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This article demonstrates an approach for combining general tuning techniques with the POWER8 hardware

architecture through optimizing three representative stencil benchmarks. Two typical real-world applica-

tions, with kernels similar to those of the winning programs of the Gordon Bell Prize 2016 and 2017, are em-

ployed to illustrate algorithm modifications and a combination of hardware-oriented tuning strategies with

the application algorithms. This work fills the gap between hardware capability and software performance

of the POWER8 processor, and provides useful guidance for optimizing stencil-based scientific applications

on POWER systems.
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This article is an extension of a conference paper: Evaluating the POWER8 Architecture through Optimizing Stencil-Based

Algorithms published in ISPA 2016 (Xu et al. 2016a). We consider this work an improved edition of the conference paper

with new contributions as follows. At the structural level, while the conference paper mainly focuses on performance opti-

mization for typical stencil benchmarks on POWER8 platform, in this work, we further present a performance optimization

framework that aims at facilitating the tuning efforts for stencil-based kernels and applications on POWER processors, and

introduce a complex atmospheric simulation program as target to demonstrate the way of making proper algorithm mod-

ifications and fully combine the hardware-oriented capability and software features of the POWER system. At the method

level, in this work, we further demonstrate some new optimization techniques (such as register-friendly data structure

reconstruction and customized vector grouping strategy) and provide in-depth analysis. Such tuning methods are essential

components of the systematic tuning guidelines of stencil-based applications based on the POWER system. Furthermore,

a more sufficient technique explanation and more comprehensive related work are adopted in this article, thus, to show

the existing efforts and challenges of performance tuning based on POWER systems, and to look deep into the insight of

the architectural difference of POWER and x86 platforms.
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1 INTRODUCTION

The IBM POWER processors date back to the 1990s and provide a different approach of architec-
tural design, compared to the x86 processor family. While the current supercomputers are mostly
based on x86 processors, the recent OpenPOWER foundation has helped to promote the usage
of POWER processors in various scientific computing domains, and some of the upcoming su-
percomputers targeting at 150PFlops (such as Summit (Laboratory 2017b) and Sierra (Laboratory
2017a)) will adopt POWER as the host processor.

Compared with the Intel and AMD x86 processors, the POWER processors demonstrate a num-
ber of different features, such as higher running frequency, preference for higher parallelism (both
at the thread and the instruction level), larger cache sizes, and an extra level of L4 memory buffer,
as well as customized support for encryption and decimal operations (Mericas et al. 2015).

These new and different features of the POWER processors not only provide the potential of
achieving performance improvements for existing scientific computing applications, but also bring
the challenge of identifying the right design approach and the appropriate tuning techniques for
mapping the existing algorithms and kernels onto different POWER architectures.

Although there have already been earlier efforts (Friedrich et al. 2014; Adinetz et al. 2014; Ewart
et al. 2015a; Stone et al. 2016; Ewart et al. 2015b) to investigate the POWER systems, most of
them focus on the architectural features. Comprehensive discussions that systematically cover the
tuning techniques and discuss the performance results are still seldom to be seen.

To resolve the above issue and to prepare the scientific kernels for POWER-based supercomput-
ers, in this article, we explore the major hardware/software factors that determine the performance
of stencils, a major consumer of compute cycles in scientific computing applications. By tuning
and analyzing the performance of a set of different stencils, we try to identify the major archi-
tectural and tuning differences between POWER processors and the better-studied x86 proces-
sors, and to derive a general framework to guide the designing and tuning processes for POWER
processors.

Our major contributions are as follows:

(1) Targeting the POWER8 processor, we perform a systematic tuning process to achieve al-
most optimum performances (46.7% of the processor peak) for 3D finite difference stencil
benchmarks, thus to fill the gap between the hardware capability and the software per-
formance on the POWER system;

(2) Based on these optimization guidelines and their evaluation, a performance tuning frame-
work, which is the first framework aimed at guiding the tuning approach of stencil-based
applications on recent POWER processors, is further provided to facilitate the perfor-
mance tuning approach for programmers.

(3) We select two typical scientific applications (i.e., atmospheric simulation and seismic mod-
eling) to demonstrate how to face the challenges when we optimize real-world applica-
tions on POWER processors. By analyzing the similarity and difference between bench-
mark optimization and performance tuning for real-world applications, we manage to
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fully combine the hardware-oriented tuning techniques with the application algorithms,
thus, to prove the effect of our tuning framework and optimization techniques.

As far as we know, this is the first work that presents systematic tuning guidelines and frame-
works of stencil-based applications based on the recent POWER system, so as to facilitate the
tuning efforts of POWER processors for stencil-based scientific applications. The corresponding
optimization and analysis can be used as guidance for applications whose essential kernels largely
rely on stencil-based algorithms.

2 RELATED WORK

Stencil-based algorithm refers to a class of iterative kernels that update array elements according
to some fixed pattern (Gan et al. 2014a). As stencil computations are among the most important
and frequently used kernels in modern scientific applications such as atmospheric simulation (Xue
et al. 2014; Fu et al. 2016; Gan et al. 2016) and seismic modeling (Fu et al. 2014), stencil optimization
based on mainstream processors has been a hot topic in recent years. To optimize the solving
approach of stencil-based algorithms, stencil computation has been widely studied among different
kinds of High Performance Computing (HPC) devices, such as Central Processing Unit (CPU),
Graphics Processing Unit (GPU), Knights Landing (KNL), and Field-Programmable Gate Array
(FPGA) (Datta et al. 2008; Kamil et al. 2010; Strzodka et al. 2011; Gan et al. 2013; Gan et al. 2014b; Gan
et al. 2017; Cebrián et al. 2017). In 2010, in consideration of the increasing architectural Flop-to-Byte
ratio of processors at that time, Nguyen el al. (2010) provided a novel 3.5-D blocking optimization
for stencil computations on modern CPUs and GPUs so as to release the memory access pressure.
Such approach remarkably unleashed the performance potential of stencil-based programs on CPU
and GPU processors at that time. In 2015, Jeffers et al. (2015) proposed a full-scale analyzation of
optimization methodology for FD4-like Iso3DFD stencil kernel on Intel E5-2697 (v2) and Xeon Phi
CO-7120P, and achieved 24.33% and 16.92% of their peak performance on E5-2697 and Xeon Phi
7120, respectively. In 2016 and 2017, Chao et al. and Haohuan et al. optimized the stencil-based
applications on the world’s fastest supercomputer Sunway-TaihuLight (Yang et al. 2016; Fu et al.
2017a), and their achievements won the Gordon Bell Prize of these two years, respectively.

As some of the world’s fastest supercomputers targeting at 150PFlops (such as Summit
(Laboratory 2017b) and Sierra (Laboratory 2017a)) would adopt POWER9 as the host processor,
the next generation of POWER CPUs will play a huge role in high performance computing once
again. However, the design of POWER systems has obvious differences compared with that of
other contemporaneous multi-core processors. First of all, benefiting from the higher instruction
throughput, POWER processors could issue and commit more instructions per cycle. As a trade-
off, the vector units are not as wide as other contemporaneous CPUs (Reguly et al. 2015). Sec-
ondly, POWER processor enables a higher number of simultaneous multi-threading (SMT) per
core. While such design increases the number of executed instructions per cycle for some multi-
bottleneck applications, the extra overhead of thread management and hardware resource compe-
tition might decrease the overall performance (Xu et al. 2016a). Thirdly, while the bandwidth of
POWER processors is remarkable higher than that of the contemporaneous Intel CPUs, the mem-
ory latency becomes the new problem in the performance tuning approach (Reguly et al. 2015).
Due to these new features, while existing efforts of stencil optimizations based on mainstream
platforms such as CPU and GPU have resulted in good performance (Johnsen et al. 2013), some of
the classical stencil-based benchmark and applications are still suffering the low-computing effi-
ciency on the POWER8 platform. (As demonstrated in Table 1, only similar performance efficiency
(the ratio of achieved performance over the theoretical peak) is achieved on POWER8 compared
with Intel CPUs. However, due to the large fast-memory buffers and other features of POWER
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Table 1. Application Optimization Efforts on POWER8 Platforms

system, we expect to achieve a 1.5x performance efficiency on stencil-based applications compared
with contemporary Intel CPUs.) Exploring the performance potential of stencil-based algorithms
on POWER platforms has thereby been an urgent demand.

With the rapid development of OpenPOWER all over the world, as well as a part of large-scale fu-
ture supercomputers would consist of POWER processors, exploring the performance potential on
POWER architecture started to be a hot topic in recent years. The first article related to POWER8
was published on International Conference on IC Design and Technology (ICICDT) (Friedrich et al.
2014) in the middle of 2014. The paper, which demonstrates a couple of hardware innovations of
the new computational chip, is mainly focusing on the hardware design and I/O capabilities of
POWER8. Some other works (such as Fluhr et al. (2014) and Sinharoy et al. (2015)) were published
then as a complement.

After the hardware description, the performance evaluation of micro-benchmarks and real-
world applications of POWER8 has been published since the end of 2014 (Mericas et al. 2015;
Adinetz et al. 2014; Ewart et al. 2015a; Liu et al. 2016). For instance, in 2014, Adinetz et al.
(2014) provided a set of hardware-feature evaluations, such as operation throughput/latency
and memory latency/bandwidth, by using standard testing micro-benchmarks such as Stream.
After this, the author adopted three scientific applications to evaluate their performance on
POWER8. Such approach is the first work to explore the software performance on POWER8;
however, performance tuning techniques are not fully involved in this work. A similar approach
could also be found in Berreth et al. (2016) and Ashworth et al. (2016). In 2016, based on the
testing results of micro-benchmarks, Reguly et al. (2016) proposed the system-level analysis of
POWER8 and provided a set of performance tuning techniques (such as OpenMP, SMT, and
non-uniform memory access (NUMA) control) for a set of stencil-based applications with different
kinds of bottlenecks. This work indicates that the POWER8 processor is capable of delivering
high performance for a wide range of kernels and applications. However, though a remarkable
performance benefit is able to be achieved in this work, only some general tuning techniques are
involved, and the author does not provide necessary modification to application algorithms to
further increase their performance efficiency.

To fully fill the gap between the hardware capability and the software performance on POWER
system, besides providing a set of tuning techniques and their analysis to three representative
stencil benchmarks, we also need to introduce some application-level programs as target so as to
demonstrate how to face the challenges when we optimize complicated cases. Nowadays, atmo-
spheric simulation and seismic modeling programs are undoubtedly two important representatives
in HPC studies. From 2015 to 2017, five (among 13 in 3 years) of the ACM Gordon Bell Prize fi-
nalists (Fu et al. 2017a; Fu et al. 2017b; Yang et al. 2016; Ichimura et al. 2015; Rudi et al. 2015)
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Table 2. Main Hardware Parameters of IBM POWER8 and Contemporaneous Intel CPU

are related to these two fields, and two of them finally won the Gordon Bell Prize (Yang et al.
2016; Fu et al. 2017a). Thus, in this work, we adopt a seismic modeling program (Reverse Time
Migration (RTM)) as well as an atmospheric simulation algorithm (dynamic part based on shallow
water equations (SWE)) as target programs to demonstrate and evaluate the effectiveness of our
optimization techniques and tuning framework.

3 BACKGROUND

3.1 Brief Introduction to POWER8 Processor

As the typical version of the POWER series, the IBM POWER8 processor is designed for both high
thread-level performance and system throughput on a variety of workloads. On each POWER8
chip, there are up to 12 processor cores, each of which can be clocked at up to 4.2GHz and is
capable of running up to eight threads per core in SMT mode. Instruction level parallelism is also
exploited with increased dispatch and execution bandwidth. In a certain cycle, each of the POWER8
processor cores could fetch, decode, and dispatch up to 8 instructions, and issue and execute up to
10 instructions (Hall et al. 2014).

The main hardware parameters of IBM POWER8 and contemporaneous Intel E5-2697 CPU
are demonstrated in Table 2 (data source: (IBM, Wikipedia, and Anandtech IBM et al.), (Intel,
Wikipedia, and stuffedcow Intel et al.)). From the table and relative papers, we could find out
that the POWER8 processor core enables deeper out-of-order execution, better branch prediction,
larger cache spaces, and wider bandwidth compared with contemporaneous Intel processors. In
return, narrower Single Instruction Multiple Data (SIMD) units and less load buffers are equipped
on POWER8, and the single-thread performance of POWER within one core is not as good as In-
tel, due to the lack of units such as loop stream detectors. Therefore, when exploring the optimal
performance of programs on POWER, we should propose a set of novel optimization methods or
readjust the existing tuning techniques to let them fit into the POWER processor.

3.2 Evaluation of IBM S-824L POWER System

IBM S-824L is the first server to leverage OpenPOWER Foundation technology to dramatically
accelerate modern programs such as technical computing applications. The hardware includes
two 12-core POWER8 processors whose core frequency is set to 3.325GHz throughout this study.
In addition, the POWER8 system has been configured to use a little Endian OS distribution (Ubuntu
14.10).

For a certain processor, the architectural feature of hardware identifies its peak performance
and memory bandwidth. The achievable rate values can be obtained by executing standard
micro-benchmarks such as LINPACK (Dongarra et al. 2003) and Stream (McCalpin 1995). As
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Fig. 1. Stencil visualization. 7-point Jacobi stencil in 3D space; Mapping of stencil from 3D space onto 1D

array; 13-point FD4 stencil in 3D space; 25-point FD8 stencil in 3D space.

the theoretical peak performance and bandwidth of IBM S-824L remains 638.4 GFlops (double
precision) and 460.8GB/s, respectively (Xu et al. 2016a), achieved values on Linpack and Stream
Triad benchmarks give us an upper bound performance and bandwidth for the S-824L platform:
590GFlops in double precision and 320GB/s. The detailed testing methodology could be found
in Ewart et al. (2015a) and Jeffers and Reinders (2015). However, the calculation of peak perfor-
mance indicated above includes some strong assumptions that are hard to achieve in real-world
programs. First of all, the number of add and multiply should be exactly the same so that the
fused Multiply-Add instruction could be fully used. Secondly, the device should be equipped with
caches that have an extremely high bandwidth and low latency so that the cache access would
never block the program execution. This defines a type of perfect memory subsystem where once
data in memory is loaded into the cache, it is instantly available without stalling the calculation.

3.3 Stencil Benchmarks

Our first kernel is the basic 7-point 3D Jacobi stencil, which is frequently used as a benchmark
for stencil study (Datta et al. 2008) and widely applied in real-world applications such as POP
(Smith et al. 2010) and GRAPES (Browne et al. 2000). The shape of Jacobi is shown in Figure 1. To
update each grid point, seven input variables as well as one output variable need to be accessed,
with six additions and two multiplications being performed at the same time, as demonstrated in
Algorithm 1. From Figure 1, it is not hard to predicate that without careful design, cache misses
caused by the remote access of the array elements would stall the program to a great extent.

ALGORITHM 1: Demonstration of the Jacobi Algorithm

1: void stencil_computation(double dst[], double src[]) {

2: for z ← 1 to zn + 1

3: for y ← 1 to yn + 1

4: for x ← 1 to xn + 1

5: dst[z,y,x] = c1*src[z,y,x] + c2*(src[z+1,y,x]+src[z,y+1,x]+

src[z,y,x+1]+src[z,y,x-1]+src[z,y-1,x]+src[z-1,y,x]);

6: }

The 4th-order and 8th-order finite-difference stencils (FD4 and FD8, as shown in Figure 1) are
also two of the most widely used stencil kernels. Though the Flop-to-Byte ratio is approximately
the same as Jacobi, long tiles in all three dimensions would definitely lead to discrete accesses to the
main memory, vitiating the cache data reuse mechanism provided by modern micro-processors.

To provide a full-scale analysis of stencil optimization techniques, in this work, we set the grid
size of all three stencils as 960*640*1280, which is larger than the on-chip cache capacity of main-
stream processors, including POWER8. Due to the memory access pattern of FD stencils, only one
direction (x-axis in our case) has the data consecutively stored in memory. Thus, access to memory
for other directions is very expensive. In addition, due to the simple computational operations for
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Table 3. Left: Critical Compilation Flags for xl and gcc Compilers; Right: Corresponding Single-core

Performance Result of gcc and xl Compilers (GFlops, in Double Precision)

each mesh element of FD stencils, reuse of cache data is strictly limited, which further enhances
the memory access pressure.

3.4 Challenges

Aiming at providing a set of optimization guidelines so as to facilitate the performance tuning ap-
proach for a stencil-based algorithm on POWER processors, there are multiple challenges we need
to face. First of all, due to the architectural difference between POWER processors and other con-
temporaneous multi-core processors (details can be found in Section 2 regarding a wider pipeline
but narrower vector units, a higher SMT number per core, and a higher bandwidth but a longer
latency), the existing tuning methods may not work on POWER systems. Thus, we should propose
a set of novel optimization methods or readjust the existing tuning techniques to let them fit into
the POWER processor. Secondly, to clarify the puzzling problem during the tuning approach and
prove the effectiveness of our optimization techniques, we should provide detailed analysis and
full-scale evaluations for the achieved performance. Thirdly, performance tuning of benchmarks
and real-world applications are totally different. Based on the tuning guidelines of stencil bench-
marks, we should also choose applications to demonstrate how to properly adopt the optimization
techniques in real-world cases.

4 OPTIMIZATION TECHNIQUES TOWARD STENCIL BENCHMARKS

In this section, we introduce major optimizing techniques based on the POWER architecture. To
measure the impact of these tuning techniques, preliminary results and analysis are proposed
right after the introduction of each optimization method. The thorough experimental results and
analysis would be demonstrated in Section 5.

4.1 Lightweight Tuning and Loop Interchange

This step indicates how to choose the best compiler options based on the POWER8 processor. With
this study, specific focus has been given to the evaluations and optimizations of the C/C++ set as the
stencil-based scientific applications are implemented adopting these languages (Ewart et al. 2015a)
(Adinetz et al. 2014). Although this step is simple and straightforward, it often leads to significant
performance improvements and should be considered as the starting point for performance tuning.

The IBM XL C/C++ compilers, which could be deployed on POWER, BlueGene/Q, and z Systems
hardware architectures, are applied to transform C or C++ source code to fully exploit IBM hard-
ware (IBM Europe and Announcement 2014). An evaluation of the two provided compilers (gcc
and xlc) is presented along with critical compiler options (Table 3). We should notice that most
of the compiler optimizations such as data prefetching would be adopted automatically after sim-
ply employing these compiler options. According to the experimental results shown in Figure 3,
a remarkable performance benefit could be obtained by simply adopting these options. Besides,
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Table 4. SMT Testing of Scalar and Vector Program (24-core, Double Precision)

compared with gcc compiler, an averaged 40% speedup is able to be achieved for three stencil
benchmarks by employing the XL compiler, as demonstrated in the right part of Table 3.

Loop interchange is the process of exchanging the order of two iteration variables used by
a nested loop. We usually perform loop interchange to ensure that the elements of a multi-
dimensional array are accessed in the same order as they are stored in memory, so as to improve
the data locality and cache hit rate. However, nowadays most programmers would pay attention
to this when they write their program. To provide a fair comparison, the algorithms employed in
this work adopt the most efficient loop structure naturally.

4.2 Combination of OpenMP and Simultaneous Multi-threading

The mapping of threads to multiple CPU cores is a critical factor for the performance of modern
concurrent applications beyond a modest number of threads. The XL compilers provide a full im-
plementation of the OpenMP specification, and, thus, programmers could use OpenMP runtime
control variables to arrange the thread layout. Specially, in S-824L, a total of 24 threads is required
to occupy all physical cores in single thread mode (ST mode). Further performance gains may
be achieved by employing multiple threads on one physical core in SMT mode. With SMT, each
POWER8 core could present up to eight hardware threads and issue more instructions per cycle by
filling the void execution pipelines of processor cores. However, the overheads of threads manage-
ment and hardware resource competition will grow along with the increase of thread numbers.
And among these two influences, while the overheads of thread management (such as context
switch) is relatively stable and has been discussed in some previous publications (such as Adinetz
et al. (2014) and Liu et al. (2016)), the impact caused by hardware resource competition (such as
cache space, register files, issue queue entries, etc.) would change significantly according to differ-
ent applications.

Though the optimal SMT thread number (which could be 1, 2, 4, or 8) for different appli-
cations is various and needs to be explored by experiments, for a fixed SMT thread number,
the best result would generally be achieved by employing a round-robin allocation with stride

s =min(NumSMT,
Numcore∗NumSMT

Numthreads
) to take full usage of hardware resources (which corresponds to

the results demonstrated in Waldspurger (1996)). Namely, if SMT=8, the optimal stride number
should be s =min(8, 192

Numthreads
) in a POWER8 server with 24 processor cores.

Due to the low Flop-to-Byte ratio of stencil-based algorithms, the memory access units of each
processor are always kept busy. As a result, the benefits achieved by adopting simultaneous multi-
threading modes could be even lower than its overhead. Therefore, SMT=1 (ST mode) or SMT=2
are usually the optimal choice in simple stencil-based algorithms such as FD stencils demonstrated
in this part. In our tuning approach of three kinds of stencils, a simple code generator employing
sed was written to find out the best choice of SMT mode. Experimental results demonstrated in
Table 4 approve our judgment indicated above. However, we should notice that when it comes to
complex stencil algorithms, the optimal SMT choice may change to four or eight. We will discuss
this part in detail in Section 6.
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4.3 Non-Uniform Memory Access (NUMA) Aware Allocation

As indicated in Section 3.4, compared with the tuning approach of other contemporaneous Intel
processors, while stencil-based applications benefit from the wider bandwidth and larger cache
capability on POWER processors, the longer latency may become the performance-killer. Thus,
careful NUMA-aware design is of vital importance in POWER processors so as to make sure that
each processor is accessing its own local memory rather than accessing the non-local memory.

In stencil computations, the source and destination grids are each individually allocated as one
large array. For each point of the array, before calculation, it would be initialized at first. This
initializing approach would deterministically specify the thread that updates each mesh point.
Without a careful NUMA-aware design, long-latency remote memory access is highly probable to
occur, resulting in a performance hit of the whole program. To avoid this non-local memory access,
we specify a suitable affinity configuration for the OpenMP threads by setting suitable OpenMP
primitives and employingnumactl instruction to associate a physical memory address with a given
logical address. As a result, a “first touch” page-mapping policy would be implemented and data
is correctly pinned to the physical processor to initialize it. Figure 3 demonstrates the results for
the same computation with and without NUMA mapping. In this experiment, the compact affinity
mode could improve the performance by 50% at most over the default mode.

4.4 SIMD Vectorization and Register Blocking

As the POWER8 processor adopts 128-bit vector registers rather than 256-bit or even wider vector
units on other mainstream processors, how to balance the usage of general-used registers and
vector-scalar registers becomes a challenging task. Therefore, we should pay special attention to
properly employ SIMD on POWER8 processor.

In POWER8 architecture, the introduction of Vector Scalar eXtension (VSX) increases the par-
allelism by providing SIMD execution functionality for floating point computing to improve the
performance of the HPC applications. To increase the opportunities for vectorization, a unified
register file (a set of Vector-Scalar Registers (VSR)) supporting both scalar and vector operations
is provided to eliminate the impact of vector-scalar data transfer in memory. This feature allows
us to simultaneously implement vectorization, loop unrolling, and register blocking.

Take the double precision FD4 stencil for example; vector-scalar vector registers enable us to
load and compute two points of the data space simultaneously. During the implementation of
vectorization approach, there are two key components that can affect the overall performance:
(1) 32 general-purpose registers (GPRs) used for temporary storage and register renaming and
(2) 64 128-bit VSRs to store vector data. Due to the algorithm features (a huge amount of register
renaming and temporary storage) of stencil-based kernels, the GPRs would be used up first. Thus,
there are two optimizing strategies including the GPR-oriented programming, which would stop
as far as the program has run out of GPRs; and the VSR-oriented programming, which would
vectorize more mesh elements until the VSRs are used up.

According to the experimental results demonstrated in Table 5, it is hard to say which strategy
is better to stencil-based kernels after the SIMD step (Step 3). However, the performance potential
of GPR-oriented programming is apparently better than that of the VSR-oriented strategy after
the cache blocking step (Step 4).

4.5 Cache Blocking

Considering the larger cache capability in POWER processors, how to take full advantage of the
fast on-chip memory is of vital importance in the program tuning approach. To avoid the cache
miss of stencil solvers, we first decompose the entire grid into a chunk of blocks whose sizes are
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Table 5. Performance of Two Kinds of Vectorization Strategies

Fig. 2. Left: 3D Decomposition methodology. Right: 2D Decomposition methodology without cutting x-axis.

Fig. 3. Optimized performance results for three stencils (Unit: GFlops, in double precision). The compiler

version and OpenMP version are XLC 15.1.3 and OpenMP 3.1, respectively.

exactly the same to the L3 cache of POWER8 (8MB). L3 cache miss rate is consequently reduced,
resulting in a speedup of more than 20% in general.

While the above step focuses on minimizing the intra-block L3 cache miss, we could further
reduce the inter-block L3 cache miss by keeping the x-axis (the least unit stride) undivided, as
demonstrated in the right of Figure 2. Comparing with the 3D cache blocking methodology shown
in the left, more data in the y-axis could be reused in the 2D decomposition, and, in addition, the
program could take full advantage of the prefetching mechanism (Rivera and Tseng 2000). These
two features could further exploit the locality of the L3 cache and result in a more than 50% speedup
as shown in Figure 3.

5 PERFORMANCE AND ANALYSIS

5.1 Performance Analysis

Since scientific computing relies primarily on double precision, in this section, a set of experi-
ments is presented to evaluate the effectiveness of optimization techniques based on three FD
stencil kernels in double precision. The performance results of the base version are achieved by
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Table 6. Performance Speedup of Stencil Benchmarks by Adopting

Different Optimization Methods

simply running the benchmark programs (using gcc compiler) without adopting any compiler op-
tions. According to the experimental results demonstrated in Figure 3 and Table 6, though the
lightweight optimization methods are simple and straightforward (as introduced in Section 4),
significant performance benefits could be achieved by the appropriate usage of these tuning
techniques.

When we scale the program from 1 core to 24 cores (from Lightweight Opt to NUMA Ctrl), the
speedup of three stencil kernels is 13.4x, 14.6x, and 16.3x, respectively, which is a little far from
the linear scalability. These results demonstrate that all three stencil kernels are memory-bound
programs when running on the POWER8 processor. The rising speedup from Jacobi (FD2) to FD8
reflects the gradual increase of arithmetic intensity of these three kernels. Within these tuning
techniques, the optimal combination of SMT and OpenMP is various among different algorithms;
how to select the best choice is an important task for programmers to face. In addition, the effect of
NUMA-aware design on POWER is more significant than that of Intel CPUs (Jeffers and Reinders
2015), which is accordant with the hardware features (deeper pipeline, larger cache space, but
longer latency) of POWER8.

The effects of vectorization could be obtained when we double the instruction-level parallelism
of three kernels. Since the Jacobi stencil is bounded by main memory accesses even in the most
arithmetic-intensive part of the kernel, only 3% speedup is able to be achieved by applying vec-
torization. As a comparison, due to the huge amount of data reuse in FD8 computation, its mem-
ory access pressure is not as large as Jacobi. Therefore, a speedup of more than 25% could be
obtained for the FD8 stencil. As expected, the speedup of the FD4 stencil kernel (16%) is right
between the speedup of Jacobi (3%) and FD8 (26%), which approves our judgement mentioned
above.

As mentioned in Section 4, cache blocking reduces the L3 cache misses on POWER8 processors,
which could result in a remarkable performance boost for memory bound programs, such as the
three FD stencil benchmarks applied in this article. Thus, a speedup of up to 2.32x is able to be
achieved by properly adopting the cache blocking. Combining all these tuning techniques together,
a significant speedup could be achieved in all of the three stencil kernels, as demonstrated in
Figure 3 and Table 6.

5.2 Performance Evaluation

Since the peak performance of different hardware platforms is various, to provide a full-scale evalu-
ation and fair comparison, in this part, we apply the hardware usage efficiency, which is calculated
by the measured performance dividing its peak performance, as the performance metric, thus, to
compare the benchmark performance in POWER8 to that of other mainstream platforms.

Tables 7 and 8 indicate the performance of stencil benchmarks on POWER8 and other main-
stream platforms, respectively. From the experimental results, we could figure out that the perfor-
mance efficiency (the ratio of achieved performance over the theoretical peak) of similar stencil
programs on POWER8 is more than two times higher than that of other mainstream platforms.
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Table 7. Experimental Results of POWER8 Table 8. Experimental Results

of Other Platforms

Fig. 4. Stencil-based application tuning framework on POWER system. Different kinds of optimization

methods should be adopted according to the bottleneck of the target program.

(To provide fair and convincing comparison results, we directly adopt the optimization results
achieved by the expert of corresponding platforms.) These results further prove the efficiency of
our tuning guidelines as well as the computational ability of POWER processors.

Specifically, we would like to mention that in most publications, the standard performance (ex-
plained in the bottom of the Table) is applied as the performance metric to describe the experi-
mental result of stencilbased applications. However, the non-standard performance is being used
sometimes. To provide a full-scale evaluation of our optimization results, the standard performance
metric is employed in most parts, and the non-standard performance is also mentioned in Table 7.

5.3 Performance Tuning Framework toward Stencil-Based Kernels

Based on the optimization techniques and analysis indicated above, we could further derive the
performance tuning framework of stencil-based kernels based on the POWER8 platform. As shown
in Figure 4, the framework contains three major modules and a judge box, and is suitable for
optimizing stencil-based algorithms.
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When a stencil-based kernel comes into the optimization framework, the first three tuning
techniques that should be adopted are OpenMP, loop interchange, and lightweight tuning. While
OpenMP could enable the basic thread-level parallelization of processors, the adoption of loop
interchange and lightweight tuning (namely choose the optimal compiler as well as compiler op-
tions) would ensure a cache-friendly data structure and activate the automatic optimizations of
compilers.

After adopting the optimization methods mentioned above, programmers should judge if the
performance efficiency of our target program has met their requirements. If so, we could end our
optimization. Otherwise, we need to continue the optimization. If the optimization task continues
and the program is mainly bounded by bandwidth or throughput, we should try our best to increase
the cache hit rate and decrease the memory access latency. Specifically, cache blocking and NUMA-
Aware allocation should be adopted in such case. Otherwise, if the program is computation bound,
then tuning methods such as SMT, SIMD, and eliminating complex operations should be taken so
as to fill in hardware pipelines. The detailed information of how to properly employ these tuning
techniques is indicated in Section 4.

After these steps, we need to readjust the parameters (such as compiler options, SMT value) if
needed. Besides the general optimization methods indicated above, for some extremely complex
programs, we have to adjust the data structure or even the algorithm so as to fully combine the
algorithm features with the hardware characters. We come to this part in detail in Section 6.

As we have made sufficient explanations of how to optimize stencil-based benchmarks on
POWER8 in a previous part, in the following sections, we will choose two most typical scien-
tific applications (i.e., atmospheric simulation and seismic modeling) to show both the similarities
and differences between benchmark optimization and performance tuning for real-world appli-
cations, so as to demonstrate how to combine the hardware-oriented tuning strategies with the
application algorithms.

6 APPLICATION I: ATMOSPHERIC MODELING

6.1 Algorithm and Challenges

As demonstrated in Section 2, in this section, we choose the global shallow water equations (SWEs)
based atmospheric solver, which is a similar atmospheric modeling program to the winner program
of the Gordon Bell Prize in 2016 (Yang et al. 2016), as the first study case of this work. The global
SWEs, which constitute a simplified atmospheric-like fluid prediction model that is able to exhibit
the essential features of the global atmosphere, are one of the most popular equation sets that are
selected to simulate the global climate behavior.

Algorithm 2 demonstrates the algorithm of the SWE solver (Yang et al. 2013; Xu et al. 2016b),
the kernel of which is a 13-point SWEs stencil. The solving approach of the SWEs algorithm is
basically a stencil computation involving 13 cells in a neighboring domain, as demonstrated in
Figure 5.

Besides the challenges in the tuning approach of stencil benchmarks, we have to face some
new challenges when we optimize real-world applications such as the SWE solver: (1) Long
latency operations such as sqrt() and pow() decrease the number of instructions that can be
finished within one cycle. (2) Instruction dependency and branches are unavoidable in SWE
solvers, which would result in both irregular memory access and imbalanced workload distri-
bution among different threads. (3) Lacking of parallelization-friendly data structures makes it
hard to employ some parallel characteristics (such as VSX instruction set to trigger SIMD) of
POWER8.
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Fig. 5. Left: 13-point stencil used in SWE, where

the adjacent 13 elements are needed to calculate

the centric one. Right: Solid dots and halo

elements involved in an SWE grid.

Fig. 6. Data locality without and with cache

blocking. In an ideal case, by adopting the cache

blocking strategy properly, if one element is

driven out of the cache, it would never be used

again.

ALGORITHM 2: Algorithm of SWE Solver

1: CPU Begin

2: Data Initialization for CPU(input_x,input_hs, and so on)

3: for (j, i ) ← (0, 0) to (nyl, nxl ) do the SWEs Stencils

4: Calculate Coordinate

5: Calculate Fluxes{

6: State Reconstruction

7: Riemann Solver}

8: Compute Source Terms

9: end for

10: CPU End

6.2 First-Round Optimization of the SWE Solver

In this part, we start to apply the tuning methods within the framework (Figure 4) so as to provide
a first-round performance tuning of the SWE solver. According to the tuning framework, three
basic optimization techniques are adopted at first. We adopt 24-threads OpenMP in single-thread
mode (ST mode) and employ xl compiler along with lightweight tuning techniques indicated in
Section 4. As indicated above, the loop interchange is automatically adopted in this application so
no more additional modification needs to be done to employ this method. Then, we come to the
first judgment box and it turns out that the application is memory bound and further optimizations
need to be adopted.

To deal with memory bound programs, NUMA control and cache blocking should be adopted
according to the tuning framework. The way of adopting NUMA-Aware allocation is almost the
same as what we described in Section 4.3, and we will not go into detail here. As for cache blocking,
to simplify the description, we only discuss one matrix adopted in the SWE solver. Suppose the size
of the matrix is N*N, and L1-Cache becomes full after element (i, j) is processed. If we continue to
process elements on the same row, we need to load five more new elements from the main memory
every time when we process a mesh element. To make things worse, when we finish processing
the first row and get to the first element of the second row, there is no cache-data available for
reuse, since the elements once loaded in cache have been ejected already. In this case, 13 elements
have to be loaded when a new line is processed; thus, the number of elements we need to load to
finish processing the whole matrix should be n1 = 5 ∗ N 2 + 8 ∗ N , as demonstrated in the upper
part of Figure 6. While, if we adopt the strategy shown in the below part of Figure 6 and turn to
dealing with the first element of the second row after the element (i, j) is processed, only three
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new elements are loaded in the next step and only one new element will be needed to process a
new mesh cell in the future steps. In this case, for each i*N block, (i+2)(N+4) times data fetching
is required, so for the N*N matrix, only n2 = (1 + 2

i
) ∗ N 2 + (4 + 8

i
) ∗ N times global memory ac-

cess is required in total, which is far less than the previous case. (To simplify the discussion, we
do not involve cache line, but we should notice that the conclusion remains unchanged even in
consideration of cache line.)

So far, we manage to apply the three basic tuning methods as well as memory optimization tech-
niques shown in the framework. However, even if we choose the best SMT choice at this moment,
the performance efficiency is 12.8% (75.35 / 590), which is not very satisfying. Thus, another round
of optimization is needed and computational-oriented tuning techniques should be employed.

As indicated above, there are several long-latency operations such as TAN and pow () involved
in the computation of the state reconstruction step. Such operations would heavily degrade the
performance of the SWE algorithm along with execution dependency. By mapping the instruction
associated to their mnemonics into a for loop whose unroll factor was parameterizable, we manage
to figure out the latency of main operations involved in the SWE solver (double precision, based
on xl compiler). Among dozens of operations, while most of them take only several or tens of
cycles (6 cycles for ADD, MUL, and FMA, around 30 cycles for DIV, 40 cycles for sqrt ()), the TAN
and pow () operation takes hundreds of cycles. In the SWE solver, the 6 TAN operations from the
algorithm can be replaced by 2 TAN, 8 ADD, 4 MUL, and 4 DIV through using the formula tan(A +
B) = (tan(A) + tan(B))/(1 − tan(A) ∗ tan(B)), which further decreases the computational latency.

Besides the latency reduction approach, SIMD and SMT modification are also adopted on the
SWE solver, as discussed in Section 4. However, after these approaches, the performance effi-
ciency only increases to 13.6% (80.35 / 590), which is still significantly lower than the performance
efficiency of similar stencil benchmarks. Besides, during the tuning approach, we could find out
some tuning methods (such as SIMD) would not come up with satisfying results naturally. Thus,
we would like to modify the algorithm to see if a higher performance could be achieved.

6.3 Algorithmic Modification for the SWE Solver

This part aims to further optimize the SWE solver by modifying the solver algorithm. The tuning
approach could be summarized as follows: (1) Adjusting the data structure of the SWE solver
so as to satisfy the capacity of SIMD registers (Section 6.3.1); (2) Reorganizing the computation
sequence of the SWE solver and providing a customized vector grouping strategy, which regroups
the data into a hardware-friendly pattern so as to maximize the performance (Section 6.3.2). The
experimental results demonstrate both the necessity of algorithm modification and the difference
between benchmark tuning and application optimization.

6.3.1 Register-Friendly Data Structure Reconstruction. Algorithm 4 is a simplified code segment
that extracted from the SWE algorithm. Among the elements involved in the computation, each
member of matrix A is a manually defined structure, which contains three double elements that
are employed in the computation of convective fluxes, while each member of matrix B is a double
precision data used for calculating source terms. In addition, the size of two matrixes is the same
and within each round of computation, five adjacent mesh elements of each matrix are involved.

As the size of a vector-scalar register is 16 bytes, before algorithmic adjustment, SIMD vec-
torization can only be employed to part of the computation. As demonstrated in the left part of
Figure 7, since the VSX instruction set can only load adjacent elements into the same vector, while
the computation of s.a and s.b can be paralleled by employing SIMD, the calculation of s.c and q
cannot be paralleled since the elements involved when calculating s.c and q are located far away
in two different matrixes. That means, among the two matrixes, only 14 elements out of 20 could
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Fig. 7. Left: Before adjustment, data of matrix A and matrix B can not properly fit into the 16 bytes vector-

scalar registers of POWER8. Right: After adjustment, all data could be pre-fetched to vector-scalar registers

so as to make the computation more effective.

adopt SIMD vectorization, which means 30% of the computational instructions could not be par-
allelized. To deal with this issue, we combine the two matrixes together and merge them into a
modified matrix A, and each element of A is a data structure that contains four double numbers,
as shown in the right part of Figure 7. In this case, all the computation instructions demonstrated
in Algorithm 3 could be parallelized via SIMD vectorization.

ALGORITHM 3: Customizing Cache-Friendly Data Structure

Before Adjustment

1: s.a← c1*A[j][i-1].a+c2*A[j+1][i-1].a+c3*A[j-1][i-1].a+c4*A[j][i].a-c5*A[j][i-2].a;

2: s.b← c1*A[j][i-1].b+c2*A[j+1][i-1].b+c3*A[j-1][i-1].b+c4*A[j][i].b-c5*A[j][i-2].b;

3: s.c← c1*A[j][i-1].c+c2*A[j+1][i-1].c+c3*A[j-1][i-1].c+c4*A[j][i].c-c5*A[j][i-2].c;

4: q← c1*B[j][i-1]+c2*B[j+1][i-1]+c3*B[j-1][i-1]+c4*B[j][i]- c5*B[j][i-2];

After Adjustment

1: s.a←c1*A[j][i-1].a+c2*A[j+1][i-1].a+c3*A[j-1][i-1].a+c4*A[j][i].a-c5*A[j][i-2].a;

2: s.b←c1*A[j][i-1].b+c2*A[j+1][i-1].b+c3*A[j-1][i-1].b+c4*A[j][i].b-c5*A[j][i-2].b;

3: s.c←c1*A[j][i-1].c+c2*A[j+1][i-1].c+c3*A[j-1][i-1].c+c4*A[j][i].c-c5*A[j][i-2].c;

4: s.d←c1*A[j][i-1].d+c2*A[j+1][i-1].d+c3*A[j-1][i-1].d+c4*A[j][i].d-c5*A[j][i-2].d;

The register-friendly data structure reconstruction method demonstrated in this part is a rep-
resentative example of what can be typically done in many parts of the SWE solver or even some
other scientific applications ((Fu et al. 2016)); due to the space limitation, we will not come into
detail here. By adopting this tuning technique, an 11.2% speedup is achieved in our SWE solver, as
shown in Figure 8.

6.3.2 Customized Vector Grouping Strategy. Algorithm 4 is an abstraction of the flux computa-
tion part of the SWE solver. While the detailed computation of state reconstruction step shown in
Algorithm 3 demonstrates the memory-intensive part of the SWE solver, the simplified Riemann
Solver step is the most important computational part that contains more than 900 arithmetic op-
erations in reality.

As demonstrated in Algorithm 4, the computation within the Riemann Solver can be classified
into four parts: L (left), R (right), B (bottom), and T (top), where L and R belong to the x-axis, and
B and T belong to the y-axis. In this algorithm, variables of the x-axis are calculated at first, and
then variables in the y-axis are managed secondly.

To enable the instruction-level parallelization on this part, our first attempt is to vectorize el-
ements within same axis, namely, fusing elements in direction left and right (such as L1 and R1)
into a 16-byte vector. In this case, the eight variables adopted in the Algorithm 4 are formulated
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Fig. 8. Performance results of the SWE solver after adopting each tuning technique. (Double precision, grid

size is set as 3200*1920, which is far larger than all level of cache capacities.) Latter performance results are

inclusive of all the performance gains achieved by adopting previous tuning techniques, except for the three

VG strategies (the three VG strategies are independent).

ALGORITHM 4: Simplified Algorithm of Flux Calculation

1: State Reconstruction of x-axis

2: Riemann Solver of x-axis (simplified)

3: L←(L1+L2)/L1;

4: R←(R1+R2)/R1;

5: gx←(L1+L2)*a+(R1+R2)*a;

6: State Reconstruction of y-axis

7: Riemann Solver of y-axis (simplified)

8: B←(B1+B2)/B2;

9: T←(T1+T2)/T2;

10: gy←(B1+B2)*b+(T1+T2)*c;

as the following four groups of vector-scalar registers: (L1, R1), (L2, R2), (B1, T1), and (B2, T2).
Consequently, the first part (lines 3–4 and 8–9) of the Riemann Solver could be vectorized (demon-
strated as Strategy1 in Algorithm 5), while the second part (lines 5 and 10) can not apply SIMD
vectorization without declaring new VSX registers, as the L1 and R1 are resident in the same VSX
register in the previous step. To solve this problem, we adopt more VSX registers as demonstrated
in Strategy2. In this way, hundreds of computational instructions (84 ADD, 17 SUB, 160 MUL, 24
DIV, 12 SQRT) are parallelized.

To further reduce the new VSX register involved in Strategy 2, we first adjust the computation
sequence of the State Reconstruction Step and the Riemann Solver, and then combine the eight
variables cross axis as [L1,B2], [L2,B1], [R1,T2], and [R2,T1]. In this case, almost no additional VSX
registers are needed in the computation of [gx,gy]; thus, a further performance benefit is able to
be achieved. (Strateдy3)

6.4 Performance Evaluation and Analysis

In this part, we provide the experimental results and related analysis of different tuning techniques
for the SWE algorithm based on the IBM S-824L server. Figure 8 demonstrates the performance of
the SWE solver after adopting each step of the tuning framework. When the workload is mapped
from single core to 24 cores with OpenMP, SWE shows a linear scalability, and this performance
serves as a baseline for latter analysis.
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ALGORITHM 5: Modified Algorithm of Flux Calculation

Strategy 1: Vectorization along with Axis

1: State Reconstruction of x-axis

2: Riemann Solver of x-axis (simplified)

3: [L,R]←([L1,R1]+[L2,R2])/[L1,R1];

4: gx←(L1+L2)*a+(R1+R2)*a;

5: State Reconstruction of y-axis

6: Riemann Solver of y-axis (simplified)

7: [B,T]←([B1,T1]+[B2,T2])/[B2,T2];

8: gy←(B1+B2)*b+(T1+T2)*c;

Strategy 2: Further Vectorization of [gx,gy]

1: State Reconstruction of x-axis

2: Riemann Solver of x-axis (simplified)

3: [L,R]←([L1,R1]+[L2,R2])/[L1,R1];

4: State Reconstruction of y-axis

5: Riemann Solver of y-axis (simplified)

6: [B,T]←([B1,T1]+[B2,T2])/[B2,T2];

7: [gx,gy]←([L1,B1]+[L2,B2])*[a,b]+([R1,T1]+[R2,T2])*[a,c];

Strategy 3: Vector Grouping Cross Axis

1: State Reconstruction of x-axis

2: State Reconstruction of y-axis

3: Riemann Solver of L and B

4: [L,B]←([L1,B2]+[L2,B1])/[L1,B2];

5: Riemann Solver of R and T

6: [R,T]←([R1,T2]+[R2,T1])/[R1,T2];

7: [gx,gy]←([L1,B2]+[L2,B1])*[a,b]+([R1,T2]+[R2,T1])*[a,c];

*square brackets such as “[L,R]” mean variables L and R are put into one 16-byte VSX register, and black square brackets

such as “[L1,R1]” mean [L1,R1] is a new VSX register that never appeared before.

In Figure 8, the four bars within each tuning method indicate the performance of different SMT
modes. Among different tuning techniques, setting SMT as four or eight generally yields bet-
ter performance than that of ST or SMT=2, which is totally different from the result of stencil
computations indicated in Table 4. Such results indicate that within the SWE solver, long-latency
operations such as SQRT and TAN combined with execution dependency lead to a large number
of empty pipelines and remarkably hit the performance, while employing more than one logical
thread within one physical core could release this situation by getting empty pipelines filled.

In addition, the relative performance gap between different SMT models varies when different
tuning techniques are adopted. When the SWE solver is far from well-tuned, SMT=8 results in
better performance than SMT=4. However, when more tuning techniques are adopted, the per-
formance gap between SMT=4 and SMT=8 gradually disappears and then SMT=4 outperforms
SMT=8. The reason is that by adopting systemic tuning techniques, both the operation latency
and computation intensity are greatly reduced; as a result, we could use fewer threads to fill the
pipelines of the physical core. The fact that the optimal model changes from SMT=8 to SMT=4
proves the effectiveness of our tuning techniques.

Though this work mainly focuses on how to accelerate stencil-based scientific applications on
POWER8 system, if we analyze further, at this moment, we could boldly predict that hardware
vendors could decrease the maximum SMT mode from 8 to 4, thus, to save the space for more
physical cores if the processor is built for scientific computing. As even in the complex SWE solver
(part of the program is memory-bound and others are computation-bound, and there are execution
dependencies between these parts, which is almost the most complex code organization structure

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 41. Publication date: October 2018.



Performance Tuning and Analysis for Stencil-Based Applications on POWER8 Processor 41:19

in the scientific computing field), SMT=4 is enough after adopting tuning techniques presented in
this work.

When it comes to first-round tuning methods demonstrated in Figure 8, though the lightweight
optimizations are straightforward, remarkable performance benefits are able to be achieved by
adopting these optimizations. Adopting cache blocking could increase the L1 cache hit rate and
result in an 8.35% speedup. However, the ideal performance is able to be achieved only if we set
the size of block as 64KB (size of L1 Dcache), because, though SWE contains large amounts of so-
phisticated mathematic operations, the mathematic operations nearby the loading operations are
all short-latency operations such as ADD, SUB, and MUL. Such feature requires the loading oper-
ations to be done within few cycles; otherwise, execution dependency caused by memory loading
would hit the performance. Thirdly, based on the latency evaluation of general-used computational
operations on POWER8, the latency-reduction algorithm design replaces the long-latency compu-
tational operations (namely TAN) with multiple short-latency operations; such an approach de-
creases the performance hit caused by execution dependency, resulting in another 6.64% speedup.

As for the performance boost provided by customized optimization (namely the algorithmic
modification), first of all, the register-friendly data structure reconstruction properly combines
the software algorithm with the capacity of vector-scalar registers of POWER8 by reconstructing
the input data of the state reconstruction step, leading to a 11.2% speedup. The most remarkable
performance boost is achieved by the customized vector grouping strategy. To fully take advantage
of the hardware resources, we modify the order of the SWE algorithm and regroup the vector data
cross axis. To fully combine the algorithmic features with the hardware characters, three kinds of
vector grouping strategies are provided, and according to the experimental result, 30.87%, 45.05%,
and 55.38% performance boosts are achieved, respectively. After these steps, the framework is
ended since all kinds of tuning techniques (memory optimization, computational optimization
and algorithm modification) have been employed. As a result, a 10.18 times speedup is able to be
achieved.

7 APPLICATION II: SEISMIC MIGRATION

In this section, we focus on the tuning approach of the reverse time migration (RTM), a more
general and simple stencil-based application from seismic modeling.

7.1 Seismic Modeling and RTM Algorithm

Seismic imaging is the basic tool in the oil industry to identify possible reservoir locations. By
generating images of the terrain, it is able to explore the geological structures of the earth. The first
step for seismic modeling is to generate acoustic waves and record the response at some distance
from the source on the surface of the earth. After this approach, we could further rebuild the
properties of the propagation media by adopting some single processing algorithm on the recorded
data, which is the key step of seismic modeling. While the propagation of waves in the earth is a
complex phenomenon that requires a sophisticated wave equation to be modeled accurately, RTM
comes out to be one of the popular migration algorithms for seismic modeling (Araya-Polo et al.
2011) (Ortigosa et al. 2008).

As every acoustic shot is introduced in different moments, it is possible to process them indepen-
dently. Thus, the most external loop of RTM, which sweeps all shots, can be distributed in plenty
of nodes or multiple threads. For each shot, we need to prepare the data of the velocity model and
the proper set of seismic traces associated with the shot. Due to the same operations inside each
shot computation, in this section, we only focus on the RTM kernel, namely the RTM algorithm
adopted to process one shot. As demonstrated in Algorithm 6, the output of RTM is the sum of the
correlation result of each step which is calculated by the source wave propagation (SWF) and the
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Fig. 9. Demonstration of the RTM performance.

corresponding receiver wave propagation (RWF). However, since the data amount generated by
the propagation approach in thousands of timesteps is too huge to be stored in the main memory,
we can not record all of the SWF in different timesteps.

ALGORITHM 6: Demonstration of the RTM algorithm with check-point

To deal with this problem, we first record the source propagation results of the last two steps
(SWFtn and SWFtn−1, calculation shown in line 2) in main memory. Then, we get the receiver prop-
agation results of the first two steps (RWFt1 and RWFt2) and do the correlation of these two steps.
After that, we calculate the SWFtn−2 in current timestep according to the SWFtn and SW Ftn−1 by
adopting backward propagation (line 4) and get the corresponding RWFt3 by performing a receiver
propagation (line 5), and then accumulate the correlation results by employing cross correlation
(line 6). This approach is repeated until a satisfying result is achieved.

The main challenges of RTM implementation could be classified into two groups: memory ac-
cess and computation. According to the analysis of Algorithm 6, the computation part of RTM
mainly concentrates on the calculation of an FD8-like stencil, as indicated in the right most part of
Algorithm 6. During the calculation, since only one direction has the data stored in memory con-
secutively, access to memory for other directions is very expensive. This feature, together with the
long tails of the stencil, makes cache blocking necessary to be adopted to our RTM optimization.
Moreover, due to the NUMA on POWER8, a time penalization may be paid if data is not properly
distributed among memory banks. In addition, from the computational point of view, we should
vectorize the stencil computation in order to make full use of hardware resources.

7.2 Optimization and Performance Analysis

In this part, we demonstrate how to deal with the problems stated above by properly using the
optimization techniques presented in the optimization framework.

First, besides applying OpenMP to enable the thread-level parallelism and adopting the optimal
combination of compiler options by taking a set of experiments, NUMA control is adopted to
decrease the non-local memory access problems. Since the program has good data structure and
is able to benefit from SIMD, apparently, two vectorization strategies are employed to balance the
hardware usage. According to the experimental results, GPR-oriented vectorization wins again,
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and the performance result is demonstrated in Figure 9. After this move, since the application is
still bounded by the memory, cache blocking is adopted to decrease the L3 cache miss of POWER
processors. Compared with the complex algorithm tuning demonstrated in Section 6, there are few
challenges when we adopt the tuning techniques on the RTM program.

The optimal performances after each optimizing step are shown in Figure 9. Compared with the
basic OpenMP+NUMA version, a 5.26x speedup is achieved by adopting a series of tuning tech-
niques. We should also note that the testing of different SMT modes is employed during the whole
optimizing approach, and according to the experimental results, the best performance shown in
the right most bar of Figure 9 is achieved at SMT=2, though the optimal performance of other
optimization steps are all obtained at ST (SMT=1) mode.

To evaluate the performance we achieved after adopting our tuning framework, Roofline model
(Williams et al. 2009) is involved. Since the RTM algorithm is apparently a memory bound pro-
gram after adopting SIMD, the achievable peak performance of RTM could be calculated as:
APEAKRT M = FBRRT M *BWRT M . To simplify the description, we use NUMpoint and NUMops to
represent the number of points being managed and the number of operations when dealing with
each point. According to the hardware architecture of POWER8,

BWalдr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

BWTheoe ∗
read +write

read
∗ 2

3
, (i f read > 2 ∗write )

BWTheoe ∗
read +write

write
∗ 1

3
, (otherwise )

(1)

In addition, 37 read and 5 write need to be done to deal with each point, and the data type is
float. From Williams et al. (2009) and the above analysis, we could demonstrate that FBRRTM =

NUMops

(37+5)∗4Byte
and BWRTM = 460.8* 37+5

37 * 2
3 . Thus, the actual performance is ACPerRTM = NUMpoint *

NUMops . As the the NUMpoint is 1907.34MPoint/s
1024 = 1.86GPoint/s, the ratio of the real performance to

the maximum available performance equals to: ACPerRT M

AP EAKRT M
=

NUMpoint∗37∗6
460.8 = 89.7%. In consideration

of the cross-correlation and other operations with the RTM algorithm, this result is quite good
and, thus, we could end our tuning framework at this point.

8 CONCLUSION

With the innovation of IBM POWER processors, a number of upcoming supercomputing facili-
ties (such as Summit and Sierra) will use the POWER processors as host processors. However, as
current scientific programs are still largely designed for other processors (Intel CPU) and accel-
erators (GPU, MIC, KNL, etc.), such a transition exposes the lack of tuning guidelines of POWER
processors. At this background, this work aims at filling the gap between hardware capability and
software performance of the POWER8 processor, as well as facilitating the tuning efforts of the
POWER system for stencil-based scientific applications and providing useful guidance.

To achieve this goal, we first demonstrate how to combine the general tuning techniques with
the POWER8 hardware architecture through the optimization approach of three representative
stencil benchmarks. By properly using the five optimization methods, our performance based on
POWER8 is two times better than the performance of contemporary mainstream processors (such
as Intel E5-2697 v2). These results demonstrate the effect of our tuning guidelines and prove that
POWER8 is an ideal platform for running stencil-based scientific applications.

Based on these optimization guidelines and their evaluation, we further provide a performance
tuning framework aimed at guiding the tuning approach of stencil-based applications on POWER
processors so as to facilitate the performance tuning approach for programmers. After such ap-
proach, we further choose two typical scientific applications (namely, the similar kernels of the
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winner program of the Gordon Bell Prize 2016 and 2017) to show how to deal with the challenges
when we optimize real-world applications on POWER processors. Benefits from the proper algo-
rithmic adjustment (even five versions on the atmospheric modeling program) and remarkable per-
formance boost (10.18x, 5.26x speedup) is achieved. Such a process demonstrates the way of com-
bining the hardware-oriented tuning strategies with the application algorithms, and also proves
that our tuning framework works well for both simple and complex stencil-based applications.

To summarize, this work demonstrates that though the raw performance of POWER8 may not
be as good as other mainstream processors (Mericas et al. 2015; Datta et al. 2008), with proper
manual design, the POWER8 system could be one of the most powerful multi-core CPU processors
for scientific computing, as described in Section 5.2. As we fill the gap between the hardware
capability and software performance of POWER8, scientific application programmers are able to
boost their programs by employing framework or guidelines presented in this article. We could
predict that POWER CPU is also a promising candidate that can serve as the host processor to
construct the hybrid architecture, such as the POWER-GPU, or POWER-FPGA schemes. These
ideas will be studied in future.
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