LSTM cell will iterate for timestep times for each infer-

ence. However input activations of two adjacent inferences

are partially the same so we do not need to re-calculate

the matrix-vector (MV) multiplications for the same input

activations. For each tick of time (each inference), we calculate

the MV multiplications only for a new input vector and store

the intermediate results in the Timestep(TS)-buffer which can

be fetched later. Thus, in every inference, only one input

vector needs multiplications while the results of the other

timestep − 1 vectors have already been calculated in the

former ticks of time so that they can be fetched from the

TS-buffer without re-calculations. We only need to calculate

the MV multiplications for each hidden units and accumulate

the stored results of the input activations in TS-buffer, which

means less power and latency. Introducing and developing the

TS-buffer carefully do not make our system more complex.

There is no complex logic (only one counter) to decide if

the inputs are the same. Since the data are time-series and

sequential, the first timestep − 1 inputs of x in the current

inference are the same as the former inference. In addition, in

our design, the autoencoder neural network and LSTM neural

network share the same MV multiplication kernel to save DSPs

usage in FPGA.

C. Software optimisation

In many data processing tasks, the data are of high dimen-

sionality. Without dimensionality reduction, direct analysis

usually leads to complex models and intense calculations.

Principal component analysis (PCA) is a common method

for dimensionality reduction [12, 13, 14], and its implemen-

tation process is relatively simple. In our system, we focus

AutoEncoder for dimensionality reduction. Furthermore, we

380



Fig. 4. The Overview of the AE-LSTM Architecture

Fig. 5. The Whole System

introduce a Batch Normalization (BN) layer after each fully-

connected layer in the encoder part of the autoencoder. From

our experiments, it could reduce the Root Mean Square Error

(RMSE) of the LSTM training from 0.045 to 0.033 so 36.4%

better.

D. Hardware Architecture

Fig. 5 shows an overview of the whole implementation on an

FPGA board. It consists of multiple modules that implement

the AE-LSTM anomaly detection system. This system consists

of the AE-LSTM unit, Data Interface and Main Controller unit.

The Main controller unit is used to transfer control commands

while data communication is managed by the Data interface

unit which is connected to an AXI4 bus, PCIe bus or Ethernet

port. When the Data Interface is a normal AXI4 interface with

DMA engines, input data come from the external memory, like

DDR3 DRAM. The CPU sends configurable commands and

input data to the AE-LSTM system and receives the results

when the hardware finishes the processing, which is all done

via the Main Controller unit.

Based on the optimisation techniques discussed above, the

detailed architecture of AE-LSTM is shown in Fig. 4, which

is composed of multiple Computing Engines (CEs), a few

LSTM-Tail (LT) units and Encoder-Tail (ET) units. In addition,

the weights buffer stores all the trained weights for AE and

LSTM while the c/h buffers are used as temporary memories

to store the LSTM cell memory/hidden status. Furthermore,

the data in x buffer are the results from the Encoder and

also the input vector x of LSTM units. The CEs perform the

matrix-vector operations that work as the LSTM gates and FC

operations in the Encoder while the TS-buffer is a circular

RAM and stores the partial results from input vectors in each

time step. If the TS-buffer is full, the oldest entry will be

replaced by the new result, which means that the TS-buffer

always includes all the required partial results in the current

inference and the redundant computations involving the input

TABLE I
RESOURCE UTILIZATION

LUT LUTRAM FF BRAM DSP

Avail. 218600 70400 437200 545 900

CE

(256)

Used 29467 12083 34193 133.5 295

Utili. 13.48% 17.16% 7.82% 24.50% 32.78%

vectors with the corresponding weights can be avoided. A

main Finite-State Machine (FSM) was also used to remove the

conflicts, like the conflict between system input and x-buffer

input.

IV. EVALUATION AND ANALYSIS

A. Experimental Setup

In this work, the AE is implemented using Keras and

Tensorflow and trained with EarlyStop. After the AE has been

trained, the encoder is used to generate the low-dimensional

data. Both LSTM layers have 64 hidden units and a timestep

of 16. To provide a demonstration, we select 1000 variables

from the commercial flight testing vibration data and intercept

10000 lines to train and test our model. The number of the

training set is 6416 while the number of validation set is

1600 and the number of the test set is 1984. All data are

normalised to 0-1 before they enter the system. To analyse

the performance and limitations of the proposed AE-LSTM

hardware acceleration, we implement the hardware system

using the platform of Xilinx ZC706, which consists of an

XC7Z045 FPGA and a dual ARM Cortex-A9 processor.

B. Resource Utilisation

Table I shows the resource utilisation for our AE-LSTM

design on the XC7Z045 FPGA. The number of CEs is config-

ured to be 256. The multipliers in the LSTM gates are 16-bit,

however the accumulators after the multipliers are 26-bit to

retain precision. The multipliers and adders in the LSTM-Tails

and BN are both 32-bit.

C. Accuracy and Anomaly Detection

The training and validation losses of LSTM-only, AE-

LSTM without BN and AE-LSTM with BN are shown in

Fig. 6. AE-LSTM without BN can get a slightly better loss

than LSTM-only system. However, the best result is achieved

by AE-LSTM with BN. We determine whether the data are

abnormal by calculating the difference between the measured

value from sensors and the predicted value. The prediction

381



Fig. 6. The training and validation losses of different models

TABLE II
CONFUSION MATRIX

Predict
Acutal

Anomaly Normal

Anomaly 30 11

Normal 0 1927

error vectors are modelled to fit a Gaussian distribution

X ∼ N (μ, σ2) [11], where X is a random variable and N
denotes normal distribution with a mean of μ and a variance of

σ2. An observation is predicted as ’anomaly’ if its likelihood

p < τ while the τ is set to 0.01 given a sufficient confidence

of 99%. 30 synthetic anomalies based on the anomaly patterns

provided by the experts of COMAC are introduced in the

test dataset and Table II shows the confusion matrix for the

AE-LSTM technique. The system detects all the anomalies

using AE-LSTM regardless of the presence of dimensionality

reduction.

D. Performance and Efficiency Comparison
To compare the performance of the proposed design on

FPGA with other platforms, we implement the AE-LSTM

system on both Intel Xeon x5690 CPU and Nvidia TITAN

GPU based on the Tensorflow framework. Compared with AE-

LSTM on CPU and GPU, our FPGA design is 36.3 and 23.9

times faster, 247 times and 499 times more energy efficient

respectively as shown in Table III. These significant improve-

ments are due to the low utilisation of GPU [4] which may

prefer large matrices without data dependence. Our system

achieves 55.53 GOPS which is 4.13 times higher performance

than the state-of-the-art FPGA design of LSTM based anomaly

detection [10]. However, since detailed accuracy values are

not reported in [10], we omit the comparison of accuracy.

Furthermore, they do not handle high-dimensional data since

they support an LSTM system with a strict bound on data

dimension of 19 only.
The sensor sample rate is 8 kHz so the sampling interval of

the data is 0.125ms. With our new hardware architecture and

novel neural network, the calculation can finish in 0.043ms,

which can effectively avoid the data accumulation problem.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an AE-LSTM architecture to accelerate

the inference of anomaly detection systems on FPGAs. We

TABLE III
PERFORMANCE COMPARISON OF FPGA DESIGN V.S. CPU AND GPU

CPU GPU Our Work

Platform
Intel Xeon

x5690

TITAN X

Pascal

Zynq

7Z045

Frequency 3.4 GHz 1.62 142 MHz

Technology 32 nm 16 nm 28 nm

Power(W) 80 60 5.88

Precision 32 bit float 32 bit float 16-32 bit

Time per

Samplea(ms)
1.56 1.03 0.043

Energy per

Samplea(mJ)
124.8 61.8 0.25

a Each Sample includes 16 timesteps

have implemented the proposed accelerator on a Xilinx ZC706

FPGA board with excellent performance and efficiency which

shows the effectiveness of our approach. Further research

includes reducing false positive results, and providing an end-

to-end tool chain to automate rapid development of efficient

anomaly detection on FPGAs for various applications.

ACKNOWLEDGEMENT

The support of the United Kingdom EPSRC (grant

numbers EP/L016796/1, EP/N031768/1, EP/P010040/1 and

EP/L00058X/1), Natural Science Foundation (No. 61201059)

of China, the Strategic Priority Research Program of Chinese

Academy of Sciences (grant No. XDA19000000) and Corerain

Technologies is gratefully acknowledged.

REFERENCES

[1] K. Hundman et al., “Detecting spacecraft anomalies using LSTM and nonparamet-
ric dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018.

[2] V. Rybalkin et al., “FINN-L: Library extensions and design trade-off analysis for
variable precision LSTM networks on FPGAs,” in 28th International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2018.

[3] Y. Guan et al., “FPGA-based accelerator for long short-term memory recurrent
neural networks,” in 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2017.

[4] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-Time
AI,” in Proceedings of the 45th Annual International Symposium on Computer
Architecture, 2018.

[5] Z. Que et al., “Efficient weight reuse for large lstms,” in 30th International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2019.

[6] A. Bara, X. Niu, and W. Luk, “A dataflow system for anomaly detection and
analysis,” in International Conference on Field-Programmable Technology (FPT).
IEEE, 2014, pp. 276–279.

[7] D. J. Moss et al., “An FPGA-based spectral anomaly detection system,” in
International Conference on Field-Programmable Technology (FPT). IEEE, 2014.

[8] B. Yang et al., “Dual-mode FPGA implementation of target and anomaly detection
algorithms for real-time hyperspectral imaging,” Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 2015.

[9] D. J. Moss et al., “Real-time FPGA-based anomaly detection for radio frequency
signals,” in IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2018.

[10] Z. Sun et al., “Fpga acceleration of lstm based on data for test flight,” in IEEE
International Conference on Smart Cloud (SmartCloud), 2018.

[11] P. Malhotra et al., “Long short term memory networks for anomaly detection in
time series,” in Proceedings. Presses universitaires de Louvain, 2015.

[12] A. Das et al., “An FPGA-based network intrusion detection architecture,” IEEE
Transactions on Information Forensics and Security, 2008.

[13] H. Hotelling, “Analysis of a complex of statistical variables into principal compo-
nents.” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[14] S. T. Roweis, “EM algorithms for PCA and SPCA,” in Advances in neural
information processing systems, 1998, pp. 626–632.

382


