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Abstract—As scientific applications are increasingly ported to GPUs to benefit from both the powerful computing capacity and high

throughput, accelerating explicit solvers for GPU-based finite volumemethods is gainingmore andmore attention. In this paper, based

on the detailed analysis of the FVM algorithm, we present a set of novel optimizationmethods, including the explicit data cache

mechanism, optimal global memory loading strategy, as well as the inner-thread reschedulingmethod, which derives a suitable mapping

from the solver algorithm to the underlying GPU hardware architecture, so as to remarkably improve the solving performance of

structuredmesh based FVM.We demonstrate the impact of our tuning techniques on twowidely-used atmospheric dynamic kernels (3-D

Euler and 2-DSWE) on five kinds ofmainstreamGPUplatforms, andmake a detailed analysis of the different tuningmethodologies so as

to demonstrate how to select the proper tuning strategy to different applications on various GPU platforms. Specifically, 93.9x speedup is

achieved for the 3DEuler solver on Nvidia V100 over one 12-core Intel E5-2697 (v2) CPU, which is a 77 percent improvement compared

with the original speedup without adopting the tuning techniques presented in this work.

Index Terms—Finite volume method, GPU, performance optimization, scientific applications

Ç

1 INTRODUCTION

IN the past few decades, constrained by the physical limits
such as heat dissipation and power consumption, going

purely for clock speed is no longer the best strategy in pro-
cessor design. As a result, the increasing of processor fre-
quency has come to a stop. To meet the growing demand of
computing power, many-core and reconfigurable architec-
tures, such as GPUs, MICs, and FPGAs, are developed so as
to promote the performance-power ratio and to keep the con-
tinuous increase of the computing power. Among these new
computing architectures, GPU is one of the most popular
accelerators and is being widely used nowadays in both
national laboratories and industry fields. Compared with
general-purpose CPU platforms, GPU is equipped with a
larger number of computing units with simplified control
mechanisms inside each chip, making it more efficient when
dealingwith throughput-oriented algorithms.

The finite volume method (FVM) is a numerical method
for solving partial differential equations that calculate the
values of the conserved variables averaged across the vol-
ume [1]. As one of the most commonly used numerical
method, FVM is widely used in the solving approach of
many scientific applications, such as atmospheric modeling
[2], room acoustics modeling [3] and hydraulic erosion simu-
lation [4]. However, as one of the hot spots in these pro-
grams, the explicit FVM solver algorithm is suffering from
the low flop-to-byte ratio and irregular memory access
issues, thus to remarkably decrease the utilization rate of the
high-density computing devices. At the same time, with the
rapid increase of computing power demands, scientific
applications (including the FVM-based scientific applica-
tions) are increasingly ported to GPUs to benefit from both
the powerful computing capacity and the high throughput.
Thus, to boost the performance of scientific applications on
GPU, an accelerated FVM solver is in urgent demand.

Aiming at providing a GPU-based FVM solver that can
fully take advantage of the hardware characteristics, first
we should identify the features of the FVM-based solver.
The explicit FVM solver mainly contains two time-con-
suming parts, the state reconstruction step and the Rie-
mann solver part. The complexity of the solver algorithm
can be summarized into three folds: 1) The huge amount of
memory access caused by the stencil iteration leads to
a low Flop-to-Byte ratio of the state reconstruction step.
2) Long latency operations within the Riemann solver part,
such as sqrtðÞ and powðÞ, introduce further complexities
for achieving high instruction throughput. 3) Instruction
dependency and branches are unavoidable in FVM solv-
ers, which would result in both irregular memory access
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and imbalanced workload distribution among different
threads.

For the underlying GPU architecture, related to the above
algorithmic issues, there are also challenges that pro-
grammers need to face: 1) the limited space of GPU’s on-
chip fast buffer when performing memory-oriented optimi-
zations for FVM; 2) the warp model for scheduling and exe-
cuting threads when dealing with the frequent branches; 3)
the performance issue caused by long latency instructions,
such as sqrtðÞ and powðÞ, combined with execution depen-
dency problems.

To resolve the above algorithmic and architecture through
a suitable mapping of FVM to GPU, in this paper, we propose
a set of general optimization methods, and analyze how to
identify its optimal implementation choice in different situa-
tions, and evaluate their effectiveness on two real-world
applications by comparing the preliminary optimized version
that adopts up to six existing tuning techniques and the fully-
optimized version that adopts our proposed approaches. The
experimental results indicate that by employing the FVM tun-
ing methods presented in this work, remarkable performance
speedup could be achieved on almost all kinds of modern
GPUplatforms.

The main contributions of this paper include:

� Ahigh-level analysis of the finite volumemethod and
its implementation on mainstream GPU platforms,
identifying state reconstruction step as the hot-spot of
the explicit FVM solver; employing up to 6 tuning
techniques (including coalesced access, kernel split-
ting and so on) as the first-round optimization to
provide an optimized GPU version for further com-
parison and effectiveness evaluation;

� Presenting a set of novel optimization methods that
can fully combine the algorithm features with the
hardware architecture, by performing algorithmic
modifications of the original FVM solver, including
an explicit cache mechanism and optimal global
memory loading strategy to reduce redundant com-
putations and global memory access, as well as an
inner-thread rescheduling method to handle work
balance versus synchronization tradeoffs;

� Employing these optimization methods to typical
atmospheric dynamic solvers (2D SWE solver and
3D Euler solver) so as to exam the effectiveness of
these tuning techniques on all kinds of mainstream
GPU platforms nowadays (Fermi, Kepler, Pascal and
Volta), and making a detailed analysis of the differ-
ent tuning methodologies so as to demonstrate how
to select the optimal tuning strategies to different
FVM solvers on various GPU platforms.

2 RELATED WORK

As FVM-based scientific applications are becoming increas-
ingly complicated nowadays due to the consideration of
accuracy and flexibility, to meet the rapid increasing per-
formance demand, a huge amount of work has been done
to accelerate the FVM solver on different kinds of high-
performance processors, including but not limited to GPU
([5], [6]), Knight Landing ([7], [8]) and FPGA ([9], [10]).

Specifically, in 2016, Yang et al. accelerated the FVM-based
ShallowWater Equations on Sunway TaihuLight supercom-
puter [2]. In this work, the authors performed systematic
optimizations on different hardware levels to achieve best
utilization of the heterogeneous computing units and sub-
stantial reduction of data movement cost, and successfully
scaled the solver to the entire system and achieved a 7.95
PFLOPS performance in double-precision. This work won
the Gordon Bell Prize of that year [13].

With the fast development of GPU nowadays, to improve
the overall performance of FVM-based applications on mod-
ern GPU platforms, a couple of optimization methods have
been proposed to reduce the impact of the resource conflicts
between the FVM algorithm and the underlying hardware
architecture ([4], [11], [12]). For instance, in work [4], an effi-
cient FVM-based physically-based hydraulic erosion algo-
rithm is presented and implemented completely on a
GeForce 9,400 GPU to simulate the dynamic erosion process.
In work [12], a parallelization of a FVM-based shallowwater
numerical scheme suitable for GPU architectures (GTX 580
and Tesla M2070) is presented. However, through remark-
able performance benefit is able to be achieved, these works
are targeting at optimizing specific scientific applications but
not the FVM algorithm in general. Thus, it is hard to scale
these tuningmethods on different applications.

Based on the experience of specific-application perfor-
mance tuning on GPU, people manage to summarize the
general GPU optimization techniques towards a set of com-
monly used problems ([14], [16], [17], [18], [46]). Specifically,
in [14], the author presents a GPU parallelization technique
of the 3D finite difference computation. Themethod could be
widely used on almost all kinds of applications adopting
finite difference method, and experimental results demon-
strate the great effect of this technique. Inspired by these
exciting achievements, we would like to explore the possibil-
ity of providing some generalized GPU optimization meth-
ods for FVM-based solver but not a specific application.

To design a generalizedGPU-based FVMsolver, Langguth
et al. [19] accelerate the unstructured-mesh based FVM solver
on Tesla K20 GPU platform and adopt a set of hardware tun-
ing techniques to explore the upper bound of this kind of
application. Within this work, mainstream GPU tuning tech-
niques such as shared memory, coalesced access and read-
only cache are involved, and result in a better performance
compared with the 16-core CPU version. It is a good attempt
to optimize FVM algorithms on the GPU platform, however,
only one generation of GPU is involved in this work, and the
performance benefit achieved in this work is mainly contrib-
uted by the ever-increasing computing capability of the hard-
ware, but no algorithmic modification is included. Thus, the
performance results (around 40 GFlops on Tesla K20c) are
not as good as we expect, and the upper bound provided in
the work is no longer effective once we change the solver
algorithm according to the hardware. To fully unleash the
performance potential of the FVM solvers, we expect to pro-
pose a set of tuning techniques that can fully combine its algo-
rithmic features and hardware characteristics of all kinds of
mainstreamGPUplatforms.

In this paper, targeting at providing generalized GPU
optimizations to programs that employ structured-mesh
based finite volumemethods, we present a set of generalized
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optimization methods that provide a suitable mapping
between the algorithmic property and the hardware architec-
ture, including an explicit cache mechanism and the recogni-
tion of optimal global memory loading strategy to reduce
global memory access and redundant computations, as well
as an inner-thread rescheduling method to handle boundary
processing approaches so as to balance the computation time
of each thread and the effective thread number. Compared
with the conference paper [6], the modifications are mainly
focused on three parts: 1) At the optimization method part,
while the conference paper proposed two generalized tuning
techniques to fully combine the algorithmic properties of the
FVM solver and hardware architectures of Fermi and Kepler
GPUs, in this journal workwe employ some new tuning tech-
niques (such as register shuffle and shared-memory partition
techniques based on newer GPUplatforms) and provide a set
of tuning strategies, instead of one optimization choice, to fit
into different FVM-based solvers on all kinds of mainstream
GPUplatforms (including Fermi, Kepler, Pascal andVolta) in
scientific computing area; 2) At the testbed and application
part, to provide a fair performance evaluation, before the
adoption of tuning techniques presented in optimization
method part, we first employ some hardware-based tuning
methods to provide a baseline performance. To achieve this
goal, while conference paper only focuses on the Fermi and
Kepler oriented hardware-based tuning techniques, in this
work we choose the most suitable hardware-based optimiza-
tionmethods for the four generations of GPUplatforms. 3) At
the content level, more comprehensive related work, more
sufficient technique explanation and more detailed analysis
are adopted in this paper, thus to expose the challenges and
look into the nature of different tuning strategies. In the end,
the performance comparison of the original GPU version, the
basic optimized version and the fully optimized version
prove the effectiveness of the tuning techniques presented in
this paper, and the analysis of how to select optimal strategy
would further benefit the performance tuning approach of
similar applications. To the best of our knowledge, this is the
first FVM tuning approach that fully combines the FVM algo-
rithmic featurewith the hardware character of GPU.

3 BACKGROUND

In this section, we present the necessary background of this
paper, including a brief introduction of GPU and CUDA, as
well as an overview of the finite volume method and its
implementation based on CUDA.

3.1 GPU and CUDA Programming Framework

Aiming at dealing with throughput-oriented tasks, the cur-
rent generation of GPUs have thousands of processing cores
that can be used for parallel computing, as well as a set of
memory modules with limited size which provide the space
for data storage. The basic architecture of GPU is demon-
strated in Fig. 1.

Take the typical Tesla Kepler GPU as an example [21],
inside each computational chip there are multiple (usually
12 to 15) StreamingMultiprocessors (SMXs), each of which is
equipped with hundreds of (192 or 256) Stream Processors
(SPs). Within each SMX, there are several kinds of fast-mem-
ory space including registers (256 KB or 512 KB) to store local
variables of threads, constant caches for broadcasting of
reads from a read-only memory, and on-chip memory (64
KB or 128 KB) which could be accessed both explicitly as
shared memory or implicitly as L1 cache. In addition to the
on-chipmemorywithin each SMX, each GPU chip also intro-
duces a L2 cache (around 1.5 MB) as well as a read-only data
cache (around 64 KB).

On the hardware side, the schedulable execution unit on
GPU is named as warp which is combined with 32 continu-
ous threads. A warp is considered to be ready for execution
only if all of its operands in each thread are ready for execu-
tion. Even there is only one operand is not ready (mainly
caused by execution dependency), a process called context
switching takes place which transfers control to another
warp. This scheduling mechanism ensures the parallelism
to the most extent.

Table 1 demonstrates the main hardware parameters of
Nvidia Tesla K40 GPU and the contemporaneous Intel E5-
2697 v2 CPU. There are two remarkable differences in per-
spective of the hardware architecture. First of all, though
equipped with smaller on-chip memory spaces and lower
clock rate, each GPU chip applies thousands of processor
cores. This difference indicates that while CPUs are good at
dealing with sequential codes where latency matters, GPUs

TABLE 1
Main Hardware Parameters of GPU and Contemporaneous CPU

Fig. 1. A high-level hardware architecture of GPUs.
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could achieve high performance for parallel codes on condi-
tion that throughput meets demands. Second, as CPUs are
using a few register files to decrease operation latency,
GPUs use large amount of register files which have a capac-
ity even higher than L1 and L2 caches. This feature ensures
the low overhead of context switching between different
threads and guaranteed the high-efficiency warp schedul-
ing mechanism of GPU platform.

Programming on GPUwas not easy until Nvidia released
Compute Unified Device Architecture (CUDA), one of the
most efficient and commonly used GPU programming
frameworks nowadays. By using CUDA, programmers can
arrange threads into thread-block which is essentially a
group of threads that can coordinate among each other by
synchronizing their execution streams via employing barrier
instructions, and do not need to care about the execution in
perspective of hardware [22]. With such features, pro-
grammers can schedule hardware resources easily by
employing CUDA languages and calling CUDA libraries,
rather than use the complex graphical APIs as before. Fig. 2
indicates the correlation between software concepts (e.g.,
CUDA thread, thread block, etc.) and hardware units of
GPUs.

3.2 Finite Volume Method and Solving Approach

The finite volume method (FVM) is a common approach
used in computational fluid dynamics simulations ([11], [23],
[24]). Compared with other numerical algorithms such as
finite difference method and finite element method, FVM
has advantages in bothmemory usage and computation per-
formance, especially for large-scale problems such as atmo-
spheric modeling [25]. The core concept of FVM could be
summarized as follows: first, by employing the divergence
theorem, the FVM algorithm converts the volume integrals
in a partial differential equation that contains a divergence
portion into surface integrals; second, evaluate the portions
as fluxes at the surface of each finite volume. From the
description above we could demonstrate that the finite vol-
ume inside FVM refers to a small volume surrounding each
node point on amesh.

Take the general conservation law problem as an exam-
ple. This problem could be represented by the following
partial differential equation:

@u

@t
þr � fðuÞdv ¼ 0; (1)

where u represents a vector of states and f represents the
corresponding flux tensor. By adopting the finite volume
method, we can further divide the spatial domain into finite
volumes or cells. For a certain cell i, we take the volume
integral vi over the total volume of the cell, which yields

Z
vi

@u

@t
dvþ

Z
vi

r � fðuÞdv ¼ 0: (2)

Integrating the first part over vi and applying the Gauss
divergence theorem to the second term into Equation (2),
we achieve the following:

vi
@ �ui

@t
þ
I
Si

fðuÞ � ndS ¼ 0; (3)

where Si represents the total surface area of the cell and n is
a unit vector normal to the surface and pointing outward.
Dividing vi in both two sides we can derive the following
form that is equivalent to Equation (3):

@ �ui

@t
þ 1

vi

I
Si

fðuÞ � ndS ¼ 0: (4)

To generate FVM solvers based on modern microproces-
sors, the Riemann solver is commonly used in estimating
numerical fluxes of FVM [26]. To get the reconstruction val-
ues of the Riemann solver, we need to reconstruct the bound-
ary values of the computational mesh based on the values of
central points, so as to calculate the numerical flux. This com-
putation step is called state reconstruction, which generally
uses a piecewise linear reconstruction method as follows (Q
is an intermediate variable detailed in [26])

Q̂�ð ^xijk; tÞ ¼ 2� k

2
QijðtÞ � 1� k

4
Qi�1;jðtÞ þ 1þ k

4
Qiþ1;jðtÞ

Q̂þð ^xijk; tÞ ¼ 2� k

2
Qiþ1;jðtÞ þ 1þ k

4
QijðtÞ þ 1� k

4
Qiþ2;jðtÞ;

(5)

where k 2 ½0; 1Þ. This method is widely employed in real-
world applications such as Euler equations [27] and shallow
water equations (SWEs) [25]. In particular, k ¼ 0; 1=2 and
1=3 lead to the Fromm scheme [28], the QUICK scheme [29]
and the QUICKEST scheme [29] respectively.

In consideration of the performance of FVM algorithm on
modern GPUs, applying the state reconstruction step prop-
erly is of vital importance. While other parts of the FVM
solver mainly consist of computational tasks, the state recon-
struction step is combinedwith huge amount of global mem-
ory access which would cause long-latency load problems.
Tomake thingsworse, the solving approach of this part takes
huge amount of on-chip memory spaces on GPU and drives
the useful data out of register files and caches, which remark-
ably slows down the FVM solver. Besides the serious cache
pollution, the state reconstruction step also takes 46.5, 59.3
and 54.2 percent of the total time in 2-D SWE, 3-D regional
Euler and 3-D global Euler respectively according to the
experimental results based on Tesla P100, which indicates
the state reconstruction step is no doubt the hot-spot of
FVM-based solvers on GPU.

Algorithms 1 and 2 demonstrate the simplified imple-
mentation of 3-D and part of 2-D state reconstruction step.

Fig. 2. Correlation between software concepts and hardware units.
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From these two algorithm we could figure out that within
the state reconstruction step, each mesh element keeps 4
local variables to store fluxes in each axis, no matter in 2-D
or 3-D version. Take the Kernel 1 of the 3-D version as an
example, the [0] in qw[0] (or or [1] in qw½1�) refers to the
flow that comes into (or out of) the point, while w indicates
the direction to the west, as shown in Fig. 3.

Since finite volume schemes are conservative as cell aver-
ages change through the edge fluxes, we could prove that
the flow that comes out of point (k,j,i) in the right direction
is exactly the same as the flow comes into point (k,j,i+1) on
the left side. For instance, the qw½0� of point (k,j,i+1) and
qe½1� of point (k,j,i) shown in Fig. 3 are identical. This consid-
eration indicates that the calculation of qw½0� and qe½1� is
employing an identical rule on different elements from
input array x, while the calculation of qw½0� and qe½0� are
applying different rules on identical elements. These fea-
tures offer us great potential for optimizing the FVMs.

3.3 Assumptions and Restrictions

The techniques discussed in this paper are based on the fol-
lowing assumptions about the targeted applications and
platforms. First of all, since the optimization of FVM based
on unstructured meshes has been presented in 2014 [20], in
this paper only structure-mesh-based FVM are discussed.
Second, we assume a second-order piecewise linear recon-
struction is employed in the solving approach of the explicit
FVM solver, since a certain reconstruction method would
result in a relatively fixed algorithm format, which is benefi-
cial for us to express our optimization methods. Third, each
thread of GPU is processing one element per time step,
which is a common choice to initialize huge number of
threads inside GPU platforms. Finally, as the hardware
architecture of AMD and Nvidia GPUs is similar but not
totally the same, in this work we take Nvidia GPUs as exam-
ples to demonstrate the optimizationmethods.

4 OPTIMIZATIONS

In this section, we present a set of novel tuning techniques
to improve the performance of the FVM solvers on main-
stream GPU platforms. As stated earlier, the tuning tec-
hniques presented in this part would mainly focus on
identifying a suitable mapping between algorithmic features
and hardware characteristics, rather than directly employ-
ing hardware-based tuning techniques (such as coalesced
access). A full-scale optimization approach, which adopts

Algorithm 1. Demonstration of 3D State Reconstruction Step

Kernel 1:X-axis original code:
1: qw½0� = (c0*x[k,j,i] + c1*x[k,j,i-1] + c2*x[k,j,i+1] + c3*(x[k,j+1,i] + x[k,j-1,i] + x[k+1,j,i] + x[k-1,j,i])) / d0;

2: qe½0� = (c0*x[k,j,i] + c1*x[k,j,i+1] + c2*x[k,j,i-1] + c3*(x[k,j+1,i] + x[k,j-1,i] + x[k+1,j,i] + x[k-1,j,i])) / d0;

3: qe½1� = (c0*x[k,j,i+1] + c1*x[k,j,i] + c2*x[k,j,i+2] + c3*(x[k,j+1,i+1] + x[k,j-1,i+1] + x[k+1,j,i+1] + x[k-1,j,i+1])) / d0;

4: qw½1� = (c0*x[k,j,i-1] + c1*x[k,j,i] + c2*x[k,j,i-2] + c3*(x[k,j+1,i-1] + x[k,j-1,i-1] + x[k+1,j,i-1] + x[k-1,j,i-1])) / d0;
Kernel 2: Y -axis original code:
1: qs½0� = (c0*x[k,j,i] + c1*x[k,j-1,i] + c2*x[k,j+1,i] + c3*(x[k,j,i+1] + x[k,j,i-1] + x[k+1,j,i] + x[k-1,j,i])) / d0;

2: qn½0� = (c0*x[k,j,i] + c1*x[k,j+1,i] + c2*x[k,j-1,i] + c3*(x[k,j,i+1] + x[k,j,i-1] + x[k+1,j,i] + x[k-1,j,i])) / d0;

3: qn½1� = (c0*x[k,j+1,i] + c1*x[k,j,i] + c2*x[k,j+2,i] + c3*(x[k,j+1,i+1] + x[k,j+1,i-1] + x[k+1,j+1,i] + x[k-1,j+1,i])) / d0;

4: qs½1� = (c0*x[k,j-1,i] + c1*x[k,j,i] + c2*x[k,j-2,i] + c3*(x[k,j-1,i+1] + x[k,j-1,i-1] + x[k+1,j-1,i] + x[k-1,j-1,i])) / d0;
Kernel 3: Z-axis original code:
1: qb½0� = (c0*x[k,j,i] + c1*x[k-1,j,i] + c2*x[k+1,j,i] + c3*(x[k,j+1,i] + x[k,j-1,i] + x[k,j,i+1] + x[k,j,i-1])) / d0;

2: qt½0� = (c0*x[k,j,i] + c1*x[k+1,j,i] + c2*x[k-1,j,i] + c3*(x[k,j+1,i] + x[k,j-1,i] + x[k,j,i+1] + x[k,j,i-1])) / d0;

3: qt½1� = (c0*x[k+1,j,i] + c1*x[k,j,i] + c2*x[k+2,j,i] + c3*(x[k+1,j+1,i] + x[k+1,j-1,i] + x[k+1,j,i+1] + x[k+1,j,i-1])) / d0;

4: qb½1� = (c0*x[k-1,j,i] + c1*x[k,j,i] + c2*x[k-2,j,i] + c3*(x[k-1,j+1,i] + x[k-1,j-1,i] + x[k-1,j,i+1] + x[k-1,j,i-1])) / d0;

Note: There must be c0þc1þc2þ4�c3
d0

¼ 1, namely c0 þ c1 þ c2 þ 4 � c3 ¼ d0 in all of the equations above.

Algorithm 2. Code Segment of 2-D State Reconstruction

X-axis original code in 2-D state reconstruction step
1: qL½0� = (c0*x[j,i] + c1*x[j,i-1] + c2*x[j,i+1] + c3*(x[j+1,i] + x[j-1,i])) / d0;

2: qR½0� = (c0*x[j,i] + c1*x[j,i+1] + c2*x[j,i-1] + c3*(x[j+1,i] + x[j-1,i])) / d0;

3: qR½1� = (c0*x[j,i+1] + c1*x[j,i] + c2*x[j,i+2] + c3*(x[j+1,i+1] + x[j-1,i+1])) / d0;

4: qL½1� = (c0*x[j,i-1] + c1*x[j,i] + c2*x[j,i-2] + c3*(x[j+1,i-1] + x[j-1,i-1])) / d0;

Note: There must be c0þc1þc2þ4�c3
d0

¼ 1, namely c0 þ c1 þ c2 þ 4 � c3 ¼ d0 in all of the equations above.

Fig. 3. Demonstration of local variables inside each mesh point. Physi-
cally, we could prove the value of qw½0� of Point (k,j,i+1) equals to the
value of qe½1� of Point (k,j,i).
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the hardware-based tuning techniques as the first-round
optimization and then employs tuning methods indicated
in this part as comparison, would be demonstrated in
Sections 5.3 and 6 so as to indicate the effectiveness of tun-
ing techniques presented in this section. In addition, due to
the similarity of code segments of 2-D and 3-D module,
here we only take Algorithm 2 as an example, and the same
approach could be directly deployed in similar kernels of
both the two algorithms.

This section includes the basic optimizing idea and trade-
offs of on-chip resources as well as the different organization
methods of GPU threads. The contents of this section could
be summarized as follows: 1) Identifying the optimizing
potential of FVM algorithmic features on modern GPU plat-
forms, proposing basic ideas of algorithmic modification.
2) Presenting a customizable data cachingmechanism to find
out the best data depot for intermediate data, so as to cut
both the calculation and the memory access by half (or even
75 percent after step 3). 3) Recognizing the optimal global
memory loading strategy to further eliminate unnecessary
global memory access and increase its accessing speed.
4) Adopting inner-thread rescheduling to balance the com-
putation time of each thread and the effective thread number.
According to the experimental results of the five kinds of
mainstreamGPUplatforms, comparedwith the performance
of GPU base version, while adopting the hardware-oriented
optimizations has already achieved 3-6 times performance
speedup on different platforms for both Euler and SWE
solver, an additional 62 to 102 percent (or 9 to 36 percent)
performance benefit is able to be achieved for the Euler solver
(or SWE solver) by properly use the hardware-software co-
designmethods presented in this section.

4.1 Observation of Algorithmic Feature

Global memory access in GPU is an expensive operation
which could stall the execution pipeline for a long time. Pro-
grammers have every reason to minimize global read and
write by adopting on-chip memory access on GPU, since
access latency of on-chip memory is usually two orders of
magnitude lower than that of global memory [30].

By analyzing the physical features of FVM as well as the
code segment shown in Algorithm 2, elements used in the
calculation of qR[1] are only one step forward of qL[0]. In
other words, the value of qR[1] of mesh point (j,i) is abso-
lutely the samewith the value of qL[0] of point (j,i+1), as indi-
cated in Fig. 3. However, this feature is not being used on
CPU-based FVM solvers since CPUs are equippedwith huge
amount of cache spaces and the related data would be stored
in cache automatically thus to minimize global memory
access. In this case, eachmesh element (such as point (j,i) and

point (j,i+1)) need to calculate all the four values indepen-
dently, and do not interconnect with other elements. How-
ever, since the on-chipmemory space is very limited on GPU
devices, data used in the calculation can not be fully loaded
into fast memory spaces. As a result, the long latency global
memory access will occur which would remarkably hit the
performance of the FVM solver.

To fully take advantage of the algorithmic feature indi-
cated above, if there is a proper data depot which could be
used to store the computational results of qL[0] for each
mesh element, we could load qR[1] for these mesh elements
from the depot when we need their values, rather than
recalculate them as before. In this case, we could minimize
the global memory access of the state reconstruction step
and reduce the computational overhead at the same time,
which is exactly what we need on GPU devices.

4.2 Customizable Data Caching Depot

To find a suitable data depot on GPUdevices, first we should
identify the requirements. First of all, since each thread needs
to load the value calculated by its neighbors (as shown in
Figs. 4 and 7), the depot should be shared by a group of
threads, and the more threads could access the buffer, the
fewer depots are needed, resulting in less boundary process-
ing overhead. In addition, the access speed of the data depot
should be much faster than that of the global memory, thus
memory-latency would not become the stall reason for the
whole program.

Among the memory hierarchy of GPU, shared memory
(SMEM) meets all these features well. All threads inside one
thread-block could access the SMEM with a very low mem-
ory latency, making SMEM a perfect choice of being the data
depot. By employing shared memory, all threads inside one
thread-block write their own qL[0] into shared memory at
time t and load the value from shared memory into qR[1] at
time step tþ 1 with a one-element offset, as shown in the
middle of Fig. 4.

According to the conservation law, there are four groups
of components could adopt the offset feature in 2-D FVM
solver (and five groups for 3-D cases). Thus, there are two
considerable choices about how to adopt shared memory as
data depot. Take the 2-D case as an example, we could either
adopt one group of sharedmemory as a reusable data depot,
and move the computational results into registers after each
round of computation (choice 1 of Fig. 5), or employ 4 groups
of shared memory to store data arrays of each component
(choice 2 of Fig. 5).

Compared with the original program without adopting
the data cachemechanism, by employing 4 groups of SMEM,
around 50 percent (75 percent after adopting method

Fig. 4. An explicit cache mechanism. By employing shared memory or registers as data depot, both the global memory access and computations are
saved. However, since there is a one-element offset between qL[0] and qR[1], one extra element in boundary should be calculated.
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presented in Section 4.3) global reads of the input array could
be saved in each round of state reconstruction step, at the
cost of using 17KB SMEM for each 256-thread block and add-
ing one more synchthreadsðÞ after the whole step. On the
other hand, if we adopt SMEM as a reusable data depot as
shown in choice 2, to reduce 50 percent (75 percent after
adopting method presented in Section 4.3) global reads of
array x, 5 KB SMEM space, 32 more 64-bit register files, 4
synchthreadsðÞ and more loading steps are needed inside

each thread.
Besides adopting SMEM as data depot, aiming at effi-

ciently executing some commonly-used computational pat-
terns such as reduction, a new instruction set called register
shufflewas introducedwith the advent of Kepler GPUs. This
technique enables a thread to directly read a register from
another thread in the same warp without going through
shared (or global) memory, and this function exactly meet
our demand of data depot. Thus, we could also implement
the algorithm adjustment indicated above by using register
shuffle, as demonstrated in Part 3 of Algorithm 3.

Compared with the shared-memory based implementa-
tion, register shuffle has lower latency than shared memory
access and does not consume shared memory space for data
exchange, so this can present an attractive way for applica-
tions to rapidly interchange data among threads [31]. How-
ever, more register files are neededwhenwe employ register
shuffle, which may decrease the GPU kernel occupancy and
hit the performance when huge number of register files have
been already adopted in the program.

Specifically, in the case of the FVM solver, compared with
the first choice of the SMEM, we could figure out that while
same percentage of memory access and computation are
saved, the register shufflemethod employs the same number
of registers but no shared memory is involved. Thus, we
could affirm that register shuffle must be better than the
choice 1 of shared memory. However, when compared with
the SMEM choice 2, different kinds of resources are adopted.
Thus, though both ways could take advantage of the algo-
rithmic features and result in a better performance compared
with the original algorithm, a set of experiments should be
taken to identify the best strategy for specific applications on
certain platforms.

4.3 Optimal Global Memory Loading Strategy

Through the optimization steps mentioned above, we have
reduced the amount of calculation by half and alleviated

the pressure of global-memory access to some extent. We
could further reduce global-memory access by choosing the
optimal element pattern to compute.

In order to provide a clear description, here we introduce
the term ‘element pair’ to describe relationships between qL
[0] and qR[1]. Originally, there are two ‘element pair’ need to
be calculated for each thread, i.e., qL[0], qR[1] and qL[1], qR
[0]. By adopting the suitable data depot (SMEM or Register),
inside each element pair, only one element needs to be calcu-
lated for each thread, as shown in Fig. 6. Among the four
choices, we should choose qL[0] and qR[0] as computational
patterns that need to be solved, since in this case only five
mesh elements are needed, rather than access 11 mesh ele-
ments originally.

In addition, since mesh elements employed in the calcula-
tion of qL[0] are the same of qR[0], we employ static variables
to avoid redundant memory access so as to take benefits
from their locality, as shown in Part 1 of Algorithm 3.
Besides, since division is an expensive operation for GPU,
and all of the coefficients (c0; c1; c2; c3 and d0) we need in the
whole step are fixed, the division operation could be done
outside of the FVM solver. In the following steps, we could
directly employ the calculation results of the reconstruction
step, as r1 to r4 shown in Part 2 and 3 of Algorithm 3.

Moreover, to achieve the best performance in the y-axis
(and z-axis in the 3D case), once the thread-block size is set-
tled, the following two principles should be adopted: (1)
ensuring the number of threads on the x-axis is a multiple
of 16, in consideration of ‘warp execution’ of the GPU pro-
cessor. (2) making the number of threads along the ‘acting
dimension’ as large as possible. For instance, in a 3-D FVM
solver whose thread-block size is 256, if the kernel is acting
on the y-axis, a (16,16,1) thread-block would be chosen so
that we could achieve the best performance.

4.4 Inner Thread Rescheduling Tradeoff

Though a significant performance boost could be achieved
up to now, we should notice that the real case is not as sim-
ple as described above. Since there is an one-element offset
between qL[0] and qR[1], we need to load the halo part

Fig. 6. Yellow points are mesh elements needed to be accessed for get-
ting corresponding state variables. To minimize the total number of
points that need to be accessed, qL[0] and qR[0] are chosen among the
four choices, since in this case only five elements are needed.

Fig. 5. Two choices of taking advantage of shared memory inside each
streaming multiprocessor.
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(yellow area of Fig. 4) into shared memory (or register files).
However, since the thread number is the same as the array
size, some threads have to focus on both their own compu-
tations and the halo processing (as shown in the top of
Fig. 7). This approach will lead to the workload imbalance
between different threads within each warp.

Algorithm 3. Optimized State Reconstruction Step

Part 1: Avoid Redundant Memory Access
1: t curr = x[j,i];
2: t left = x[j,i-1];
3: t rigt = x[j,i+1];
4: t rest = x[j+1,i] + x[j-1,i];
Part 2: Shared-Memory Implementation
1: sh_L0R1[j,i] = r1*t_curr + r2*t_left + r3*t_rigt + r4*t_rest;
2: sh_R0L1[j,i] = r1*t_curr + r2*t_rigt + r3*t_left + r4*t_rest;
3: __syncthreads();
4: qL½0� = sh_L0R1[j,i];
5: qR½1� = sh_L0R1[j,i+1];
6: qR½0� = sh_R0L1[j,i];
7: qL½1� = sh_R0L1[j,i-1];
8: __syncthreads();

Part 3: Register Shuffle Implementation
1: qL½0� = r1*t_curr + r2*t_left + r3*t_rigt + r4*t_rest;
2: qR½0� = r1*t_curr + r2*t_rigt + r3*t_left + r4*t_rest;
3: __syncthreads();
4: qL½1� = __shfl_up(qR[0], 1, 32);
5: qR½1� = __shfl_down(qL[0], 1, 32);
6: __syncthreads();

For instance, suppose two dimensions of our thread-block
are 8, 32 respectively on the y-axis and x-axis, an array of 8*
(32+1) needs to be created in order to handle the one-element
offset of each element pair, which would result in branching
statements inside or outside the warp. As a result, while
some threads focus on boundary processing, the others have
to wait due to the synchronization. According to the experi-
mental results on five GPU platforms, such wait time could
take 21-29 percent of the overall time (namely nearly half of
the time consumption of the whole state reconstruction step),

which is very expensive. Thewhole process could be demon-
strated asAlgorithm 4.

Algorithm 4. Code Segment before Thread Rescheduling

Inside each GPU Kernel
1: int j = blockDim.y * blockIdx.y + threadIdx.y + WIDTH;
2: int i = blockDim.x * blockIdx.x + threadIdx.x + WIDTH;
3: Preceding tasks
4: ======== State Reconstruction Begin ========
5: Shared-memory computation (or register shuffle);
6: if threadId < halo width
7: left-halo element computation;
8: else if threadId > ðblockDim:x� halo widthÞ
9: right-halo element computation;
10: end if
11: synchronousðÞ
12: ========= State Reconstruction End ========
13: Following tasks

To avoid divergence in Algorithm 4, one choice for us is to
set some threads as ‘halo threads’ that specifically take
charge of boundary processing, as shown in Fig. 7. These
halo threads do exactly the same work as other threads do
before the element processing step and keep idle afterwards.
By adopting these halo threads, we could eliminate the
branch statements (line 6 to line 10) in Algorithm 4.

The new algorithm and its workflow are summarized as
Algorithm 5 and Fig. 7 respectively. Comparedwith the origi-
nal algorithm, we suppose each thread need to spend t1 and
t2 to deal with the two times of StateReconstructionStep and
the one step of Followingtasks shown in Algorithm 4 respec-
tively. To finish the computation of one time step, without
applying this inner-thread rescheduling method, each warp
(32-thread) need to spend T0 = t1 þ t2 to finish the whole task.
After adopting the new technique, T1 =

32
32�2�halo � ðt12 þ t2Þ are

needed. After simplifying the equation, we could find out T0 -
T1 = 1

16�halo ½ð8� haloÞ � t1 � halo � t2�. If this number is posi-

tive, it means the original algorithm takes more time than the
new program does, which indicates that the new algorithm
(adopting inner-thread reschedulingmethod) is better.

Fig. 7. By adopting halo threads, all threads are liberated from waiting at the cost of wasting the computational ability of halo threads in the following
steps (Riemann solver step in our case) This method could be extremely useful for stencil computation with small halos.
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This inner-thread rescheduling method could be widely
used in GPU solvers aiming at optimizing stencil computa-
tions employed register shuffle or shared memory, and
according to the conclusion indicated above, this technique
would be extremely effectual when the halo area is small.
Still take Algorithm 2 as an example, in this case the halo
equals one and the value of t1 is around 2 times of that of t2.
Thus, T0 - T1 =

1
15 � ð7 � t1 � t2Þ = 13

15 � t2, it is definitely a posi-
tive number. Thus, we could declare that the new algorithm
which adopts inner-thread rescheduling method is better
then the original one, and experimental results shown in
Section 6 proves our judgement.

Algorithm 5. Code Segment after Thread Rescheduling

Inside each GPU Kernel
1: int j = blockDim.y * blockIdx.y + threadIdx.y + WIDTH;
2: int i = (blockDim.x-2) * blockIdx.x + threadIdx.x + WIDTH;
3: Preceding tasks
4: ======== State Reconstruction Begin ========
5: Shared-memory computation (or register shuffle);
6: synchronousðÞ
7: ======== State Reconstruction End ========
8: if ððthreadIdx:x >¼ halo widthÞ && ðthreadIdx:x <

blockDim:x� halo widthÞÞ
9: Following tasks
10: end if

5 TESTBED AND APPLICATIONS

In order to make the evaluation of customized FVM tuning
techniques presented in this paper (Section 4) more fair and
convincing, the main way to highlight the effectiveness of
the tuning methods is to compare the performance of the
same generation GPU before and after using the optimiza-
tion methods, and the CPU performance is mainly adopted
as a standard unit to indicate the performance relationship
between different GPUs. Therefore, in this section we first
provide a brief introduction of the four generations (Fermi,
Kepler, Pascal and Volta) of GPU platforms as well as

the target atmospheric simulation programs. Then, a set of
GPU-based general-used hardware optimization methods
are adopted to the two test applications so as to provide a
hardware-optimized performance as the baseline in future
comparison (while only the general CPU optimization meth-
ods such asMPI, OpenMP, compiler-based optimization and
SIMD are used as it is not the key point of this work). Finally,
summarization and performance metrics are provided to
prepare for the performance evaluation and analysis shown
in the next section.

5.1 Evaluated Platforms

To provide a full scale analysis of the optimization methods,
in this work we measure the performance of the optimized
code on 5 kinds of mainstream GPU devices which are
widely used to accelerate scientific applications nowadays,
including Fermi C2070, Tesla K40, Tesla K80, Tesla P100
and Tesla V100. Table 2 demonstrates the key architec-
tural parameters of these platforms, in which only double-
precision related features are listed.

Though the Fermi GPU is released in 2009 and quite out-
of-date, it is one of the most successful template of modern
GPUs and is still equipped in many Top500 supercomputers
such as Tianhe-1A [32] and Nebulae [33]. As a great innova-
tion compared with previous GPU platforms, many efficient
designs are first adopted in Fermi architecture, resulting in a
remarkable performance boost in some cases compared to
general-purpose CPUs. When it comes to Kepler GPUs, to
achieve higher performance, additional execution and mem-
ory resources (more CUDA cores, registers and caches) are
employed. Such feature significantly increases the perfor-
mance of Kepler GPUs when compared to Fermi. In Tesla
K80, Nvidia further doubled the on-chip memory spaces of
each computational chip. That is of vital importance for
latency-bound programs such as FVM-based solvers. There-
fore, among four kinds of Kepler GPUs we select K40 and
K80 as test platforms in this work.

While Maxwell GPUs are not good at dealing with dou-
ble precision scientific applications, Tesla Pascal and Volta
architectures enable the extreme performance for both

TABLE 2
Key Architectural Parameters of the Evaluated Platforms

Description Fermi C2070 Tesla K40 Tesla K801 Tesla P100 Tesla V1002

Chip GF100 GK110 2�GK210 GP100 GV100
TPCs 16 15 2�15 28 40
SMs 16 15 2�15 56 80
FP64/SM 16 64 2�64 32 32
FP64 / GPU 256 960 2�960 1792 2560
Clock Rate (base/boost) 1150 MHz 745 MHz/875 MHz 562 MHz/875 MHz 1328 MHz/1480 MHz Unknown/1370 MHz
Peak FP64 Perf (TFIops) 0.51 1.68 2.91 5.3 7.0 (V100 for PCIe)
Memory Interface DDR5 DDR5 DDR5 HBM2 HBM2
GMEM Size 6 GB 12 GB 2�12 GB 16 GB 16 GB
Bandwidth 144 GB/s 288 GB/s 2�240 GB/s 732 GB/s 900 GB/s
L2 Cache 768 KB 1536 KB 2�1536 KB 4096 KB 6144 KB
SMEMSize/ SM (KB) 16/32/48 16/32/48 80/96/112 64 Up to 96
Register Size /SM (KB) 128 256 512 256 256
Register Size /GPU (KB) 1920 3840 2�7680 14336 20480
Inter connect PCIe 2.0 PCIe 3.0 PCIe 3.0 PCIe 3.0 þNVLink PCIe 3.0 þNVLink
ARCH-FBR3 3.58 5.83 6.06 7.24 7.96

1 Though each GK210 contains 15 SMs, due to the power limitation, Tesla K80 could only start 2*13 SMs at the same time.
2 The Tesla V100 GPU adopt here is Tesla VI00 for PCIe.
3 Architectural Flop to Byte Ratio equals to Peak Performance / Bandwidth.
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scientific programs and deep learning applications. The key
innovations of Tesla P100 and V100 includes: 1) Extreme
performance of its computational chip (GP100 and GV100)
2) Fast global memory interface (HBM2) 3) High speed
interconnect (NVLink) 4) Deep learning oriented features
and architectures (such as tensor cores inside GV100). Due
to the extreme performance potential and balanced ability
for both scientific applications and deep learning tasks,
Tesla P100 and V100 are chosen as the accelerator processor
for huge number of top supercomputers of Green500 [37]
and even upcoming fastest supercomputers (such as Sum-
mit [35] and Sierra [36]). Since this work mainly focuses on
the algorithmic optimization within computational chips of
GPU, we will only pay attention to the scientific-applica-
tion-relative innovations within GP100 and GV100. Such
differences are summarized as follows:

First of all, compared with computational chips of previ-
ous GPU architectures, GP100 and GV100 adopt new high-
performancemanufacturing processes (16 and 12 nmFinFET,
compared with 28 nm for Kepler and Maxwell) thus to pro-
vide better power efficiency. As a result, with similar power
consumption, each GP100 (or GV100) is equipped with more
computational units (namely FP64/FP32 cores) and has
higher clock rate when comparing with previous generation
GPU chips such as GM200 and GK110. Therefore, when we
move our program from previous GPU platforms onto Tesla
P100 or V100, in most cases remarkable performance benefit
can be achieved evenwithout themodification of the code.

Second, the SM architecture within P100 and V100 are
redesigned to provide extreme performance for both AI
and scientific applications. 1) In the view of on-chip me-
mory (L1 cache, SMEM and register files), the ratio of its
capacity to computational unit (FP64 cores) keeps increasing
from version to version, such feature matches the increa-
sing fast memory demand for modern complex applications.
2) Though the global memory access speed and L2 cache size
are remarkably higher than previous GPUs, the growth rate
of such features is lower than that of computational units.
Combining these two features, sophisticatedmanual designs
are required so as to fully take advantage of the fast memory
spaces on P100 and V100. 3) Some new attempts are made to
explore the optimal design of modern GPUs, such as the
combination mode between L1 cache and shared memory,
the execution strategy of INT32 and FP64, and the new
thread scheduling mechanism. Under the circumstances,
specialized tuning is required thus to fully unleash the per-
formance potential of newGPU architectures.

5.2 Atmospheric Simulation Applications

3D Euler equations and 2D shallow water equations
(SWE) are two most essential dynamic components for

non-hydrostatic atmospheric modeling. Compared with
physical schemes such as WSM5 in WRF [38] and the short-
wave radiation parameterization in CAM [39], dynamic
core is inherently more difficult to achieve performance
benefits from heterogeneous platforms. Investigating the
performance potential of these two atmospheric equation
solvers is of vital importance in terms of improving the
overall performance of atmospheric model based on hetero-
geneous platforms.

In this part we take the 3-D compressible Euler equation
as an example ([11], [25], [27]), the equation could be written
as

@Q

@t
þ @F

@x
þ @G

@z
þ S ¼ 0: (6)

We define a nonsingular mapping M as x̂ij ! xij for i = 0,
1 . . .n1 and j = 0, 1, . . .n2, denote Cij as a mesh cell formed
by mesh points xij; xiþ1;j; xiþ1;jþ1; xi;jþ1 and Ĉij as a mesh
cell formed by mesh points x̂ij; ^xiþ1;j; ^xiþ1;jþ1; ^xi;jþ1 as shown
in Fig. 8.

By adopting cell-centered finite volume scheme, we
could define the approximate solution at time t as

QijðtÞ ¼ 1

jCijj
Z
Cij

Qðx; tÞdx; (7)

where i ¼ 0; 1; . . . ; n1 � 1; j ¼ 0; 1; . . . ; n2 � 1. Then we have

@QijðtÞ
@t

þ 1

jCijj
Z
@Cij

ðF ðQðx; tÞÞnx þGðQðx; tÞÞnzÞds

þ SijðtÞ ¼ 0;

(8)

where ðnx; nzÞT is the unit outward normal of @Cij. The
boundary of Cij should be further decomposed into four
segments, i.e., @Cij ¼ [4k¼1Gijk, in order to evaluate the
numerical fluxes of F and G. On Gijk, we denote the unit out-
ward normal vector as n ¼ ðnx; nzÞT and correspondingly
the unit tangent vector as t ¼ ð�nz; nxÞT . As a result, a new
Cartesian coordinate could be formed by vector n and t.
Based on the new Cartesian coordinates, given a state vari-
able Q, we could express it as q ¼ TijkQ where Tijk ¼ diag
f1; Lijk; 1g and LT

ijk ¼ ðn; tÞ.
Based on the new Cartesian coordinates, the second term

in Equation (8) becomes
Z
Gijk

ðF ðQðx; tÞÞnx þGðQðx; tÞÞnzÞds

¼ T�1ijk

Z
Gijk

F ðTijkQðx; tÞÞds

� T�1ijk jGijkjF ðqðxijk; tÞÞ:

(9)

The numerical flux F ðqðxijk; tÞÞ in Equation (9) is then esti-
mated by employing a Riemann solver together with state
reconstruction step. On heterogeneous platforms, in order to
achieve a balanced task division between host and device,
there are several intra-node partition methods available for
us, such as process-level partition ([40], [41]), function-parti-
tion ([42], [43]) and so on. Among these choices, we choice
the adjustable inner-outer partition method as indicated in
[11]. The hybrid domain decomposition algorithm and the

Fig. 8. A coordinate transform between the physical mesh and the
computational mesh.
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computational structures of these two stencils are shown
below (Algorithm 6 and Fig. 11).

Algorithm 6. CPU-GPU Hybrid Euler Algorithm

1: CPU Begin
2: Data Initialization for CPU(x,xs,xs1,xs2,xs3 and f)
3: Data Initialization for GPU(inputx,inputxs,and so on)
4: for ðk; j; iÞ  ð0; 0; 0Þ to ðnzl; nyl; nxlÞ do
5: ifðk; j; iÞ � Boundary then;
6: Halo Updating and Boundary Process
7: end if
8: else
9: ============GPU Begin============
10: Calculate Coordinate
11: Calculate Fluxes{
12: State Reconstruction
13: Riemann Solver}
14: Compute Source Terms
15: ============GPU End=============
16: end else
17: end for
18: CPU End

5.3 Hardware Based Optimizations

As indicated in Section 1, there are three main challenges we
need to face when we optimize the two programs on hetero-
geneous CPU-GPU platforms, as most dynamic parts do in
atmospheric models: 1) low data communication bandwidth
between CPU and GPU; 2) low Flop-to-Byte ratio of the state
reconstruction step; 3) low IPC (instruction per cycle) caused
by the long-latency operations within the Riemann solver
step. To make things worse, since there is execution depen-
dency between the state reconstruction step and the Riemann
solver step, we need to accelerate both parts so as to achieve
extreme performance. In order to solve the above challenges,
taking the 3D Euler solver as an example, the general
used GPU-based hardware optimization methods could be
summarized as follows:

5.3.1 Minimizing Access Latency of Global Memory

1. L1/Shared Memory Configuration. Based on the memory
hierarchy of GPU platform, the first level cache, whose total
space is fixed, can be configured as two types of cache-like
memories: the L1 cache and shared memory (SMEM). For
high dimensional complex stencil computations, general
shared memory usage may lead to a performance drop [45].
This conclusion is approved by the experimental results
when we applying the general used 3-D and 2.5-D [14]
shared memory buffering method to our Euler solver. To
take full use of on-chipmemory spaces of GPU,wemaximize
the L1-cache space by employing ‘preferL1’ option in our
Euler solver, at the cost of minimize the space of shared
memory. At the same time, since L1 cache is no longer used
for DRAM load caching by default since Kepler GPUs, to
eliminate the disadvantages caused by this feature, on some
GPU platforms (such as Tesla K40 or K80) we could employ
‘-Xptxas -dlcm=ca’ flag to take the Fermi style caching of
both global and local loads [44].

2. Coalesced Access. In all kinds of GPU platforms men-
tioned in this work, global memory access within one warp

can be coalesced into one memory transaction, as long as
the data is continuously accessed. In the original code of
Euler solver, array of structure (AoS) is adopted for data
storage in order to facilitate the code implementation. How-
ever, the access of this kind of data structure is not able to
be coalesced, which would greatly increase the memory
access latency on GPU platform.

To achieve coalesced access of global memory, we refor-
mat the data structure on the GPU side from Array of Struc-
ture (AoS) to Structure of Array (SoA). According to the
profiling result shown by nvvp (NVIDIA Visual Profiler),
both global memory access speed and L1 global hit rate are
increased by adopting this approach, resulting in more than
30 percent performance boost.

3. Read-Only Cache. Read-only data from global memory
could be loaded by Read-only cache in a relatively high band-
width compared with global memory accesses, cause it is a
separate cache line with special memory pipe and relaxed
memory coalescing rules. Read-only cache could be explicitly
employed by annotating arrays with the __ldg intrinsic. In
our Euler solver, we put the un-coalesced read-only variables
into the read-only cache to improve the overall performance.

5.3.2 Tuning the Register Usage within Each Thread

Register usage of each thread is a key factor of the tradeoff
between memory latency and thread-level parallelism. Since
register is a limited resource that all threads residing on a
multiprocessormust share, if one thread uses toomany regis-
ters, the number of active warps (namely, thread groups) that
can reside on amultiprocessorwould be reduced, thus lower-
ing the occupancy of themultiprocessor.

In our Euler solver, 256 registers (which is the maximum
number in Tesla GPUs) are needed in each thread by
default. Accordingly, the occupancy of our program is less
than 25 percent, which significantly reduces the thread con-
currency. To determine the optimum balance of register
usage and occupancy, we write a script to find out the SM-
level optimal register size within each thread respectively in
different kinds of GPUs.

5.3.3 Kernel Splitting and Streaming Concurrency

Kernel splitting is another optimizing options for applica-
tions stalled by execution dependency, as it can decrease the
usage of local memory and achieve higher occupancy and
cache hit rate of the kernel. According to the algorithm of
Euler solver, computations along three different dimensions
are independent with each other. Thus, we split the kernel
into 3 parts to further reduce register usage of each kernel, at
the cost of subtle increase of memory transactions. Accord-
ing to the experimental results, a more than 15 percent per-
formance benefits could be achieved via this approach.

Concurrent kernel execution could partially overlap the
kernel execution with the data transfers. As the stencil com-
putations along the three dimensions are independent, we
employ different streams to deal with these three kernels to
achieve a further speedup.

5.4 Summarize and Performance Metrics

To fully explore the performance of these programs on mod-
ern GPUs, the two dynamic cores are rigorously optimized
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by determining the best choice of preferring SMEM or L1 for
kernels that have data elements accessed by more than one
thread within a block (Bar 3 of Figs. 9 and 10), ensuring all
off-chip GMEM access are coalesced (Bar 4), maintaining
optimal occupancy to ensure enough active warps in flight
(Bar 5), employing read-only cache and kernel splitting to
improve memory accessing speed (Bar 6), reducing redun-
dant calculations by properly use of registers, and adopting
automatic adjustment programs to identify the optimal
parameters such as block size and thread number in each
dimension (Bar 7). As demonstrated in Figs. 9 and 10, by
adopting these hardware-based tuning methods, a 53.0 and
64.3 times speedup could be achieved on Tesla V100 over the
original 12-core CPU results based on Intel E5-2697 (v2) for
Euler and SWE respectively (Bar7 versus Bar1), and the per-
formance of the optimized version is 3 to 6 times faster than
the GPU base version on different GPU platforms for both
Euler and SWE (Bar 7 versus Bar 2).

As for the evaluation of the performance, employing per-
formance as the metric of evaluating kernel efficiency is the

simplest option. However, the framework presented in this
paper is not designed to track the change of the computa-
tions. What we really care about is the number of mesh ele-
ments processed per second. A more effective method is to
use a simple model based on empirical measurement of the
number of points we could process (Points/s) and operation
numbers of the original kernel. According to the testing
results of the base version, the number of operations of
Euler and SWE are 1,588 and 839 respectively.

Furthermore, as the FVM solver is combined with the
memory-bound state reconstruction step and the computa-
tion-bound Riemann solver step with execution dependency
between them (detailed in Section 3.2), to the best of our
knowledge there is no existing performance model could
provide the accurate performance evaluation for such case.
For instance, the most commonly-used Roofline model [47]
is a goodway to estimate the performance of memory-bound
or compute-bound programs (such as stencil, LBM, FFT,
CNN). However, to the best of our knowledge it cannot han-
dle the programs with both memory-bound and compute-
bound properties and execution dependency between the
two parts (such as WRF, CESM, COSMO, etc.), cause the
upper bound provided by such model will never be able to
even get close. Specifically, still take the Euler solver as an
example. If we insist on using the RooflineModel to measure
the performance of the program, for each grid element there
are 1,588 operations within each time step, and to finish the
computation of each time step, an averaged 40 input ele-
ments and 5 output elements are need to be accessed if fast-
memory buffer (such as shared-memory, L1-cache and read-
only cache) are properly used. As a result, the arithmetic

Fig. 9. Euler performance tuning by employing tuning techniques based on five kinds of GPU platforms. Mesh size: 484*232*116. Bar 7 indicates the
best hardware optimized version, and Bar 8 shows the optimal performance result after adopting tuning techniques indicated in Section 4.

Fig. 10. SWE performance results by employing tuning techniques based on five kinds of GPU platforms. Mesh size: 1024*1024. Bar 7 indicates the
best hardware optimized version, and Bar 8 shows the optimal performance result after adopting tuning techniques indicated in Section 4.

Fig. 11. Left: 2-D 13 points stencil in shallow water equations (SWE).
Right: 3-D 25 points stencil in Euler equation.
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intensity of the complete Euler solver is 1588/(45*sizeof(dou-
ble)) = 4.41. However, as most of the data loading is needed
for the state reconstruction step, the arithmetic intensity of
state reconstruction step is only 240/(40*sizeof(double)) =
0.75, and during such state reconstruction step no other com-
putation operations could be executed. This will make our
estimation results have a huge gap with the actual situation.
Therefore, in this work we adopt the speedup of hardware
themselves and the time-to-solution as metrics to measure
the performance improvement, like most works do in the
field [48], [49].

6 PERFORMANCE EVALUATION AND ANALYSIS

Fig. 12 demonstrates the performance of Euler and SWE after
adopting different kinds of optimization strategies based on
four mainstream GPU platforms, from Kepler to Volta. (On
Fermi GPU, since register shuffle is not supported, we only
demonstrate the results of inner-thread SMEM strategy, as
shown in the Bar 8 of Figs. 9 and 10). In this section, we will
analyze these experimental results in the following two folds:
1) discuss why the best strategy varies among the four strate-
gies (select proper data depot and determine whether should
we use inner-thread rescheduling method, as indicated in
Section 4) with the program and platform changes, and how
to choose the optimal strategy accordingly. 2) compare the
optimal performance (after adopting the best choice of
Section 4) with the performance of hardware optimized ver-
sion, so as to provide a full-scale analysis for the optimization
methods in both the application side and the platform side.

First we would like to discuss how to identify the optimal
choice among the four versions of optimized program. From
Fig. 12 we could figure out that inner thread rescheduling
method could benefit both SWE and Euler on all Kepler,
Pascal and Volta platforms, which indicates that for one-ele-
ment halo FVM programs, no matter complex or simple it
is, it is highly probable to get performance benefit by adopt-
ing the inner thread rescheduling method. This conclusion
is in perfect accordance with the calculation presented in
Section 4.4.

As for choosing the optimal data depot, for 3-D Euler solv-
ers employing multiple groups of shared memory would
come up with a better performance, while for the 2-D SWE
programs, adopting register shuffle would be a better choice
in most cases. Through further analysis we could find out
that within the complex Euler solver, huge number of regis-
ter files have already been used before we adopt register
shuffle, thus the register file rather than shared memory
becomes the determinant factor of the GPU kernel occu-
pancy.While in the 2-D SWE solver, less than 50 register files
are used before we adopt register shuffle, thus the adoption
of register shuffle will not have an immense impact on the
GPU kernel occupancy. These results indicate that a set of
experiments should be conducted in order to find out which
kind of memory space is the optimal data depot for specific
application kernels on certain platforms, but generally the
register shuffle method should be selected unless it would
significantly decrease the occupancy of GPU computational
kernels, as it happens in our complex 3-D Euler solver.

Following we will regard the four optimizing strategies
presented in Section 4 as a union (namely regard the best
result as the final-optimized performance, no matter which
of the four strategies it is), and analyze its effectiveness in
both program side and platform side. To make it more intui-
tive, Table 3 summarizes the performance comparison of the
CPU version, GPU hardware optimized version and GPU
fully optimized version (Bar 1, Bar 7 and Bar 8 of Figs. 9 and
10). In this table, while the HardwareOpt shown in Table 3
aims at solving the three challenges indicated in Section 5.3,
the Speedup brought by the tuning techniques presented in
Section 4 will only be related to memory access latency and
complex computation operations.

In aspect of different computational programs, the more
complex a program is (in other words, more mesh elements
stored out of GPU on-chip memory), the more benefits we
could get by using the optimization methods. In the Euler

Fig. 12. Performance (GFlops) of the four kinds of optimized versions of Euler equations (Euler Solver) and shallow water equation (SWE Solver) on
four mainstream GPU platforms. Mesh size of Euler and SWE are 484*232*116 and 1024*1024 respectively.

TABLE 3
SWE and Euler Speedups after Employing the

Optimization Methods
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based dynamic core, a 3-D 25-points stencil is employed in
each computational step following by the solving approach
of a complex 3-D Riemann solver. In such case, some local
variables are inevitable to be driven out to global memory
originally, leading to a significant speedup after adopting
the optimization methods. However, when it comes to the
2D shallowwater equations, almost all mesh elements inside
the 13-points stencil have already been stored in register files
or L1 cache originally (and even half of the of-chip memory
are idle after adopting kernel splitting), as a result, employ-
ing the optimizations could only bring us a limited perfor-
mance enhancement. This feature also indicates that a larger
space of on-chip memory is of vital importance for modern
many-core accelerators.

In terms of various GPU platforms, our tuning techniques
come out with a poor speedup ratio on Fermi GPUs (even
less than 1) for both Euler and SWE. The reason is that on
Fermi GPUs, there is no enough on-chip memory resources
to perform as a data depot. Things become much better
when it comes to K40 platform, since the streaming multi-
processors of GK110 both increased the on-chipmemory size
(within each SM) and the computation ability for complex
operations. In this case, adopt our tuning techniques would
have remarkable benefits for both memory access latency
and complex computation operations. As for Tesla K80, the
remarkable performance boost is mainly benefited from the
higher capacity of both shared memory and registers inside
each Texture/Processor Cluster (TPC). Such device adjust-
ment improves the occupancy of application, and leads
to a significant performance speedup. Similar results are
achieved on Tesla P100 and V100, however, the performance
benefit of the algorithm adjustment is not as good as before,
cause the hardware-based version has already taken great
benefits from the new architectural feature of GP100 and
GV100. As a result, the computation benefit brings by our
tuning methods would not be as significant as before. How-
ever, even in this case remarkable performance boost is still
able to be achieved (mainly due to thememory access benefit
bring by our tuning techniques), which fully proves the
effectiveness of the tuning techniques presented in thiswork.

To summarize, based on the experimental results of the
five kinds of mainstreamGPU platforms, compared with the
performance of GPU base version, while adopting the hard-
ware-oriented optimization methods has already achieved
3-6 times performance speedup on different platforms for
both Euler and SWE solver, an additional 62 to 102 percent
performance benefit is able to be achieved for the Euler
solver by properly use the hardware-software co-design
methods presented in thiswork. Similar experimental results
are obtained for the optimization of the simpler 2D shallow
water equation solver, and 9 to 36 percent further perfor-
mance speedup is able to be achieved compared with the
hardware-optimized version.

7 CONCLUSION

Scientific HPC applications are increasingly ported to GPUs
to benefit from both the high throughput and the powerful
computing capacity. Many of these applications, such as
atmosphericmodeling, room acousticsmodeling and hydrau-
lic erosion simulation, are adopting the finite volumemethod

as the solver algorithm. However, large amount of communi-
cations within these applications decrease the Flop-to-Byte
ratio of these applications, resulting in an insufficient resource
usage of GPU platforms.

In this paper, we formulate structured-mesh based FVM
tuning on GPU platforms as an optimization task, and
introduce a set of general optimization methods that pro-
vide a suitable mapping between the algorithmic property
of FVMs and the GPU hardware architecture. While the
explicit cache mechanism and the optimal global memory
loading strategy could cut the global memory transactions
by around 75 percent in the state reconstruction step, the
inner-thread rescheduling method is able to eliminate unnec-
essary wait within execution warps. To provide best optimi-
zation for different applications and platforms, four kinds of
tuning strategies are provided, and experimental results indi-
cate that applying these tuning methods could avoid execu-
tion stall of the explicit FVM-based solver to the most
extent.

To the end, we evaluate these optimization methods by
using two dynamic kernels of real-world atmospheric mod-
els, namely 3-D Euler and 2-D SWEs. According to the experi-
mental results on five kinds of mainstream GPU platforms,
the fully optimized programs upgrade the hardware utiliza-
tion and 93.9x speedup and 70.4x speedup is achieved for the
3-D Euler and 2-D SWE solver respectively on Nvidia V100
over one 12-core Intel E5-2697 (v2) CPU, which is a great
promotion compared with the original speedup without
adopting the tuning techniques presented in this work. By
comparing the results of different strategies aswell as the per-
formance boost on both application and platform side, we
could claim that our generalized optimization methods are
able to achieve significant performance boost on all kinds of
Kepler, Pascal andVolta GPUplatforms.
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