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Abstract—This paper presents InTune, a novel approach for in-
circuit tuning of deep learning designs targeting implementations
in field-programmable gate array technology. This approach com-
bines two promising techniques: domain-specific adaptation and
in-circuit tuning. Domain-specific adaptation exploits domain-
specific information in adapting pre-trained models to specific
application domains, replacing standard convolution layers with
efficient convolution blocks; the effects of such adaptation are
then assessed by in-circuit tuning instruments to provide informa-
tion to application builders for tuning the design. This approach is
illustrated by its deployment in tuning deep neural networks, and
its potential for a new generation of domain-specific tools with
tight integration of synthesis and in-circuit tuning is explored.

I. INTRODUCTION

Field-Programmable Gate Array (FPGA) has become a
popular and promising technology for implementing Convo-
lutional Neural Network (CNN) [1, 2] in recent years. Most
CNN applications on FPGA are domain-specific involving the
detection and classification of objects from a narrow range of
classes. It has been shown that transfer learning [3] can be
applied to CNN models pre-trained on general datasets, e.g.
ImageNet, to support efficient fine-tuning [4] for specific do-
mains; this approach has been adopted in developing domain-
specific CNN designs for FPGAs [5].

Although FPGA implementation of CNNs is promising,
tuning and debugging a Deep Neural Network (DNN) mapped
onto an FPGA are still challenging. Software simulators are
important parts of a Machine Learning debug and performance
tuning ecosystem, but software simulation may be insufficient
to find the root cause of many types of functional and
performance bugs. Software simulation often requires long
run time with multiple training and inference sessions in
locating hardware bugs. Besides, it may not exactly capture the
hardware implementation because the environment can not be
adequately described, e.g. non-deterministic DRAM accesses.
Furthermore, some third-party hardware libraries may not have
accurate simulation models. The only method to find the cause
of these types of bugs is to run the hardware in a realistic
environment at the actual speed with representative workloads.

This paper describes InTune, a novel in-circuit tuning
approach for domain-specific deep learning designs. The
proposed tuning instrumentation enables visualisation of the
patterns of overflow exceptions and supports precision tuning
of CNN layers. To the best of our knowledge, this is the

Fig. 1. The InTune design flow.

first in-circuit tuning approach that can automatically fine-
tune a domain-specific FPGA design using information from
hardware.

Our contributions are as follows:
1) Novel map and statistics instruments for in-circuit detec-

tion of overflow in DNN designs.
2) An approach for fine-tuning DNN accuracy based on such

map and statistics instruments.
3) Evaluation of the proposed approach showing, for ex-

ample, that it can be significantly faster than software
simulation for tuning DNN designs on FPGAs.

Figure 1 shows the development flow for domain-specific
CNN designs [5]. InTune enables in-circuit tuning in the
Exploration-and-Evaluation step for optimising such designs.

II. BACKGROUND AND RELATED WORK

A. Convolution Layer

A convolution layer performs multi-dimensional convolu-
tion computation between an input feature map and a filter.
It extracts features from an input feature map and generates
a new feature map. More specifically, given an input tensor
x ∈ RNx×Ny×Nc (e.g. a 2D image with Nc channels), a
weight tensor w ∈ Rkx×ky×Nc×Nf , and a bias term b ∈ RNf ,
a convolution layer f is defined as:

f(x,w, b)lmn =

l+kx/2∑
i=l−kx/2

m+ky/2∑
j=m−ky/2

Nf∑
k=0

wijknxijk + bn (1)

Weights in convolution layers are often called convolutional
kernels. Convolutional layers have hyper-parameters such as



Fig. 2. (a) Standard and (b) Depthwise Separable convolution layers.

Fig. 3. Bottleneck (left) and Separable Bottleneck (right) convolution blocks.

kernel width (kx, ky), number of filters Nf , stride and dila-
tion factors. Compared with a fully-connected layer in feed-
forward networks applying independent weights to all input
features, a convolutional layer has fewer parameters as its
weights are shared among all elements within a channel of
a feature map. This property also allows convolution layers to
extract spatially local features.

Besides the standard convolution, there are some other
types of convolution. Depthwise convolution [6, 7, 8] and
pointwise convolution [6] are both lightweight building blocks
of modern CNNs. Figure 2 illustrates the comparison among
standard, depthwise, and pointwise convolution. Compared
with the standard convolution, depthwise convolution only ap-
plies one filter on each channel, which significantly decreases
the amount of computation and parameters and is relatively
efficient. A depthwise separable convolution layer stacks the
depthwise and pointwise convolution, which extracts spatial
and cross-channel correlation using depthwise and pointwise
convolution respectively. There are also different types of
convolution block. The bottleneck block (Figure 2), in ResNet-
50 [9], covers residual learning. A separable bottleneck block
is used in MobileNet V2 [10] to improve efficiency.

B. Domain-specific Debug Instrumentation

On-chip debugging can be preferable to software simulation.
First, many bugs only manifest when the design is being
executed at-speed, on-chip. These bugs are commonly related
to timing issues or real-time IO patterns that are hard to
simulate (e.g. random DRAM accesses or real-time input data
from sensors). Second, simulating large circuits can take a
long time, while on-chip debugging is fast.

Fig. 4. Instruments overview.

Machine learning circuits can be difficult to debug. To
understand their overall behaviour, we need to take even longer
execution time compared with other designs to iterate over
multiple training or inference samples. Moreover, those appli-
cations are commonly compiled from high-level programming
languages and frameworks, such as C and TensorFlow [11],
to RTL. The lack of human-readability in generated hardware
designs makes debugging more difficult.

The debug toolflow proposed in [12] addresses those prob-
lems by using domain-specific characteristics of machine
learning circuits to store more useful information on-chip.
Similar to common hardware-oriented debug flows, debug
instrumentation is added to the design in order to trace infor-
mation and store it on-chip for later interrogation. Rather than
focusing on individual signals and wires, [12] focuses on trac-
ing large matrices produced in machine learning workloads,
e.g., activations and weights. Moreover, instead of storing
the raw values of those matrices on-chip, they cover statistic
properties to reduce memory footprint. This is done by tracing
data at every cycle, retrieving their statistics, and reporting
results after processing a whole workload input, e.g., an image.
This technique allows users to trace data for a longer period,
while still stores information that could be useful to potentially
find the root cause of a bug. Although the raw values are
not observable using this technique, the information stored
can be useful to allow the designer to have a good overall
understanding of the circuit in the first few debug iterations,
accelerating the debug process.

Figure 4 shows some of the instruments proposed in [12].
The distribution instrument, for example, stores a history
of the distribution of an observed matrix over time. The
spatial sparsity instrument stores an indicator of whether each
particular element in a given matrix is zero or not, based
on a predetermined threshold. Finally, the summary statistics
instrument summarises one kind of statistics over a single
frame, e.g. sparsity, average, or standard deviation.

III. DEBUG AND TUNING INSTRUMENTATION

A. Debug of Fused Convolution Blocks

Typically, convolution blocks consume most of the opera-
tions in a convolutional neural network [5] and should be well-



Fig. 5. Overflow map instrument overview.

optimised for performance improvement. Generally, a baseline
accelerator for the convolution block is mainly based on layer-
by-layer execution which incurs significant external memory
access and consequently cannot fully exploit the potential of
pipelined CNN layers. To address this issue, the standard
convolutions can be fused with a uniform kernel [13, 14],
and various convolution types can be fused automatically [5].
However, it makes the debug of the system more complex
because the data of some internal layers will not show at the
output. Although RTL simulation may help to find the bugs
of the fused layers, it requires long run-times. If techniques
for capturing raw variable values [15] are used, it would be
possible to record all values in an array, and then perform the
analysis off-line. However, for large arrays, this may result
in very inefficient use of trace buffer memory; every change
to every element in the array would consume an entry in
the trace buffer. For debugging fused convolution blocks, we
propose to use novel debug instruments to monitor overflow.
In addition, the distribution instrument [12] can be used to
monitor all words in a specified array and to aggregates the
values into a histogram per frame, as shown in Figure 4. It
can detect outliers or errors causing activations to clamp at
minimum/maximum values, which suits our purpose.

B. Overflow of CNNs on FPGA

Multiplications and accumulations in convolutional layers
can lead to overflow, which can cause severe computation
accuracy loss. Generally, an overflow occurs when an arith-
metic operation attempts to create a numerical value that is
outside the range that can be represented with a given number
of bits. In some FPGA designs [2, 16], the word lengths of
intermediate data are extended to avoid overflow. However,
if the input and output data have small word lengths, then
overflow can occur. Unanticipated arithmetic overflow is a
common cause of system errors. Such overflow bugs may
be hard to discover and diagnose because they may manifest
themselves only after long run-time. Sometimes, the overflow
may not make a neural network design failed but may cause
accuracy loss, especially when deploying a neural network on
an FPGA with small word lengths. The FPGA system works

Fig. 6. Overflow statistics instrument architecture.

fine but has lower accuracy than the corresponding floating-
point model. This type of accuracy loss due to overflow can
be hard to debug on FPGAs, since there can be many potential
sources of overflow in various layers.

The overflow statistics information from our proposed in-
struments targeting hardware can quickly detect overflow
issues in FPGA systems from thousands of values in a dataset.
A high-level fixed-point software model of a hardware design
may not capture all the details, while a low-level fixed-point
software model is difficult to develop and can be slow to run.

C. Overflow Instruments

A fixed-point computation unit targeting FPGAs can be
carefully designed without accuracy loss using large word
length intermediate data and calculation. However, the output
data need to be down-scaled into small word length, for
example, 8-bit and then output to memory. Thus, an overflow
may happen in this step. Our debug instruments are designed
to track this sort of overflow. The debug instruments do not
need to check and trace every addition/multiplication but only
the final down-scaling. Thus, there could be only one possible
overflow for each output pixel, which means only one bit will
be needed to store the overflow status for each output pixel.

In addition, typically the FPGA performs down-scaling in
saturation mode, which means the debug instruments do not
need to perform comparisons but just track the overflow bit in
the original design, which can save FPGA resources.

1) Overflow Map Instrument: This instrument monitors the
overflow status of each output pixel. Instead of storing all
the values of the outputs data, it stores a Boolean indicating
overflow has occurred. This provides information about the
overflow status of the output tensor, and a 3D map can be
reconstructed from the tracked information (Figure 5).

2) Overflow Statistics Instrument: Tracking and storing
one bit for each output pixel can be expensive, since many
trace buffers are needed when the output tensor is large.
In contrast, this overflow statistics instrument focuses on
calculating the summary statistics to assist debugging machine
learning circuits. Rather than storing one bit for each output
data, this instrument stores summary statistics for each output
channel or just stores one summary for a whole output tensor.



Fig. 7. Overflow statistics instrument overview.

While the overflow map instrument traces every overflow case,
the overflow statistics instrument producing a histogram or a
summary does not retain location information of the output
pixel causing the overflow. Figure 6 shows the architecture
of the overflow statistics instrument, while an overview of its
operation is shown in Figure 7. A counter is used to track the
number of overflow cases in the output.

The overflow rate defined in Equation 2, based on the over-
flow information for each output tensor related to CNN layers,
can be useful for debugging machine learning applications. In
our InTune approach, the overflow rate from hardware based
on the overflow statistics instrument can be used to find the
best configuration of datapath word length.

Overflow rate =
Overflow Num

Whole Tensor P ixel Num
(2)

IV. IN-CIRCUIT TUNING

A. InTune: Overview

InTune is a novel approach for in-circuit tuning of domain-
specific FPGA designs. It accepts a fresh model or a pre-
trained CNN model using a large-scale dataset, replaces the
selected standard convolution layers with various convolution
blocks (Figure 2 and 3), fine-tunes and evaluates the layer-
wise optimised model. After a floating-point based model is
generated, it fine-tunes the required word length of each CNN
layer first based on a fixed-point software model and then
using in-circuit information. At the end, it will output an
efficient FPGA design. Figure 8 provides an overview of in-
circuit fine-tuning flow using InTune. To efficiently process
convolution blocks, InTune generates FPGA designs that fuse
their inner convolution layers [5, 13] and inserts different
debug instruments for debug and tuning. The trained CNN
model includes trained weights and network architecture while
the hardware template includes all the necessary hardware
components which will be discussed in the next section. After
the FPGA processes a given dataset, the debug and tuning
instruments provide information for checking if there is any
issue in the hardware. In addition, hardware information,
such as overflow rate from the tuning instruments will be
used to fine-tune the hardware system. If there is any design
problem or it requires re-tuning, a new hardware design will

Fig. 8. CNN in-circuit tuning flow.

be generated using a hardware template. This work focuses
on optimising datapath configurations with different word
lengths. The tuning strategy for InTune consists of customising
the hardware template by systematic word length refinement,
compiling the resulting design into a bitstream, and evaluating
the effects such as overflow rate to determine whether further
tuning is needed. Some bitstreams can be pre-compiled to
reduce tuning time.

B. Hardware Template and Layer Fusion

InTune supports a scalable hardware design template as a
fundamental component. The template can be configured to
generate optimised CNN hardware with various convolution
types utilised in recent efficient CNN models. An accelerator
for convolution layer or block can be constructed by basic
building modules in our template as shown in Figure 9. Most
of the arithmetic computations in a typical CNN workload
involve dot-product, which is employed in the spatial and
cross-channel convolution and also in the fully-connected
(FC) layers. Each dot-product module consists of an array
of multipliers followed by an adder tree. The dot-product
modules are further organised into a higher-level array for
parallelisation. This module can be shared among convolution
and FC layers when necessary. Each module can be configured
regarding the level of parallelism or computation sequence.
Modules are connected using data-flow streams with the same
input and output width. Outputs from building modules should
be consumed immediately to avoid congestion. Our design is
by default implemented with fixed-point representation, and
its configuration is decided by the data range. In addition,
convolution blocks are fused to enable the computation of
multi-layers in one launch.

C. Prototype Toolflow

Combining hardware generation with layer fusion, the pro-
posed hardware tuning approach is illustrated in Algorithm 1.
This algorithm jointly explores the design space of a CNN
model and hardware for efficient inference. Given M is a
trained model on a domain-specific dataset D, P is FPGA
platform specification while R captures the requirements. This



Fig. 9. Our reconfigurable system architecture (Instr. stands for instruments).

Algorithm 1: InTune pseudocode

1 Function InTune(M,D,P,R,w0):
2 h← InitHardwareGen(M,P,R,w0);
3 h∗, obj∗, w ← h, 0, w0;
4 while OverflowRate(h) ≥ Tov do
5 acc← EvaluateAccuracy(h,M,P,D);
6 obj ← ObjectiveFunction(h, acc, w);
7 if obj ≥ obj∗ then
8 h∗, obj∗ ← h, obj
9 end

10 w ← FineTune(w);
11 h← HardwareGen(M,P,R, h, acc, w);
12 end
13 return h∗, acc∗;
14 End Function

algorithm is driven by the function HardwareGen() in line
11 which can generate a new hardware design with fine-
tuned word lengths from the trained model, the current design,
the FPGA platform specification, and profiling information
from the current design, such as its overflow rate and model
accuracy. We terminate the optimisation process by evaluating
the overflow rate of design h (denoted by OverflowRate(h)
which is retrieved from the overflow statistics instrument), and
checking whether the measured rate is above the threshold
Tov . While stepping through the optimisation, we fine-tune
the word length w of the hardware design to be generated,
and we measure the objective score obj of the current design
h by its model accuracy acc and word length w. The objective
function should reflect the relative importance of model accu-
racy and size with regards to user requirements. The design
that achieves the highest obj socre will be returned as the best
implementation.

V. RESULTS AND DISCUSSION

A. Experiment Setup

We evaluate InTune on the CIFAR-10 [17] dataset. A
custom VGG-like CNN network including 7 standard con-
volution layers is initially fed to InTune to confirm the in-
circuit tuning capability. We can further integrate this tuning
capability with TuRF, a domain-specific adaptation framework

TABLE I
RESOURCE UTILISATION

ALM BRAM DSP

Available 262.4k 2567 1963

Used 200.2k 1876 1152

Utilisation 76.3% 73.1% 58.7%

Fig. 10. Overflow rates in layer4 to layer7. The layers before layer4 are
not shown as they do not have overflow.

[5]. It works by feeding designs explored by domain-specific
adaptations into in-circuit tuning to find the best data type
configuration. TensorFlow v1.6 is used to build and train the
CNN models. The experimental FPGA platform is Stratix-V
5SGSD8 on a Maxeler MPC-X node, which contains 262.4K
adaptive logic modules (ALM), 1963 variable-precision DSP
blocks, and 2567 BRAM (M20K). The bandwidth of off-chip
data transfer is 38 GB/s. The hardware template prototype
is implemented in OpenSPL [18]. MaxCompiler (v2016.1.1)
synthesises generated designs. Table I shows the resource
utilisation in our design.

B. CNN Accuracy Fine-tuning

Using InTune, we can fine-tune word length configuration
for each CNN layer based on hardware information, e.g.,
overflow rate in output as shown in Figure 10. The accuracy
of the current hardware using a fixed-point algorithm (1-0-
15 means 1-bit sign, 0-bit integer, and 15-bit fraction) is
71.78%, which shows that there is accuracy loss compared
to the counterpart 32-bit floating-point model (Table II). From
Figure 10, the blue line capturing the values collected from the
overflow statistics instruments shows that the overflow rates of
this model after the 4th layer are high. we can optimize this
design by fine-tuning the word lengths of CNN layers 5-7 to
reduce the overflow rate, reduce the overflow rates, as shown
by the red, orange and green lines. The final accuracy of the
CNN model increases as shown in Table II. It shows that the
InTune approach works because the final accuracy increases to
a level that is the same as the floating-point model. Therefore,
the debug instrument helps us develop a valid precision fine-
tuned neural network system, since accuracy information that
used to be hard to obtain can be exploited by our in-circuit
tuning method.



TABLE II
ACCURACY BASED ON DIFFERENT WORD LENGTHS

Word Length float32
16-bit

(1-0-15)

16-bit

(1-1-14)

16-bit

(1-2-13)

16-bit

(1-3-12)

Accuracy 72.08% 71.78% 72.05% 72.07% 72.08%

TABLE III
RUNTIME COMPARISON: MODELSIM

AND INTUNE

ModelSim InTune Speedup

1615s 8.1 ∗ 10−5s 2.002 ∗ 104

C. Speedup

We report the speedup provided by InTune over simulation-
based methodologies, e.g., hardware/software co-simulation
using cycle accurate RTL model. Table III compares the
time for executing one input image using ModelSim and our
approach to get the debug and profiling information. As shown
in Table III, on average InTune achieves a speedup of 20,020
times compared to RTL simulation using ModelSim.

D. Linear Quantization and Block Floating Point

Either linear quantization or block floating point can be used
to produce a fixed-point design for CNN model size reduction.
The overflow analysis can stay largely the same as what we
present earlier, with different model reduction methods. In
linear quantization, overflow happens when the quantization
parameters (scale, zero-point) are set improperly. So using the
overflow statistics instrument can improve quantization param-
eters by reducing the overflow rate. The overflow statistics
instrument has similar benefit for block floating point: add
more bits when the overflow rate is high.

E. Comparison with Previous Work

Tuning parameters on a circuit-by-circuit basis can be slow
since it is difficult to obtain detailed estimates of candidate
optimisation choices. [19] presents a novel hashing mechanism
that accelerates the inlining optimisation using a two-level
hash structure and quantifies its impact on run-time. [20]
proposes to use machine learning to auto-tune the perfor-
mance and power consumption of FPGA designs. Auto-tuning
has also been applied to effectively explore the large, high-
dimensional space of tool-specific parameters that control
FPGA synthesis [21]. Recently, transfer learning is proposed
to optimise parameters for FPGA-based applications [22].
These design approaches cover circuit tuning from a different
perspective: they do not involve in-circuit tuning and do not
address issues in deep learning designs.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes InTune, a new approach for in-circuit
tuning of domain-specific deep learning designs inspired by
transfer learning and in-circuit debugging. The novel aspects

of InTune include its debug instruments that investigate over-
flow map and statistics, and its hardware design optimisation
technique that makes use of these instruments to improve the
performance of deep learning applications on FPGA. Future
work involves covering additional optimisations such as model
quantisation based on linear transformation and block floating-
point arithmetic, improving instruments to support online
tuning of deep learning designs, and evaluating the integration
between InTune and TuRF [5].
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