
Artisan: a Meta-Programming Approach For
Codifying Optimisation Strategies

Jessica Vandebon∗, Jose G. F. Coutinho∗, Wayne Luk∗, Eriko Nurvitadhi† and Tim Todman∗
∗Imperial College London, United Kingdom

Email: {jessica.vandebon17, gabriel.figueiredo, w.luk, timothy.todman}@imperial.ac.uk
†Intel Corporation, San Jose, USA
Email: eriko.nurvitadhi@intel.com

Abstract—This paper provides a novel compilation approach
that addresses the complexity of mapping high-level descrip-
tions to heterogeneous platforms, improving design productivity
and maintainability. Our approach is based on a co-design
methodology decoupling functional concerns from optimisation
concerns, allowing two separate descriptions to be independently
maintained by two types of programmers: application experts
focus on algorithmic behaviour, while platform experts focus on
the mapping process. Our approach supports two key require-
ments: (1) Customisable optimisations to rapidly capture a wide
range of mapping strategies, and (2) Reusable strategies to allow
optimisations to be described once and applied to multiple appli-
cations. To evaluate our approach, we develop Artisan, a meta-
programming tool for codifying optimisation strategies using a
high-level general-purpose programming language (Python 3),
offering full design-flow orchestration of key components (source-
code, third-party tools, and platforms). We evaluate Artisan using
three case study applications and three reusable optimisation
strategies, achieving at least 24 times speedup for each application
on CPU and FPGA targets with little application developer effort.

I. INTRODUCTION

In the last decade, there have been remarkable advances in
the compute landscape, with hardware architectures becoming
increasingly multi-core, heterogeneous, and distributed. This
has led to exciting new opportunities to solve previously in-
tractable problems in domains including Artificial Intelligence
(AI), Big Data, and engineering. Reconfigurable computing
is a key part of this revolution: reconfigurable architectures
can be specialised at compile time to perform specific tasks,
achieving high performance and low power consumption.

However, to make effective use of these advances, ap-
plication developers need to have considerable expertise in
programming each specific device type. Hence, there is an
increasing demand for programming languages and models
that provide higher-level abstractions from hardware details
to increase developer productivity. In practice, design tools
offer limited support for heterogeneous platforms: the onus
of optimisation lies mostly on the developer, and often this
considerable effort cannot be reapplied to other applications.

The limitations in design tool support are due to three
main challenges. First, there is no common standard (such
as the x86 instruction set) for heterogeneous computing de-
vices which the compiler community can build upon. Each
hardware vendor supplies its own set of tools, and they are

(a) co-design methodology: codify functional and optimisation concerns separately

(b) R1: support customised optimisation strategies for specific concerns and targets

application
code Artisan meta-programs optimised

application

AdPredictor
code

HW/SW partitioned
AdPredictor code

HW/SW partitioned
N-Body Sim code

N-Body Sim
code

HW/SW partitioned
code

strategy parameters

(c) R2: codify an optimisation strategy once, apply it to multiple applications

functional concerns optimisation concerns

meta-programs
optimise for CPU (OpenMP)

multi-threaded
code

meta-programs
optimise for CPU+FPGA

meta-programs
optimise CPU+FPGA

application
code

Fig. 1. Our meta-programming approach.

largely incompatible with one another. Second, optimising
high-level descriptions for heterogeneous platforms requires
traversing a large multi-dimensional design space defined by
many application, architectural, and runtime parameters. Third,
developing design tools is expensive even when employing
compiler frameworks [1].

We believe that to address the aforementioned challenges
design tools need to support a co-design methodology [2] that
allows functional and optimisation concerns to be described
and maintained independently (Fig. 1(a)). In this context,
functional concerns focus on capturing the algorithmic be-
haviour of the application, while optimisation concerns cover
code mapping and optimisation, leading to the following
requirements:
• R1. Customisable optimisation strategies. The rapid

advances of technology and the sheer size of the design
space require specialised optimisation techniques that can
effectively exploit specific device capabilities (Fig. 1(b)).

• R2. Reusable optimisation strategies. To reduce devel-
opment effort, optimisations that are codified once should
be able to cover multiple applications (Fig. 1(c)).

This paper addresses the above two requirements and
their underlying mechanisms to support design-flow orchestra-
tion and High-Level Synthesis (HLS). Our contributions are:
(1) Artisan, a meta-programming optimisation approach that
supports the aforementioned requirements; (2) a prototype of
Artisan with a number of optimisations; and (3) an evaluation
of our approach using three case-study applications.

app

instrumentation +
code transforms

runtime OS HW

code
analysis

tool
reports

tool
options

compilation deployment

deployment
options

runtime and platform
configuration

profiling and
monitoring report Artisan meta-program

feedback

codifies optimisation concerns/tasks
by programmatically manipulating

design-flow artifacts: code,
tools, and platformssource

code

Fig. 2. Artisan meta-programs are written in Python 3, and have access to all design-flow artifacts as Python objects: source-code, tools and platforms. All
stages of a design-flow can be optimised as part of a unified and coordinated strategy.

II. OVERVIEW

Optimising an application for a heterogeneous platform
with hardware accelerators, such as GPUs and FPGAs, re-
quires considerable human effort and expertise, even when
employing sophisticated design tools, such as High-Level
Synthesis (HLS). Application developers need to be aware of
the target platform’s architectural details, including available
parallelism, memory hierarchies, and specialised features, to
effectively distribute their workload and harness the platform’s
full potential. For this purpose, there are a number of optimi-
sation tasks required, such as: analysing code features (static
analysis), characterising runtime behaviour (dynamic analy-
sis), annotating code with compiler directives, refactoring and
applying code transformations, running a specific sequence of
compilation optimisations, and experimenting with different
application, tool, and platform parameters.

To improve the above process, we propose a co-design ap-
proach (Fig. 1(a)) which allows two distinct programming de-
scriptions to be developed and maintained separately: (a) func-
tional code that captures the application’s algorithmic be-
haviour, written by application experts; and (b) meta-programs
that capture optimisation tasks, programmed by platform ex-
perts. By allowing these concerns to be independently codified
and automatically applied, application developers need not
become conjurers of optimisation tricks, and application code
does not need to tie to specific optimisations, thus improving
both design productivity and maintainability.

One key question is whether optimisations can be de-
scribed independently of application code. In practice, most
optimisation tasks are not tied to the application, but in-
stead can be generalised, as demonstrated by manuals and
best practice documentation provided by hardware and tool
vendors [3] [4] [5] [6]. Our co-design approach focuses on
enhancing state-of-the-art HLS tools, although it is not limited
to this domain. While common optimisation techniques are
well documented, they are still performed manually, hindering
developer productivity and design maintainability.

This paper aims to demonstrate that it is possible to codify
established optimisation strategies independently of applica-
tion code, that these strategies can be customised to support
different platforms, and that such effort can be automated and
reused to optimise multiple applications.

III. CODIFYING STRATEGIES

This section covers the basics of crafting Artisan meta-
programs. Meta-programs are written in Python 3, a well-
known high-level general-purpose interpreted programming
language. We choose Python to make the process of codifying
optimisations as accessible as possible. A novel element of
our approach with respect to others [2] is that we expose
all design-flow artifacts as first-class Python objects (Fig. 2).
Artifacts include: source-code, tools, runtimes, operating sys-
tems, and hardware platforms. With programmatic artifact
access, we are able to devise effective, customised, coordinated
strategies that meet specific optimisation concerns, such as
performance, on a particular target platform.

To automate these strategies, meta-programs codify the opti-
misation tasks mentioned previously, such as (a) code analysis,
(b) code instrumentation, (c) setting compiler tool options,
(d) tool report analysis, (e) specifying deployment options,
(f) configuring runtime/OS/platform options, and (g) perform-
ing design-space exploration (DSE) based on feedback from
reports and runtime monitoring. These tasks are critical to
optimising applications for heterogeneous compute platforms;
but, despite advances in vendor tools, they are often performed
manually. This is an expensive and error-prone process, and
requires significant expertise.

To validate our approach, we focus on high-level synthesis
(HLS) by developing meta-programs that translate agnostic
C++ code into HLS-enhanced C++ code. Agnostic C++ cap-
tures functionality without any optimisations, while HLS-
enhanced C++ may have: #pragma annotations to direct the
HLS tool to perform low-level optimisations, loop transforma-
tions, and low-level library calls to specify memory interfaces,
built-in operators, and customised numerical representations.
By providing a programmatic model of the platform, tools
and source-code, meta-programs can automate the translation
between agnostic and HLS-enhanced descriptions (Fig. 2).

Artifacts such as tools and platforms are exposed as Python
objects, with methods that execute actions such as running the
tools with specific compiler options, as well as providing tool
reports and monitoring information. The source-code artifact,
on the other hand, requires more complex mechanisms to
model, analyse, and manipulate. We cover the source-code
artifact in more detail in the remaining subsections.

from artisan.rose import *
ast = model(“hello_word.cpp utils.cpp…”)

int f() { … ; return x; }

void main() {
 for (...) // L1
 for (...) // L2
 for (...) // L3
}

ast

Return

File

FnDef

Project

FnDef

ForLoop

ForLoop
Attribute Value

.name “hello_world.cpp”

.parent

.children

ForLoop

hello_world.cpp

f()

main()

L1
File

Project

L2

L3

FnDef FnDef
f() main()

hello_world.cpp

utils.cpp

(a) Abstract Syntax Tree (AST) (b) attributes of an AST node

Artisan meta-program (Python 3)

application code (C++)

Fig. 3. AST nodes and attributes.

A. Source-Code Model

In order to analyse and manipulate application source-
code, we expose an abstract-syntax tree (AST) data-structure
that closely reflects the code’s structure in Python. Our AST
representation is designed to capture the source-code as written
by the developer without losing information, as opposed to
exposing a lower-level intermediate representation (IR) of the
program. This allows optimisations to be expressed at the
application-level, rather than at the compiler-level, and helps
combine manual and automated efforts if required.

Fig. 3 provides an example of a program, written in two
source-code files: hello world.cpp and utils.cpp. In this
figure, we use the model() Python function, which is part of
the Artisan core library, to generate an AST representation of
the application. The arguments to model() are similar to any
C/C++ compiler: a list of paths to source files with optional
macro definitions (-D) and include header locations (-I). Cur-
rently, our prototype works with C (ANSI C and C99), C++
(C++89 and C++11), OpenCL and OpenMP programs, while
our approach can be extended to support other programming
languages where code can be represented by an AST.

Each AST node represents a source-code construct exposed
as a standard Python object organised in a tree structure. Each
node has a specific set of properties and methods that allow
developers to access and operate on the AST. Meta-programs
can find code patterns by traversing the tree (i.e. querying as
explained in Section III-B), access node attributes to extract
code features, and manipulate source-code by invoking specific
methods (e.g. instrumentation as explained in Section III-C).

B. Queries

Artisan supports a powerful mechanism for identifying code
patterns. Every AST node has a query() method, which
performs a depth-first search (DFS) on the tree starting with
the node that invokes this method. The results of a query
correspond to all of the AST node sequences that match
the search pattern and verify the condition supplied, as we

fn

FnDef
f()

FnDef
main()

lx ly

r = ast.query(“fn:FnDef”)

r = ast.query(“lx: ForLoop => ly: ForLoop”,
 where=“ lx.is_outermost()”)

table

ForLoop
L1

ForLoop
L2

ForLoop
L1

ForLoop
L3

ForLoop
L2

ForLoop
L3

for r in table: :
 print(r.fn.name,
 r.fn.line)

table

table

for r in table::
 print(r.lx.line,
 r.ly.line)

table

(a) finding all function definitions

(b) finding two-nested loops with a condition

Artisan meta-program (Python 3)

Artisan meta-program (Python 3)

Fig. 4. Source query and results (based on the code in Fig. 3).

explain next. Note that currently all code patterns considered
in our research use DFS, however we can support other search
algorithms if required.

The query() method has two parameters: match de-
fines the search pattern, and where specifies a condition
to filter matches. The match expression has the following
format: a: Entitya => b: Entityb => ... , where Entity ∈
{FnDef, F ile, ForLoop, ...}, one for each AST node type.
The match expression specifies a sequence of entities separated
by the edge => operator, and each entity in the expression is
associated with a unique label (e.g. a and b). The edge operator
represents the relationship “is ancestor of”. Thus a match cor-
responds to a sequence of AST nodes [nodex, ..., nodez] re-
sulting from query x:Entityx ... => z:Entityz , such
that nodex and nodez are instances of Entityx and Entityz ,
respectively, and nodex is an ancestor of nodez . Note that
Artisan queries are polymorphic, and can capture AST nodes
using the parent entity. For instance, the query s:Stmt
returns all statements, including loops and conditionals, since
ForLoop and CondStmt inherit from the Stmt entity.

The results of a query are structured in a table (Fig. 4).
Each row represents a match, while each column corresponds
to the entity specified in the match parameter expression and
identified by the corresponding label. The table can be iterated
to access each result. Each iteration returns a row object
where each node can be accessed through its column (label)
name. Fig. 4(a) shows an example where we find all function
definitions in the AST. In Fig. 4(b), we query two-nested loops
in the program presented in Fig. 3, where the first loop is an
outermost loop. Note that while the program has three two-
nested loops, we filter out the third match, as specified by the
query where parameter, since loop L2 is not outermost.

void main() {
 for (...)
 for (...)
 for (...)
}

CODE

CODE

pos=before

.instrument(pos,)CODE

pos=after

pos= replace

.commit()

1. update
AST

2. sync

3. store
snapshot

version
control

AST with
instrumentation

directives updated
 AST

ast

FnDef
main()

CODE

(a) instrumenting constructs with arbitrary code

(b) committing, syncing and versioning the AST

Artisan meta-program (Python 3)

Artisan
meta-program

Fig. 5. Source-code instrumentation and version control.

C. Instrumentation

We provide mechanisms for instrumenting code for two rea-
sons: first, to inject monitoring primitives such that when the
augmented code is executed we acquire runtime information;
and second, to transform code in order to optimise it.

Every AST node representing a program construct can
be instrumented (Fig. 5(a)) with the instrument(pos,
code) method. This method has two parameters: pos, which
defines the position of the code to be placed, and the code
to be injected. The code can be any string, for instance,
a preprocessor directive (#include), a pragma statement,
a C/C++ extract, or just a comment. The meta-program de-
veloper is responsible for ensuring that inserted code leads
to a program that can be parsed by a C/C++ compiler. The
pos argument can have one of three values: before the target
construct, replace the target construct, or after the target
construct. The before and after positions are usually used in the
context of monitoring, since they do not remove the original
code. The replace position, on the other hand, replaces the
whole program construct.

When instrumenting code, there are no actual changes to
the AST. Instead, annotations are stored on relevant AST
nodes. To update the AST, meta-programs must invoke the
commit() method of the ast object (Fig. 5(b)). This method
triggers three steps: first, the instrumented source-code base is
generated and re-parsed to derive the new AST which is a
direct reflection of the instrumentation annotations; second,
the ast variable now references the updated AST object, so
all further query and instrumentation operations are performed
on this updated structure; finally, the new code base is auto-
matically stored in a version control database.

Code versioning allows us to trace intermediate transfor-
mation results and experiment with optimisation strategies in
parallel. Any committed version can be accessed for further
analysis, transformation, and execution.

PDT-3
(transform)

PDT-3
(transform)

SDT
(transform)

PDT-3
(transform)

PDT-3
(transform)

SDT
(transform)

DAA
(analysis)

DAA
(analysis)

DAA
(analysis)

DAA
(analysis)

DAA
(analysis)

DAA
(analysis)

UDT
(controller)

workload characterisation

tool reporting

DAA
(analysis)

DAA
(analysis)

DAA
(analysis)

platform monitoring

target-dependent
optimisations

target-independent
optimisations

Fig. 6. Artisan meta-program categories.

IV. META-PROGRAM REPOSITORY

We build a repository of scalable and reusable Artisan meta-
programs (Requirement R2) to support HLS. We classify them
into three categories according to their roles (Fig. 6):
• Design and Application Analysis (DAA). DAAs acquire

static and runtime application information to guide the
optimisation process. For instance, identifying hotspots
and non-synthesizable code regions, performing dynamic
range analysis, and parsing data from tool reports.

• Syntax-Directed Transformations (SDT). An SDT per-
forms actions on design-flow artifacts. Examples include
adding pragma annotations to specific constructs, trans-
forming code, refactoring code, applying specific tool
options, and configuring the platform runtime.

• Utility-Directed Transformations (UDT). UDTs [7]
provide control logic for optimisation and are objective-
based. The goal of a UDT is to maximise or minimise
a utility function such as execution time or resource
utilisation, either by applying a set of well-known steps,
or by performing DSE. Optimisation techniques, such
as hill-climbing, simulated annealing or integer linear
programming, may be used.

Meta-program developers (i.e. platform experts) are respon-
sible for ensuring that transformations are sound, which can
be checked by hand or using tools (e.g. [8]). In addition to
verification, pre-conditions must be employed to ensure correct
optimised code. For instance, it must be verified that there are
no loop-carried dependencies when parallelising a loop with
OpenMP. SDTs must also define transformation scope. As an
example, if an SDT only operates on normalised for-loops,
this must be checked. UDTs, on the other hand, are guided by
optimisation objectives; they rely on DAAs to provide analysis
reports, and on SDTs to execute optimisation tasks.

Our current repository contains meta-programs that auto-
matically optimise C++ applications for two hardware targets:
(1) multi-threaded CPUs using OpenMP, and (2) CPU+FPGA
platforms using Intel HLS/OpenCL tools. For OpenCL, we
derive two types of kernels: a single work-item kernel which
leverages pipeline parallellism, and an NDRange kernel which
operates concurrently in a SIMD execution fashion [4] to
exploit data parallelism. Fig. 7 shows our current optimisation
workflow, while Table I summarises the meta-programs in our
repository.

U-1: Multi-threaded CPU

extract hotspot
loop to function

(S-5)

analyse:
time kernel

(D-2)

parallelise:
OpenMP

N Threads (S-6) CPU

execute on
CPU platform

identify hotspot
kernel for

acceleration
(D-1)

C++ input application
int main(){
 ...
 for (int i = 0; i < N; …){
 y[i] = complex(x[i]);
 }
 ...
}

loop1: 60%
loop2: 20%

C++ application with
extracted hotspot

C++ application instrumented
with loop timers

int main(){
 ...
 for (int i = 0; i < N; …){
 Artisan::Timer(“loop1”);
 }
 ...

C++ input application

int main(){
 ...
 for (int i = 0; i < N; …){
 y[i] = complex(x[i]);
 }
 ...
}

C++ application
instrumented with

loop timers

int main(){
 ...
 for (int i = 0; i < N; …){
 Artisan::Timer(loop_1);
 y[i] = complex(x[i]);
 }
 ...
}

C++ application with
extracted hotspot

void hotspot(int *x, int *y) {
 for (int i = 0; i < N; …){
 y[i] = complex(x[i]);
 }
}

int main(){
 ...
 hotspot(x, y);
 ...
}

CPU

execute on
CPU platform

if tn > tn-1 :
 N = N * 2

if tn <= tn-1

generate:
ND-FPGA

project
(S-2)

ND FPGA Kernel

host application (.cpp)

kernel_manager.cl

hotspot_kernel.cpp
analyse:

time
kernel
(D-2)

transform:
set work group
size/SIMD work

items (S-8)

 if tn > tn-1

U-3: ND-FPGA

execute on
CPU+FPGA

platform

Intel Arria
10 GX

CPU

analyse:
HW synthesis

check
 (D-3)

hotspot identification and extraction
(used in U-1, U-2, U-3)

if tn <= tn-1

generate:
1D-FPGA

Project
(S-1)

1D FPGA Kernel

host application (.cpp)

kernel_manager.cl

hotspot_kernel.cpp
analyse:

get
resource
use (D-4)

transform:
unroll loops
by F (S-7)

execute on
CPU+FPGA

platform

U-2: 1D-FPGA

Intel Arria
10 GX

CPU

analyse:
HW synthesis

check
 (D-3)

if resources >= 90 %

if resources < 90%:
 F = F*2

Fig. 7. Our current optimisation workflow to support Intel HLS. Meta-program labels and descriptions can be found in Table I. We have applied this workflow
to three different applications (AdPredictor, K-Means Classification, and N-Body Simulation), and our results are presented in Table II.

TABLE I
SUMMARY OF THE ARTISAN META-PROGRAM REPOSITORY. LOC: LINES OF CODE.

Label Meta-program Type LOC Description

U-1 Multi-CPU
app → appomp

UDT 36 Optimises an application (app) by parallelising hotspot loops using OpenMP.

U-2 1D-FPGA
app → app1d

UDT 87 Optimises an application (app) by deriving a single work-item FPGA kernel that maximises resource
utilisation.

U-3 ND-FPGA
app → appNd

UDT 86 Optimises an application (app) by deriving an ND-Range FPGA kernel that maximises data-parallelism
and minimises execution time (appNd).

D-1 Hotspot Detection
(app, T) → hotspots

DAA 32 Identifies loops (hotspots) in app where time spent is above a given threshold (T%) of overall
execution time.

D-2 Kernel Timing
(app, fn) → time

DAA 22 Returns the time spent (time) in a specified SW or HW function/kernel (fn) during program execution.

D-3 HW Synthesis Check
(app, fn) → bool

DAA 49 Returns whether a specified function (func) contains constructs that are not synthesizable using Intel
HLS (e.g. recursion or function pointers).

D-4
Resource Utilisation
design →
(ALUT, FF, RAM, DSP, MLAB)

DAA 15 Parses P&R reports for an FPGA design to determine estimated resource utilisation
(ALUT,FF,RAM,DSP,MLAB).

S-1
1D-FPGA Project
(app, kernel) →
(host, manager, hls_kernel)

SDT 298 Generates code for a single work-item OpenCL FPGA project. This includes a single work-item OpenCL
kernel manager, a C++ host application (S-3), and a C++ HLS kernel file (S-4).

S-2
ND-FPGA Project
(app, kernel) →
(host, manager, hls_kernel)

SDT 300

Generates code for an NDRange OpenCL FPGA project. This includes an NDRange OpenCL kernel
manager, a C++ host application (S-3) and a C++ HLS kernel (S-4). For a kernel function (kernel) to
be NDRange-compatible, it must have an outer loop with idx=0-N. This outer loop is removed, and
the index variable (idx) is added as a function argument. This argument is set to the work-item ID in
the kernel manager.

S-3 C++ Host application
(app, kernel) → host

SDT 103
Instruments the input program (app) to generate an OpenCL host program replacing the call to the
specified kernel function (kernel) by enqueuing an OpenCL kernel. The OpenCL platform is initialised
and all OpenCL kernel arguments and buffers are created and set.

S-4 C++ HLS Kernel
(app, kernel) → hls_kernel

SDT 71
A C++ kernel targeted for hardware synthesis using Intel HLS is generated by copying a specified hotspot
kernel function (kernel) into a separate .cpp file including required HLS headers. This HLS kernel
can be compiled and linked with the OpenCL manager and host.

S-5 Loop To Function
(app, loop) → apploop

SDT 28 Extracts a specified program loop into a new function, and replaces the original loop with a function
call.

S-6 OpenMP Loop
(app, loop, N) → appomp

SDT 19 Injects #pragma omp parallel for num_threads(N) above the loop.

S-7 Loop Unroll
(app, loop, F) → appunrolled

SDT 12 Inserts #pragma unroll F above a specified loop to unroll it by factor F.

S-8

Set Work-Group Size and SIMD
Work-Items
(manager, WG, SIMD) →
managerwg−simd

SDT 14 Sets the work-group size (WG) and number of SIMD work-items (SIMD) for an NDRange kernel in the
kernel manager code (manager).

Next, we provide detailed explanations of some meta-programs
in Table I:

A. Multi-CPU Strategy (U-1)
The goal of this strategy is to parallelise loops using

OpenMP. First, a hotspot loop is identified by automatically
timing all loops in the application (D-1). Next, the strategy
verifies if the candidate loop can be parallellised. If the loop
is parallel, it is extracted to a function (S-5) in order to isolate
it from other parts of the code. An OpenMP parallel
for pragma is inserted on top of the hotspot loop with a
specified number of threads (S-6). To determine the minimum
number of threads that maximises performance for a given
dataset and CPU target, hill-climbing is used, starting with 2
threads and doubling this number until the observed execution
time no longer improves. To determine execution time during
this profiling stage, the hotspot function call is automatically
instrumented with a timer (D-2).

B. 1D-FPGA Strategy (U-2)
This strategy generates a single work-item kernel from the

hotspot loop, and maximises FPGA resource utilisation. A
single work-item kernel is derived by unrolling the candidate
loop by a specific factor in order to pipeline computation
stages. Controlling the loop unroll factor allow us to adjust
pipeline parallelism by mapping more or less loop iterations
onto the physical FPGA space [3].

The strategy is as follows. First, a hotspot loop is identified
and extracted to a function (D-1, S-5), then it is checked
for constructs not supported by Intel HLS, such as function
pointers or recursion (D-3). If the function is synthesizable,
HW/SW partitioning is performed, generating a single work-
item FPGA project based on the hotspot function (S-1). This
generated FPGA project contains 3 files: (i) the C++ host
application, (ii) the OpenCL kernel manager, and (iii) the
HLS kernel file. The C++ host calls the hotspot C++ function
residing in the HLS kernel via the OpenCL kernel manager.
The kernel manager acts as the intermediary between the host
and the kernel, handling the communication between them.

After the FPGA project is generated, the HLS kernel is
instrumented to unroll the candidate loop by a specific factor
(S-7). This factor begins at 2, and is doubled iteratively
in a DSE process until the synthesis tools report that the
design is over-mapped. More specifically, for each unroll
factor, intermediate RTL compilation is used to generate Intel
Design reports, which are parsed to get resource utilisation
(ALUTs, FFs, RAMs, DSPs, MLABs) estimates (D-4). If any
resource is reported at over 90% utilisation, the unroll factor
is rolled back and the DSE stops. This 90% threshold value is
parameterisable. The final HLS C++ kernel is compiled into
OpenCL, and linked with the kernel manager during synthesis
using the Intel OpenCL compiler, producing the final single
work-item FPGA design.

C. ND-FPGA Strategy (U-3)
This strategy generates an NDRange FPGA kernel from

the hotspot loop to maximise data parallelism. In contrast

to U-2, which pipelines the entire loop, the hardware kernel
in this strategy implements one loop iteration, corresponding
to a single work-item. The number of work-items running
concurrently corresponds to the number of loop iterations. To
achieve higher throughput, we further group multiple work-
items to execute operations in a SIMD manner [9].

As with the 1D-FPGA strategy, a hotspot function is auto-
matically identified for hardware acceleration, and an FPGA
project is generated consisting of a C++ host, OpenCL kernel
manager, and a HLS kernel (S-2). The number of data-parallel
work-items for the NDRange kernel is specified in the C++
host. Kernel vectorization is adjusted by two parameters:
the work-group size (WG) and number of SIMD work-items
(SIMD), both of which are specified in the kernel manager:
WG specifies the number of work-items provisioned for each
work-group, while SIMD instructs the compiler to vectorize
the datapath where possible within a work-group [9].

The strategy uses hill-climbing, increasing the values of WG
and SIMD in the kernel manager (S-8) for various problem
sizes, and observing the synthesized kernel execution time
at each step, until execution time stops improving. Table IV
presents an example of the values found for both parameters.

D. Hotspot Identification (D-1) and Extraction (S-5)

The above three strategies use the same process to iden-
tify hotspots, that is, regions of code where most time is
spent. For this purpose, input applications are automatically
instrumented with timers on each outermost loop (D-1). The
instrumented code is compiled and run, such that all loops
comprising greater than 50% of the program’s execution time
are identified. This 50% threshold is parameterisable. Note
that, while tools like gprof provide similar information, they
work at the function-level which is too coarse-grained, or at the
line-level which is too fine-grained. We focus on loops, which
are often hotspot candidates for hardware acceleration. Once a
hotspot is identified, it is extracted into a function and replaced
in the original source with a call to that function (S-5).

V. EVALUATION

A. Experimental Setup

Artisan is developed using the ROSE compiler frame-
work [1], designed to support source-to-source C++ transfor-
mations. In particular, we implement the query and instrumen-
tation mechanisms on top of a customised version of ROSE,
and wrap this functionality inside the Python 3 environment.

We evaluate our approach with CPU and FPGA targets
using three case study applications: AdPredictor [10], K-
Means Classification [11], and N-Body Simulation [12]. These
applications include constructs that are often found in complex
AI and engineering applications, such as computationally
intensive loops with predictable memory access patterns and
large input data sizes. Because of these similarities, we ex-
pect the optimisation strategies described in this paper to be
applicable to other programs.

For CPU baseline and OpenMP experiments, we use C++11
and compile with -O2 using g++ 7.4 targeting a platform with

TABLE II
SUMMARY OF PERFORMANCE RESULTS AND DEVELOPMENT EFFORT

REQUIRED FOR EACH STRATEGY AND APPLICATION.

Optimisation Strategy
Multi-CPU (U-1) 1D-FPGA (U-2) ND-FPGA (U-3)

AdPredictor Speedup: 7.5× Speedup: 37.8× Speedup: 4.0×
LOC: +2 LOC: +163 LOC: +167

K-Means Speedup: 7.0× Speedup: 132.5× Speedup: 0.4×
Classification LOC: +2 LOC: +149 LOC: +153

N-Body Speedup: 7.4× Speedup: 1.9× Speedup: 24.3×
Simulation LOC: +2 LOC: +144 LOC: +148

eight i7-9700K CPU @ 3.60GHz cores. For FPGA experi-
ments, we use the Intel HLS compiler [13] and Intel OpenCL
SDK for FPGAs [14] with Quartus Prime Pro 19.3 [15]
targeting an Intel Arria 10 GX FPGA Development Kit [16].

This section shows how Artisan meets the two key re-
quirements in Section I: customisable strategies that optimise
an agnostic application code to multiple platforms (R1), and
reusable strategies that can serve multiple applications (R2).
For customisable optimisations, we apply and compare the
performance of our three strategies to a single application
(Section V-B). To demonstrate reusable strategies, we apply
the same three strategies to the remaining two applications,
determining the most suitable one for each (Section V-C).

A summary of our results for each application and strategy
is included in Table II. The speedup values reported are for
the largest application workload, i.e. the maximum speedup
achieved by each optimised implementation relative to the
input, single-threaded CPU implementation. For the FPGA
strategies, we observe execution times of synthesised hardware
designs. The added lines of code (LOC: +N) quantifies the
additional code required to get from the input application
to the optimised C++ or OpenCL implementation. This is a
representation of the developer effort offloaded to Artisan.

B. Customisable Optimisation Strategies

This section evaluates the process of optimising a single
application (AdPredictor) for multiple targets without hard-
ware expertise. AdPredictor is a Bayesian machine-learning
algorithm used by Microsoft’s Bing search engine for adver-
tisement (“ad”) recommendations. Our code implements the
training module which processes ad impressions. Impressions
are tuples consisting of attributes related to a particular search
session, such as the user ID, IP address, query terms, and the
ad’s relative page ranking. For each impression, the system
observes whether the ad was clicked or not. Several ad
impressions are logged for training, which defines the problem
size as shown in Fig. 8. The goal of the training process is to
update prior belief with a set of new observations to improve
ranking of ads that will be most likely clicked.

Our workflow (Fig. 7), automatically analyses the platform-
agnostic application code and identifies a hotspot loop to
accelerate. In this case, the extracted loop, a, contains two
inner loops nested at the same level, b and c. The number
of iterations of a depends on the problem size supplied at
execution time (N), while both inner loops have fixed bounds
with 12 iterations each. The process of applying each strategy

1.1
5.0

7.2 6.9 7.5

0.8

7.5

24.3

36.3 37.8

0.7
3.0 3.9 3.9 4.0

Problem Size (#Ad Impressions)

Sp
ee

du
p

(v
s

1
C

PU
 th

re
ad

)

0x

10x

20x

30x

40x

128 2048 32768 524288 8388608

Multi-CPU 1D-FPGA ND-FPGA

Performance of Optimised AdPredictor Designs

Fig. 8. Performance of different strategies for AdPredictor.

to AdPredictor is described below, and execution time results
are included in Fig. 8.
• Multi-CPU (U-1). U-1 determines that the optimal num-

ber of threads for AdPredictor on our CPU target is 8 (as
expected, since we have 8 cores). As shown in Fig. 8,
the Multi-CPU speedup ranges from 1.1 times for 128 ad
impressions to 7.5 times for 8,388,608 ad impressions.

• 1D-FPGA (U-2). Table III outlines the process of ap-
plying U-2 to AdPredictor. Version 1 is the initial FPGA
kernel with the unmodified hotspot, already more than
20 times faster than the input implementation for large
problem sizes. DSE determines an unroll factor of 16 for
fixed loops (b and c). The number of cycles decreases
by a factor of 24. The final pipelined design is ∼1.5 times
faster than the reference FPGA version, and up to 37.8
times faster than the input CPU version (Fig. 8).

• ND-FPGA (U-3). Table IV shows the hill-climbing pro-
cess to determine the best work-group size (WG) and
number of SIMD work-items (SIMD) for the ND-FPGA
strategy. For AdPredictor, the values are automatically
determined as SIMD=4 and WG=8, achieving a 4 times
speedup compared to the input CPU version.

It can be seen that 1D-FPGA is most effective for AdPredictor,
achieving up to 38 times speedup compared to the input
CPU implementation. The smallest workload (128), however,
is best suited to Multi-CPU, since data transfer overhead
outweighs accelerator performance. We can also see that out
of the three strategies, the ND-FPGA strategy performs the
worst, suggesting that the algorithm is more suited to pipeline
parallelism than data parallellism.

The key takeaway from these experiments is that all three
strategies can be applied to the same application with little or
no developer effort or expertise, and thus the most suitable
optimised version can be automatically selected.

C. Reusable Optimisation Strategies

This section demonstrates that optimisations can be de-
scribed once and then applied to multiple applications. This is
important to significantly reduce optimisation effort. We apply
each of the three strategies to the two other platform-agnostic
case study applications: K-Means and N-Body, following the
same process described in Section V-B (see Table II).

TABLE III
ADPREDICTOR 1D-FPGA (U-2) STRATEGY (N = # AD IMPRESSIONS).

Version f (MHz)
II

Cycles
Resource Utilisation Execution Time (ms)

a b c ALUTs FFs RAMs DSPs N=215 N=221

0. Software Reference - - - - - - - - - 46.20 2955.96
1. 1D FPGA Reference 310.00 ≥ 1 1 1 ≥ 24N 193326 (23%) 24346 (14%) 409 (15%) 211 (14%) 2.28 124.37
2. 1D FPGA Unrolled 315.97 1 n/a n/a N 102030 (12%) 189038 (11%) 499 (18%) 239 (16%) 1.78 78.89

TABLE IV
ADPREDICTOR ND-FPGA (U-3) STRATEGY.

Execution Time (ms)
N SIMD=2 SIMD=4 SIMD=8 SIMD=4 SIMD=4

(# ad impressions) WG=2 WG=4 WG=8 WG=8 WG=16
212 2.35 1.68 2.09 1.67 1.67
215 15.61 11.89 14.62 11.66 11.70
218 124.91 93.04 111.26 92.86 92.99
221 988.90 735.22 876.91 733.84 734.35

For each application, the Multi-CPU results achieve similar
performance, 7.0-7.5 times speedup. The ND-FPGA strategy
is the most suitable for N-Body, providing up to 24 times
speedup, while it is the least suitable for both K-Means Clas-
sification and AdPredictor. For K-Means, ND-FPGA performs
worse than the input CPU implementation, with over 2 times
slowdown, while 1D-FPGA performs exceptionally well, with
up to 133 times speedup. This suggests that the K-Means
algorithm is well-suited to pipeline parallelism, while N-Body
is better suited to data parallelism.

D. Discussion

The goal of Artisan is to capture and codify hardware
and domain expertise in order to make it accessible to non-
experts. Table II includes the added lines of code required to
manually produce identical optimised outputs starting from our
experiment inputs. For our FPGA strategies, over 100 extra
lines are required, and for the Multi-CPU strategy, two are
required. While these numbers do not reflect the effort required
to master OpenCL and OpenMP, they represent the effort that
Artisan captures and offloads from the application developer.

Furthermore, as demonstrated in Section V-C, developer
productivity is improved since optimisation efforts (Artisan
meta-programs) need only be described once and can then be
reused for multiple input applications. In this paper, all meta-
programs were developed by a single developer in two weeks.
While our applications are relatively small, the same meta-
programs can operate on larger, more complex programs, in
which it is not obvious (a) where hotspots are located, and
(b) how to apply optimisation transformations.

Note that the effectiveness of our approach depends on how
the application code is written: unstructured and obscured code
may be difficult to optimise [17]. Meta-programs can be used
not only to automate optimisations, but also to guide develop-
ers to revise their programs to make them more amenable to
optimisation. For instance, they can instruct developers to use
arrays instead of pointer arithmetic, or use iterative instead of
recursive algorithms.

VI. RELATED WORK

Approaches, such as Delite [18], focus on developing
Domain-Specific Languages (DSLs) to restrict application
language semantics. This allows developers to express their
algorithms in a language that naturally models their problems.
However, it forces developers to choose one domain, as the
inter-operability between domains (necessary for larger prob-
lems) is limited, and supporting new transformations requires
expertise with the compiler architecture. HeteroCL [19], on the
other hand, provides a Python-based DSL which decouples
algorithm specification from hardware customisation. While
HeteroCL provides a high level of abstraction to define and
customise applications for heterogeneous targets, it still re-
quires application developers to learn a new programming
model and to understand optimisation techniques, and cannot
be used to optimise existing software code.

Artisan’s co-design methodology is similar to LARA [2],
[20], however it has different goals. LARA is an aspect-
oriented programming DSL that was extended to support
compile-time optimisations [21] for multiple target lan-
guages, such as C and MATLAB. In contrast, Artisan meta-
programs are based on a well-known general-purpose language
(Python 3), focusing on design-flow orchestration, with arti-
facts such as source-code, tools and platforms handled as first-
class objects.

VII. CONCLUSION

In this paper, we present a novel compilation approach
that addresses the complexity of mapping high-level software
source-code to heterogeneous hardware architectures. Our
meta-programming approach, Artisan, decouples functional
and optimisation concerns, maintaining two independent de-
scriptions: application experts focus on algorithmic behaviour,
and platform experts focus on the mapping process. Artisan of-
fers design-flow orchestration based on two key requirements:
customisable optimisations and reusable strategies. We have
developed and evaluated an Artisan prototype using three case
study applications and three reusable optimisation strategies,
achieving at least a 24 times speedup for each application on
CPU or FPGA targets with little application developer effort.

Future work includes: extending our meta-program repos-
itory to support more hardware platforms and tools, and to
explore new programming models such as Intel OneAPI [22].

ACKNOWLEDGEMENT

The support of Intel and the U.K. EPSRC (grants
EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/S030069/1
and EP/L00058X/1) is gratefully acknowledged.

REFERENCES

[1] “ROSE compiler infrastructure,” http://rosecompiler.org/, 2020, [Online;
accessed Mar-2020].

[2] J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz,
and Z. Petrov, “LARA: an aspect-oriented programming language for
embedded systems,” in Proceedings of the 11th annual international
conference on Aspect-oriented Software Development. ACM, 2012,
pp. 179–190.

[3] Intel Corporation, “Intel High Level Synthesis Compiler Pro Edi-
tion: Best Practices Guide,” https://www.intel.com/content/www/us/en/
programmable/documentation/nml1505158467345.html, 2020, [Online;
accessed Mar-2020].

[4] ——, “Intel FPGA SDK for OpenCL Pro Edition: Best Prac-
tices Guide,” https://www.intel.com/content/www/us/en/programmable/
documentation/mwh1391807516407.html, 2020, [Online; accessed Mar-
2020].

[5] Mentor, “Catapult R© High-Level Synthesis,” https://www.mentor.com/
hls-lp/catapult-high-level-synthesis, 2020, [Online; accessed Mar-2020].

[6] University of Toronto, “LegUp 4.0 Documentation,” http://legup.eecg.
utoronto.ca/docs/4.0/index.html, 2020, [Online; accessed Mar-2020].

[7] Q. Liu, T. Todman, W. Luk, and G. A. Constantinides, “Optimizing
hardware design by composing utility-directed transformations,” IEEE
Transactions on Computers, vol. 61, no. 12, pp. 1800–1812, 2011.

[8] K. W. Susanto, T. Todman, J. G. F. Coutinho, and W. Luk, “Design
validation by symbolic simulation and equivalence checking: A case
study in memory optimization for image manipulation,” in SOFSEM,
2009.

[9] Intel Corporation, “Intel FPGA SDK for OpenCL Pro Edition: Program-
ming Guide,” https://www.intel.com/content/www/us/en/programmable/
documentation/mwh1391807965224.html, 2020, [Online; accessed Mar-
2020].

[10] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale
Bayesian Click-through Rate Prediction for Sponsored Search Advertis-
ing in Microsoft’s Bing Search Engine,” in ICML. Omnipress, 2010,
pp. 13–20.

[11] Maxeler, “Classification of N-dim data by Euclidean measure,” https:
//github.com/maxeler/Classification, 2015, [Online; accessed Mar-2020].

[12] ——, “N-Body Particle Simulation,” https://github.com/maxeler/NBody,
2015, [Online; accessed Mar-2020].

[13] Intel Corporation, “High-Level Synthesis Compiler - Intel HLS
Compiler,” https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/hls-compiler.html, 2020, [Online;
accessed Mar-2020].

[14] ——, “Intel FPGA SDK for OpenCL,” https://www.intel.co.uk/content/
www/uk/en/software/programmable/sdk-for-opencl/overview.html,
2020, [Online; accessed Mar-2020].

[15] ——, “Intel FPGA Development Tools: Intel Quartus Prime
Software Suite,” https://www.intel.co.uk/content/www/uk/en/software/
programmable/quartus-prime/overview.html, 2020, [Online; accessed
Mar-2020].

[16] ——, “Arria R© 10 GX FPGA Development Kit,” https://www.intel.com/
content/www/us/en/programmable/products, 2020, [Online; accessed
Mar-2020].

[17] M. J. Wolfe, C. Shanklin, and L. Ortega, High Performance Compilers
for Parallel Computing. USA: Addison-Wesley Longman Publishing
Co., Inc., 1995.

[18] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “Delite: A compiler architecture for performance-oriented
embedded domain-specific languages,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 13, p. 134, 2014.

[19] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A Multi-Paradigm Programming Infrastructure
for Software-Defined Reconfigurable Computing,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’19, New York, NY, USA, 2019, p. 242–251.

[20] P. Pinto, T. Carvalho, J. Bispo, M. A. Ramalho, and J. M. Cardoso, “As-
pect composition for multiple target languages using LARA,” Computer
Languages, Systems Structures, vol. 53, pp. 1 – 26, 2018.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in European Conference on Object-
Oriented Programming. Springer, 2001, pp. 327–354.

[22] Intel Corporation, “Intel oneAPI Toolkits,” https://software.intel.com/
en-us/oneapi, 2020, [Online; accessed Mar-2020].

