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Abstract—This paper proposes a novel latency-hiding hard-
ware architecture based on column-wise matrix-vector multipli-
cation to eliminate data dependency, improving the throughput
of systems of RNN models. In addition, a flexible checkerboard
tiling strategy is introduced to allow large weight matrices,
while supporting element-based parallelism and vector-based
parallelism. These optimizations improve the exploitation of the
available parallelism to increase run-time hardware utilization
and boost inference throughput. Furthermore, a quantization
scheme with fine-tuning is proposed to achieve high accuracy.
Evaluation results show that the proposed architecture can
enhance performance and energy efficiency with little accuracy
loss. It achieves 1.05 to 3.35 times better performance and 1.22
to 3.92 times better hardware utilization than a state-of-the-
art FPGA-based LSTM design, which shows that our approach
contributes to high performance FPGA-based LSTM systems.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) have been shown to
have useful properties with many significant applications.
Since they can record previous information to increase pre-
diction accuracy, RNNs are applied to sequence processing
problems such as speech recognition [1, 2], natural language
processing [3] and video classification [4, 5]. Among the many
RNN variants, the two most popular ones are Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU).
FPGAs have been used to speed up the inference of RNNs
[1, 6, 7, 8, 9], which offer benefits of low latency and low
power consumption compared to CPUs or GPUs.

However, the data dependency in RNN computation makes
systems stall until the required hidden vector returns from the
full pipeline to start the next time-step calculation. Moreover,
deep pipelining is often used to achieve a high operating
frequency, which makes stall penalty worse since the system
pipeline needs to be emptied. Besides, an inefficient tiling
strategy also makes hardware resources idle. The design in [8]
involves 6 matrix-vector multiplication (MVM) “tile engines”,
each processing 400 × 400 matrices. The tile engine results
are fed to an adder tree, so they are effectively processing
a 400 × 2400 matrix in parallel. Any MVM that does not
map to this dimension will leave some resources idle. Both
of these issues result in low hardware utilization, as shown in
Fig 1. The hardware utilization of Brainwave [8] is lower than

Fig. 1. Low hardware utilization of some existing LSTM Designs (ISCA18-
BW [8] and FCCM19-NPU [9])

50% for all the LSTM models. The BrainWave-like Neural
Processor Unit (NPU) [9] with a fine-grained zero-padding
scheme also suffers from low hardware utilization, especially
in LSTM models with medium sizes which are commonly
used in many applications [10, 11, 12].

This paper proposes a novel latency-hiding hardware ar-
chitecture and a flexible checkerboard tiling strategy for
RNNs/LSTMs to improve hardware utilization and boost in-
ference throughput. First, we propose column-wise matrix-
vector multiplications (MVM) for RNN/LSTM gates opera-
tions, which can eliminate the data dependency. The column-
wise block-striped decomposition of a matrix, as shown in
Fig. 2, is an effective parallel method of MVM used in
high-performance computing. However, most of the previous
FPGA-based designs of RNNs focus on row-wise MVM. In
our architecture, the calculation of the next time-step can
start without waiting for the system pipeline to be emptied,
which means that the system can be fully pipelined without
stall since it only needs a partial input vector to start the
computation. Besides, in the row-wise MVM, the vector needs
to be replicated so that the dot products can be computed in
parallel, while for the column-wise MVM, each element is
replicated for each column and so can be more efficient using
current FPGA architectures.

Moreover, we also propose a flexible checkerboard tiling
strategy incorporating Element-based Parallelism (EP) and
Vector-based Parallelism (VP) to boost inference throughput.



Fig. 2. Column-wise matrix-vector multiplication

To support EP and VP, we propose a hybrid hardware archi-
tecture that combines a multiplier-adder-tree and a multiply-
accumulator. The architecture that deploys many parallel mul-
tipliers followed by a balanced adder-tree is commonly used in
FPGA-based RNN/LSTM accelerators [8, 9, 13, 14, 15]. These
designs are based on row-wise block-striped decomposition of
MVM. For the column-wise MVM we propose an architecture
deploying many parallel multipliers followed by accumulators
since the partial result vectors of column-wise MVM are
output from the pipeline cycle by cycle and then these partial
result vectors are accumulated one by one, as shown in
Fig. 2. Furthermore, a small balanced adder tree is placed
between the multipliers and the accumulators, which balances
the parallelism of EP and VP to increase throughput.

We make the following contributions in this paper:
• A novel column-wise MVM for RNNs with latency

hiding to increase the hardware utilization and system
throughput.

• A flexible checkerboard tiling strategy incorporating EP
and VP to exploit the available parallelism and further
increase the hardware utilization and scalability.

• A comprehensive evaluation of the proposed method and
hardware architecture.

II. BACKGROUND AND PRELIMINARIES

A. RNNs

RNNs are artificial neural networks which have feedback
connections and internal memory cells to record past infor-
mation about long-term dependencies over an arbitrary time.
They achieve high accuracy in many sequence processing
problems such as text analysis, speech recognition and video
classification.

LSTM was initially proposed in 1997 by Sepp Hochreiter
and Jürgen Schmidhuber [16]. This study follows the standard
LSTM cell [1, 8, 9, 12], as shown in Fig 3. The hidden state
ht is produced by the following equations:

it = σ(Wi[xt, ht−1] + bi)

ft = σ(Wf [xt, ht−1] + bf )

gt = tanh(Wg[xt, ht−1] + bu)

ot = σ(Wo[xt, ht−1] + bo)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

Fig. 3. Structure of an LSTM Cell

TABLE I
SYSTEM PARAMETERS

W Weights matrix

wn All the weights of the row number n in W

w′
n All the weights of the column number n in W

Wi[n],Wf [n],

Wg [n],Wo[n]
Row n in i, f, g, or o gate weights matrices

Hw Number of columns of weight matrix

Lw Number of Rows of weight matrix

xt The input vector x at timestep t

ht The hidden vector h at timestep t

xt[j] The element j of input vector x at timestep t

ht[j] The element j of hidden vector h at timestep t

Lx Number of elements in input vector x

Lh Number of elements in hidden vector h

NPE Number of processing elements

EP Element-based Parallelism

V P Vector-based Parallelism

TS Timestep

Here, σ, tanh and � stand for the sigmoid function, the
hyperbolic tangent function and element-wise multiplication
respectively. i, f, g and o represent the input, forget, input
modulation and output gate respectively. The input modulation
gate is often considered as a sub-part of the input gate.
The input vector and hidden vector are combined so that W
represents the weight matrix for both input and hidden units.
Bias is represented as b. The output ct is the internal memory
cell state and ht is the output of the cell, also called the hidden
state, which is passed to the next time-step or next layer. The
gates control the information flow inside the LSTM unit. The
input gate decides what new information is to be written into
the memory cell; the forget gate decides what old information
is no longer needed and can be removed; the input modulation
gate is used to modulate the information that the input gate
will write into the memory Cell by adding non-linearity to
the information; the output gate decides what the next hidden
state should be.

Gated Recurrent Unit (GRU) is a variant of LSTM. It
combines the forget and input gates into a single “update gate”
and it has fewer parameters than the standard LSTM models.
Our work focuses on the optimization of the standard LSTM
and GRU but the proposed techniques can be applied to other
RNN and LSTM variants.



(a) Row-wise matrix-vector multiplication (b) Pipeline analysis

Fig. 4. Row-wise matrix-vector multiplication, showing the data dependency of LSTM

Fig. 5. The weights matrix, showing interlacing of Wi[n], Wf [n], Wg [n]
and Wo[n]

III. DESIGN AND OPTIMIZATION METHODOLOGY

This section analyzes the data dependency problem and
introduces several optimizations for RNN designs. We define
the system parameters in Table I which are used for later
calculations.

A. Weights Matrix of LSTM Gates

The four matrices of i, f, o, u gates of LSTMs share the
same size. In our design, they are combined into one large
matrix. Thus, in one time-step for the LSTM algorithm, we
only need to focus on optimizations of one large matrix
multiplying one vector for the whole LSTM cell instead of four
small matrices multiplying one vector which is decentralized.
Since each gate matrix has the size of Lh × (Lx + Lh), the
large combined matrix has the size of (4×Lh)× (Lx+Lh).
Then we have the following equations:

Hw = 4× Lh (1)
Lw = Lh+ Lx (2)

Besides, the weights of the four LSTM gates are interlaced
in the matrix. For example, the first four rows of our weights
matrix W are respectively the first row of the weights matrix

for the input gate, forget gate, input modulation gate and
output gate, as shown in Fig. 5. Therefore, the related elements
in the result vector from four gates are adjacent and can be
reduced via the element-wise operations in the LSTM-tail unit.

B. Conventional design of MVM for RNNs and its problem

The conventional implementation of matrix-vector multipli-
cation (MVM) for RNNs is row-wise, and it involves the entire
vector of (xt, ht−1) and an entire row of the weights at a
time. However, this approach imposes additional stalling as
the system needs to wait for newly computed hidden vector
before starting the next time-step.

Data hazard exists because the whole new hidden vector ht
is required to start the new computation of xt+1 in the con-
ventional design of MVM for RNN/LSTM. This is mainly due
to the data dependency between the output from the current
time-step and the vector for the next time-step as shown in
Fig. 4. It indicates that the whole system pipeline needs to
be emptied to get the new computed hidden vector ht before
the new matrix-vector operations can start. As [8] mentions,
RNN programs have a critical loop-carry dependence on the
ht vector. If the full pipeline cannot return ht to the vector
register file in time to start the next time-step then the MVM
unit will stall, as shown in Fig. 4b. Therefore, pipeline latency
is important. On the other hand, deep pipelining is needed to
achieve a high operating frequency for the design. This makes
it difficult to obtain designs with the best trade-off.

C. The Proposed column-wise MVM for RNNs/LSTMs

We propose a new technique that can alleviate this problem
by calculating the matrix-vector operations in a column-wise
manner. At the beginning, only a few elements from the xt
vector are used while ht−1 is not touched, but all the elements
in the corresponding columns of the weights matrix are used
to do the operations, as shown in Fig. 6a. To illustrate the
idea, the latency of the system in the figure is shown as
four, however, the real system latency can be much larger. In
addition, only one element in the xt vector is selected to do the
calculation in this figure; however, the actual number of the



(a) Column-wise matrix-vector multiplication (b) Pipeline analysis

Fig. 6. Column-wise matrix-vector multiplication with LSTM data dependency eliminated

Fig. 7. Two example pipelines of a LSTM case with 3 timesteps utilizing
row-wise MVM and column-wise MVM

involved elements of each cycle in the xt vector depends on
the parallelism of the system. The partial result vector comes
from the small dot-product of the partial xt vector and the
corresponding weights. It is accumulated cycle by cycle to
form the final result vector. In this way, the calculation of the
new inference of (xt+1, ht) can start without waiting for the
system pipeline to be emptied to get the ht since it only needs
a partial input vector, which means that the system can be fully
pipelined without stall, as shown in Fig. 6b and Fig. 7. Each
hidden vector can finish the computation in the shadow region
of processing xt before it is used.

As [17] mentions, the column-wise MVM only needs a
partial input vector, but it produces the output vector later than
row-wise since it waits for all the columns to be processed
to get the final accumulated output vector. It seems that the
succeeding hardware units that depend on the output vector
(e.g., those that do activation functions and element-wise
operations in the RNNs) would need to wait longer. While the
row-wise MVM computes a subset of output vector completely
before moving to the next subset. So, a subset of the final
output vector is completed sooner than in a column-wise case.
However, in the column-wise MVM, the succeeding units can
get an entire output vector and not a subset. It does start
the subsequent processing later than the one using row-wise
MVM. However, increasing the number of succeeding units
can help the system to finish the processing sooner than the
row-wise case. Practically, we do not need to introduce many

Fig. 8. The Element-based Parallelism (EP) and Vector-based Parallelism
(VP) with a tile shaded in blue

of these units since they will get only one input for a while.
When the xt vector is small while the ht vector is large,

the system may still stall since the cycles of processing xt
vector can not fully cover the whole pipeline latency to get the
ht ready before it is needed. However, with the column-wise
MVM, we can still process MVM of xt and its corresponding
weights when we are waiting for the ht to be computed. While
in the row-wise MVM, no new computation can process before
ht is computed. Moreover, when the input vector is short the
LSTM models may not need a large hidden vector, otherwise
it may bring overfitting easily.

D. Two Types of Parallelism and Tiling

To further exploit the available parallelism, we introduce
Element-based Parallelism (EP) and Vector-based Parallelism
(VP) in our design, as shown in Fig. 8. The weights matrix
is tiled into small blocks with a size of (EP, V P ). The pro-
posed fine-grained tiling allows large weights to be processed
sequentially. While within each tile, there is parallelism. In
each cycle, our engine can process a tile of weights matrix
and a sub-vector of [xt, ht−1] with a size as EP .
EP and V P need to be carefully chosen so that the number

of cycles to process the xt vector, given by Lx
EP , is larger than

the system latency to make sure the computation of hidden



Fig. 9. System cycle number ratio depending on different EPs and different sizes of LSTM models

vectors can finish in the shadow of processing xt vector. This
number is small when the EP is large and it may still bring
system stall. To increase system parallelism, V P is chosen to
be as large as possible. However, the largest number of V P is
Hw, which equals 4× Lh, since there are only four gates in
LSTM. GRU is smaller than LSTM since it has fewer gates
than LSTM. In summary, the hardware utilization and system
throughput can be improved via balancing EP and V P .

E. Design Space Exploration

When the previously discussed configurations are combined,
we can characterize the hardware design space of a tiling
block by (EP, V P ) and the NPE, the number of processing
elements. The effective performance varies with the number
of PEs and tile size. To find out the optimal configuration
parameters for our in-depth study, a cycle-accurate simulator
is developed to conduct design space exploration. We propose
a heuristic, greedy algorithm to explore design space. It starts
with EP = 1 while the V P is given according to the system
constraints shown in equations (3) and (4).

V P ≤ Hw = 4× Lh (3)

V P ≤ NPE

EP
(4)

Practically, EP and V P should be as large as possible
since when they increase the parallelism increases, which
results in high throughput. However, when EP increases, the
cycle number of processing the input vector (Lx) decreases so
that the system may not have sufficient cycles to completely
hide the processing of the hidden vector as we discussed in
Section III-C. In our exploration, we set the V P as large as
possible, which is min(4 × Lh, NPE

EP ). Fig. 9 presents the
exploration results for different sizes of LSTM models, which
are from 256 to 1536 with different colors, using our hardware
design when the NPE is 4096 and 16384. The cycle number
of processing determines the throughput of the system and
the fewer, the better. As shown in Fig. 9, when EP is small,
the processing cycle is large because the V P is constrained by

Fig. 10. System overview

equation (3) so that the effective PEs are less than NPE. From
our result, the optimal configuration is a set of EP from 4 to
16. In these sweet spots, we can gain the highest parallelism
which results in the highest system throughput.

IV. HARDWARE ARCHITECTURE

The proposed hardware architecture for neural network
implementation is presented in this section.

A. System details

Fig. 10 shows the overall system while Fig. 11 and Fig. 12
show the details of a computational kernel unit and an LSTM-
tail unit respectively. There are V P kernels and each kernel
has EP Processing Elements (PEs), so the effective number of
PEs is V P ×EP . The V P and EP values are determined via
the design space exploration in Section III-E. The Adapter is
used to convert the parallelism between kernels and tails. Then,
De-Quantization (De-Quant) is applied to convert quantized
values into fixed-point values. The Sigmoid (σ) and hyperbolic
tangent (tanh) functions are implemented using lookup tables
of size 2048 [2, 9]. The LSTM-tail unit as shown in Fig. 12 and
GRU-tail unit mainly perform the element-wise operations.
Several FIFOs in these tail units are utilized to synchronize
the data and they are not shown in the figure. The output
hidden vector (ht) needs the quantization (Quant) before it
can be used in the MVM kernels, so a Quant unit is utilized
after the final output of LSTM-tail units as shown in Fig. 10.

Generally, the row-wise MVM is based on an architecture
with parallel multipliers followed by a balanced adder tree.
Accumulating the products of these multiplications is usually
achieved using a balanced adder tree structure so that a number



Fig. 11. The kernel unit

Fig. 12. The LSTM-tail unit

of related additions can be scheduled in parallel and the latency
of the system can be minimized. The column-wise MVM is
based on the architecture of parallel multipliers followed by
parallel accumulators, since the elements in the partial result
vector are not related. To support element-based parallelism, a
small balanced adder tree is placed between the multipliers and
the accumulators, as shown in Fig. 11. This adder tree can help
to balance EP and V P to improve parallelism. Furthermore,
each kernel has a component of quantization compensation to
efficiently handle zero-points in quantized MVM operations
[18].

B. FPGA DSP sharing for 8-bit multiplications

The DSP blocks in modern FPGAs, which are highly
configurable, are often underutilized when implementing 8-
bit RNN systems. [19] showed methods to extract two INT8
multipliers from Xilinx DSP48E2 Blocks which contain a
27x18 multiplier. [20] illustrated a method to pack 2 INT8
multiplications into one INT18 multiplier with extra ALMs.
Both these methods require two multiplications to share one
input operand. In our column-wise architecture, the compu-
tation order of MVM is different from the one in row-wise
MVM. With our column-wise MVM using in RNN designs,
one column of the weights matrix naturally shares the same
element of the input vector and conducts the multiplications
at the same time. Thus, these multiplications share one input
operand, which helps us to pack four INT8 multiplications into
one DSP blocks on Intel FPGAs [20] to reduce the hardware
resources.

V. QUANTIZATION AND FINE TUNING

A. Data Quantization

Numerous prior efforts [2, 8, 21, 22, 23] have shown that
RNNs/LSTMs are robust to low bit-width quantization. Instead

TABLE II
ACCURACY DISCUSSION

LRCN Orig.[12]

(Inception-v3+LSTM)
FPL’17 [27] This work

Precision Float 32-bit Fixed 12-bit Fixed 8-bit

Accuracy 70.36% 42.0% 70.10%

of using double or single precision floating-point representa-
tion, fixed-point representation can be used in FPGA-based
RNN accelerators to achieve high performance and high power
efficiency. In this work, we convert the input activations, the
hidden units and the weights to 8-bit integers. We perform all
arithmetic operations in fixed point and check that there is no
significant accuracy degradation after fine-tuning is applied. To
quantize and dequantize a real value r, we use the following
mapping [18]:

r = S(q − z) (5)

where scale S and z are our quantization parameters. The S
is an positive real number given by (rmax − rmin)/(qmax −
qmin). Note that rmax and rmin are maximum and minimum
values of a real value respectively; qmin and qmax represent
the range of an 8-bit integer (0 and 255 in our implementation).
The parameter S scales an RNN/LSTM network and z denotes
a zero point. It is important to note that S is a floating-point
number whereas the zero-point is of the same type as quan-
tized values (q) which is an 8-bit integer. However, modern
implementations often bypass this floating-point multiplication
by approximation techniques shown to have a negligible effect
on the accuracy of the net.

To maintain accuracy and avoid data overflow, we propose
partial quantization [24, 25] to extend the bit-width of inter-
mediate data. In this work, an 8-bit fixed-point data format
is proposed to implement the multipliers in the LSTM gates.
All the 16-bit products of the multiplications are passed to the
adder tree to keep accuracy. The accumulators are 32-bit. The
multipliers and adders for the element-wise operations in the
LSTM-tail are all 16-bit fixed-point.

B. Fine Tuning
Quantization-aware fine-tuning [18] is applied to our quan-

tized RNN/LSTM to recover accuracy. The gradient, weight,
activation tensors are stored in floating-point. To emulate
quantization error, all the operations are performed in a fixed-
point manner. Therefore, the conversion between floating-
point data and fixed-point data is applied before and after
each operation to match the data format. With the help of
quantization-aware fine-tuning, we evaluate the performance
and power efficiency of the proposed LSTM accelerator using
real-time video activity recognition for the UCF101 dataset
[26] with little accuracy loss. This is quantified in Table II.

VI. EVALUATION AND ANALYSIS

This section presents hardware implementation results
across two generations of Intel FPGAs that demonstrate the
scalability of the proposed optimizations for RNNs.



TABLE III
RESOURCE UTILIZATION

ALMs M20K DSP Freq.
Arria 10
(1150) 186534 (44%) 1178 (43%) 1176 (77%) 259Mhz

Stratix 10
(2800) 487232 (52%) 10061 (86%) 4368 (76%) 260Mhz

TABLE IV
PERFORMANCE COMPARISON OF BW, FCCM19-NPU AND OUR

DESIGN

benchmark BW[8]
FCCM19
-NPU[9]

This Work

GRU
h=512
TS=1

latency (ms) 0.013 0.00145 0.00058
HW Utilization 0.5% 21.7% 64.1%

Perf.(TOPS) 0.25 2.17 5.46

GRU
h=1024

TS=1500

latency (ms) 3.792 3.139 2.59
HW Utilization 10.4% 60.2% 85.5%

Perf.(TOPS) 4.98 6.01 7.28

GRU
h=1536
TS=375

latency (ms) 0.951 1.454 1.36
HW Utilization 23.3% 73.2% 91.4%

Perf.(TOPS) 11.17 7.30 7.79

LSTM
h=256

TS=150

latency (ms) 0.425 0.110 0.033
HW Utilization 0.8% 14.3% 56.1%

Perf.(TOPS) 0.37 1.43 4.79

LSTM
h=512
TS=25

latency (ms) 0.077 0.027 0.014
HW Utilization 2.8% 38.8% 85.9%

Perf.(TOPS) 1.37 3.89 7.33

LSTM
h=1024
TS=25

latency (ms) 0.074 0.064 0.054
HW Utilization 2.8% 65.7% 90.7%

Perf.(TOPS) 5.68 6.56 7.73

LSTM
h=1536
TS=50

latency (ms) 0.145 0.246 0.236
HW Utilization 27.1% 76.9% 94.1%

Perf.(TOPS) 13.01 7.67 8.02

A. Experimental Setup

For our study, we choose our benchmark workloads from
the DeepBench suite [8, 9] for a fair and direct comparison.
It is a set of micro-benchmarks containing representative
layers from popular DNN models such as DeepSpeech [28].
Two generations of Intel FPGAs, an Arria 10 1150 (A10)
and Stratix 10 2800 (S10) are evaluated and compared with
previous work. Both run persistent LSTM/GRU models of
inference designed using Verilog RTL. Quartus Prime 18.1
is used to target both A10 and S10.

B. Resource Utilization

Table III shows the resource utilization of our designs with
two configurations on FPGAs. We implement the configuration
of (EP, V P ) as (16, 1024) using a Stratix 10 FPGA which
includes 16384 effective 8-bit multipliers in the MVM kernels.
A small version with the configuration of (EP, V P ) as (4,
1024) is implemented using an Arria 10 FPGA which has
4096 8-bit multipliers in the MVM kernels. Although we
achieve a similar frequency to which reported in the original
BW paper [8] and Intel-NPU [9], we believe that further low-
level optimizations can be applied to our implementation to

Fig. 13. Hardware utilization of LSTMs

Fig. 14. Hardware utilization of GRUs

achieve even higher operating frequencies. We leave that for
future work since it has a limited impact on the conclusions
we draw from our study in this paper.

C. Case Study

RNNs have many variants that target different applications.
In our work, we choose the LRCN [12] as a case study
which is applied for video activity recognition. Generally,
the LRCN is implemented using a CNN to extract a fixed-
length vector of features which are then passed to a recurrent
sequence learning component, such as an LSTM. We choose
the features of each video frame from the average pool layer
of an Inception-v3 model which has been pre-trained on the
ImageNet dataset. The LSTM part of the LRCN RGB model
which has 256 hidden units is implemented. Quantization-
aware fine-tuning [18] is applied to our quantized LSTM
to recover accuracy as discussed in Section V-B with little
accuracy loss as shown in Table II.

D. Performance and Efficiency Comparison

To illustrate the benefits of our proposed approach, some
existing FPGA-based LSTM/GRU accelerator designs are
compared with ours in Table IV and Table V. The DeepBench
published results [8] on a modern NVIDIA Titan Xp GPU



TABLE V
COMPARISON WITH PREVIOUS IMPLEMENTATIONS OF LSTM

2016[29] 2017[1] 2017[23] ESE[2] FP-DNN[14] FINN-L[15] BW[8] FCCM19-NPU[9] This work

FPGA
Virtex7

VX485T
Virtex7

VX485T
Zynq

Z7045
Kintex
KU060

StratixV
GSMD5

Zynq
ZU7EV

Stratix10
GX2800

Stratix10
GX2800

Stratix10
GX2800

Model Storage on-chip off-chip on-chip off-chip off-chip on-chip on-chip on-chip on-chip
Precision (bits) 18 fixed Float32 5 fixed 12 fixed 16 fixed 1-8 fixed BFP8 8 fixed 8 fixed

DSP Used - 1176 - 1504 1036 - 5245 (91%) 4880 (85%) 4368 (76%)
Frequency (MHz) 141 150 142 200 150 266 250 260 260

Performance
(GOPS)

4.56 7.26 693 282 316 1833
370a

22620
1431a

7980
4790a

8015
Power Efficiency

(GOPS/W)
- 0.37 55.88 6.87 12.63 - 180 118 129

LSTM Hardware
Utilization

- - - - - -
0.8%a

47.1%
14.3%a

76.9%
56.1%a

94.1%

a When targeting a small LSTM model (h=256).

is also included. For a fair comparison, we only show the
previous work with a detailed implementation of the LSTM
system. We show the latency, hardware (HW) utilization,
throughput, FPGA chips, model storage, precision, run-time
frequency, average throughput and power efficiency. Hardware
utilization is the percentage of run time during which the
hardware is not idle. With a similar number of DSP resources
to [9], our design achieves 94.1% hardware utilization which is
the highest with respect to state-of-the-art implementations on
FPGAs, as shown in Fig. 13 and Fig. 14. Overall, our design
provides over 1.05 to 3.35 times higher performance and 1.22
to 3.92 times higher hardware utilization than the state-of-the-
art design [9] respectively, as shown in Table IV. The results
show flexible customizability of our architecture for different
scenarios.

VII. RELATED WORK

There has been much previous work on FPGA based
RNN/LSTM implementations as shown in Table V. Rybalkin
et al. [23] are the first to propose and design a 5-bit fixed-
point BiLSTM hardware architecture for OCR. In their later
work [15], FINN-L employs 1-8 bits as the quantized im-
plementation which surpasses a single-precision floating-point
accuracy for a given dataset. Guan et al. [1] propose a smart
memory organization with on-chip double buffers to overlap
computations with data transfers. An automated framework
is proposed [14] for mapping CNNs and RNNs on FPGAs.
[30] proposes the cross-kernel optimization within RNN cells
targeting Plasticine [31], a coarse-grained reconfigurable ar-
chitecture (CGRA). [8] proposes a Brainwave variant which
is a single-threaded SIMD architecture for persistent RNNs.
[9] introduces a Brainwave-like neural processing unit (NPU)
for RNNs. They also propose TensorRAM for large persistent
data-intensive RNN sequence models. All of these RNN
designs are based on row-wise MVM and suffer from data
dependency. Deploying the proposed latency-hiding hardware
architecture involving column-wise MVM and the proposed
flexible checkerboard tiling strategy, our design can achieve
high throughput and hardware utilization. For the commonly

used INT8 precision, we achieve a throughput of 8015 GOPS
which is the highest with respect to state-of-the-art INT8
FPGA-based RNN designs. The only prior work that provides
a higher throughput is [8] using 8-bit block floating-point.
However when targeting small LSTM model, our throughput
is 12.95 times higher than [8] and 3.35 times higher than
[9]. Furthermore, we achieve the highest hardware utilization
among all these designs across various LSTM models.

In addition, in [32, 15, 14], a batching technique is intro-
duced to improve the performance and utilization of LSTM
inference. Since our design executes a single input at a time,
increasing batch size does not affect the utilization.

[9] also provides an INT4 design which achieves higher
performance than an INT8 design using the same FPGA
device. Some designs use binarised datapath [15, 33, 34].
Utilizing low precision is orthogonal to our proposed approach
which transforms computation to eliminate data dependency.
The technique of low precision is complementary to our
approach to achieve even higher performance and efficiency.
Since useful inference results may not be possible when bit-
width is too small, we target INT8 using linear quantization
[18] which is used in many DNN-based applications.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel latency-hiding hardware archi-
tecture based on column-wise MVM and a flexible checker-
board tiling strategy for RNNs/LSTMs to improve hardware
utilization and boost inference throughput. We have imple-
mented the proposed accelerator on Arria 10 and Stratix 10
FPGAs with superior performance and efficiency which show
the effectiveness of our approach. Further research includes
combining our method with in-memory computing and the
automation of the proposed approach to enable rapid develop-
ment of efficient RNN/LSTM designs.
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