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Abstract—This work improves on the latest research about
sorting acceleration on FPGAs. An efficient design is introduced
for sorting data that fit on-chip, with the additional functionality
to merge sorted sublists recursively, for an input of arbitrary
length. While many-leaf mergers are conventionally single-rate,
a novel technique in our approach is to use a parallel merge
tree only for the latest stages of the merge tree, to enable
bandwidth-adapted multi-rate many-leaf merge. Our open-source
RTL generator produces sorting peripherals with customisable
parallelism and data format. We evaluate our FPGA design as an
128-bit wide peripheral on an MPSoC platform, with a speedup
of up to 49 times over the A53 core for sorting, and up to 27
times speedup for our specialized database analytics application.

Index Terms—FPGA, sorting, generator, database acceleration,
mergesort, analytics, high-throughput, stream processing, distinct
count, group by

I. INTRODUCTION

FPGAs are increasingly being introduced as means to accel-
erate big data and database analytics [1], [2]. A considerable
fraction of such operations relies on sorting [3], [4], or their
performance can be improved when operating on sorted data
after making the appropriate algorithmic changes [5]. For this
reason, the research for efficient FPGA-based sorters has been
fairly active recently, with one of the main considerations
being the disproportionate advantage of the throughput with
which the CPU accesses the main memory.

A challenge for the hardware designer is to maximise perfor-
mance while adhering to a number of constraints related to the
storage medium and data movement. These include the storage
capacity, the data width and number of ports, the latency
for different access patterns [6], address segmentation and
NUMA-related restrictions. In research, using a representative
storage medium is not always the case, such as with the
majority of sorters mentioned in the related work, that are
BRAM-based even though are destined for large-scale sorting.

When performing mergesort using FPGAs, there cur-
rently seems to be a trade-off for supporting either high-
throughput/few-leaves or single-rate/many-leaves. For high-
throughput mergers, a limitation of the current solutions is
their scalability to a high number of inputs, and require a
high aggregate bandwidth. The most recent variation has only
reported merging for up to 64 inputs [7]. On the other hand,
many-leaf mergers can merge a couple of thousand input lists
simultaneously, which can have significant benefit due to the
reduced number of data passes. A data pass involves reading

every data from DRAM and writing them back once and is
considered a performance bottleneck. However, an evaluation
[6] that demonstrated saturation of the PCI Express bandwidth
used 800-bit records, which may not always be the norm.

Our sorting solution combines features from the state-of-
the-art hardware designs for mergesort, while taking into
account different architectural constraints. Our sorter generator
produces a hardware merge sorter in Verilog, with any desired
datapath length, data width and payload width. The same
logic is also used to perform efficiently the first sorting
pass, that is to produce a series of sorted sublists, before
merging them together. This functionality, while crucial to
applicability, performance and resources utilisation, is absent
from most large-scale sorters, which usually assume already-
sorted sublists or rely on existing hardware sorter modules.

Finally, we also evaluate this solution for our in-house
specialised use case, in order to demonstrate its applicability
to database analytics. The task is to calculate the number
of distinct values per key (group), from an input consisting
of key-value pairs. A fully-pipelined high-throughput stream
processor is attached to the output of the sorter as an add-on,
in order to produce the results on-the-fly. By achieving task-
pipelining, this additional operation becomes transparent, as no
immediate data need to be stored temporarily for processing
afterwards.

The list of our key contributions is as follows:
• The first merge sorter design applicable to both efficiently

sorting small lists and recursively merging them together.
• The first open-source many-leaf merge sorter. A Verilog

generator script produces merge sorters with customisable
bandwidth, data and payload width.

• Improvements on current techniques, such as by closing
the gap between high-throughput and many-leaf sorters.

• A full system evaluation for sorting and for a specialised
analytics accelerator (distinct counter with groups).

II. RELATED WORK

In this section we present a concise survey on the latest
research related to merge sort-based FPGA sort acceleration.

A. High-throughput sorters

High-throughput merge sorters can merge a number of
sorted lists simultaneously, while providing an output rate
of more than 1 element per cycle. This can be achieved by



building a merge tree (PMT [8]), mainly consisting of high-
throughput mergers of 2 lists and FIFO queues.

Fig. 1. Parallel merge tree (PMT [8]), for 8 input lists

Figure 1 shows how these building blocks can be arranged
to merge 8 sorted inputs of throughput 1, with an output rate 8.
The ‘merge rate’ denotes the throughput capacity of the merger
for each level. For instance, a merger of rate 4:2 merges two
inputs of width 2 (times the element width) and outputs two
elements per cycle. The difference in widths from level to level
is managed by rate converters and the appropriate stall signals.
A simpler unoptimised tree [3], [9] can also be implemented
with mergers of the maximum throughput, which also squares
the aggregate bandwidth requirements of the inputs [8].

B. High-throughput sorter building blocks (2-way mergers)

A merger for 2 already-sorted sublists of fixed length can
be modified to merge 2 lists of arbitrary length in streaming
fashion. Then, it can be used as building block for a parallel
merge tree, to merge many lists simultaneously.

At some point, the most attention was drawn on remov-
ing the expensive feedback length that existed in traditional
merger designs [3], [8], that prevented scalability in terms of
operating frequency for an increased degree of parallelism (w)
(HMS [10], MMS [11], VMS [12]). Lately, FLiMS [13] and
WMS/EHMS [7] offered further improvements by focusing
on efficiency, for minimising the required hardware resources,
usually with a subsequent improvement in operating frequency.

Most of them are based on two popular sorting net-
works: Batcher’s odd-even mergesort and the bitonic sorter
[14]. Those two sorting networks are pipelines of (log2(n) ·
(log2(n) + 1))/2 stages, and each stage consists of up to
n/2 compare-and-swap (CAS) units, where n is input size
in powers of 2. The functionality of the CAS units is to sort
two values. Collectively, a sorting network in its entirety can
sort any list of n inputs. These two sorting networks have the
same number of stages and can be built hierarchically using
2 sorters of half the input and an appropriately sized merger
to merge two equally-sized sorted sublists. The merger part
consumes the last log2(n) stages in both sorting networks.

Figure 2 summarises the architecture of FLiMS [13]. The
CAS network in the bottom half of the figure shows how the
merger part of the respective sorting network was adapted for
streaming merge (for throughput w = 4). The CAS units are
coloured in green. FLiMS uses the merger of a bitonic sorter
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Fig. 2. FLiMS [13] architecture (top) and CAS network (bottom)

of 2w elements and prunes all CAS units (greyed out in the
figure) related to the unused sorted bottom w in the output
(out4 to out7 in figure 2). The first stage (half-cleaner) also
acts as a selector logic, with its CAS units replaced by MIN
units (see algorithm A, ignoring the highlighted code).
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Another state-of-the-art approach is WMS [7], shown in
figure 3. It utilises the merger of odd-even mergesort instead,
and for 4w inputs (hence the higher latency), but with addi-
tional pruning, as the first input list has double the length of
the second one (and some other optimisations). Still, WMS
fundamentally requires more resources and pipeline stages,
also adding the complexity of a selector logic. One advantage
of WMS is the centralised selector logic, which dequeues
whole rows of length w from the input FIFOs. This could
be useful in special occasions, such as when dequeuing very
narrow data from block RAM.

In our solution we adopt FLiMS for our PMT, due to its
decentralised nature and the moderately-wide input widths in
our uses, which was more promising for our implementation.



C. Many-leaf sorters

Many-leaf (or large-utility) sorters try to merge as many
input queues as possible (currently up to a few thousands [6],
[15]), with minimal hardware resources. The comparators are
proportionate to the number of merge stages in the merge tree
(O(log2(k)), where k is the number of input queues).

Even though their output rate is a single element per
cycle, they can still have a considerable advantage over the
current high-throughput sorters. This is especially true for
large-scale sorting, because it requires less merge phases, and
subsequently fewer data passes. This was first demonstrated
for data stored in the on-chip block memory (BRAM) [15]
and afterwards with data stored in FPGA’s DRAM in a bare-
metal configuration [6]. The latter was a more realistic use
case, as DRAM is more appropriate for large-scale data.

D. Small-scale sorters

This category of sorters refers to efficient sorters of on-chip
data, such as the aforementioned sorting networks [14], [16].
They can be used to replace the first stages of mergesort [6]
as well as in other FPGA sorting approaches [17].
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Fig. 4. Linear sorter example

A simple small-scale sorter is the linear sorter [18], [19]
and can be seen as a parallel version of insertion sort [20]. As
shown in the example of figure 4, a new value is inserted in
every cycle. This value is broadcasted across all sorting cells,
which compare it against their current value. The result of
each comparison is known to the immediately right cell, after
a sub-cycle delay. When a cell currently holds a smaller value,
it adopts the value on its left. When a cell is the leftmost to
have a value smaller than the new value, it adopts the new
value instead. This procedure produces a sorted list in n + 1
cycles, where n is the input size. There are many variations,
such as fast systolic sorters at the expense of latency [21].

III. SOLUTION

Our proposed design works in 3 phases internally, with
regards to the data movement. As seen in figure 5, initially,
the unsorted data are streamed from DRAM directly to the
sorter, and the immediate results are stored to BRAM. These
data in BRAM are sorted in chunks of k elements.

In the second phase, the sorter works as a merge sorter of k
sorted lists of length k from BRAM. In other words, the sorter
is able to provide a sorted list of size k×k with a single pass.

The third phase is the merge operation from data in DRAM.
The same phase applies to input lists of arbitrary length. Thus,
the sorter can sort an input of size kP+1, where P is the total
number of passes. During this phase, the merger still reads
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Fig. 5. Data movement in high-level

from BRAM, which works as a cache to DRAM, to hide the
latency from accessing with a random access pattern. This
memory is already divided in k lists of length k, which now
work as buffers and filled upon request, with a throughput of
w records per cycle. The building blocks of our solution are
described in detail in the following subsections.

A. Merge-capable linear sorters

The linear sorter is modified such that it can also be used for
merging a number of sorted lists. The idea is that, a many-leaf
merger essentially outputs the minimum head of all queues to
be merged, representing the minimum of all unprocessed input.
And this can be emulated by a linear sorter. By appending the
source list index to the value as a payload, we can keep track
of the source of the extracted head. This is useful for fetching
the next head to be processed on the immediately next cycle.
In this way, we can keep exactly one head for each of the input
queues, and appropriately representing the merge operation.

Figure 6 illustrates an example for merging 8 lists (named A
through H). The minimum head (1) is extracted as an output,
as it represents the minimum of the heads of already sorted
lists, which subsequently also represents the minimum of all
input. The next head is indicated by the source list (A), and
the next head (6 from list A) is dequeued to be processed on
the next cycle.
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Fig. 6. Merge-capable linear sorter example

In order to make it practical for general use, some additional
functionality is added, such as for supporting list endings:

a) Enqueue a ‘bubble’: This is used to adjust merge
capacity, as well as to support the ending of an input queue.

b) Flush current values: Only useful in sorting mode, this is
triggered automatically, as soon as the sorter fills up, in order
to support fully-streaming of multiple chunks for sorting. The
cells with flushed values behave as shift registers to eventually
propagate the sorted chunk, while ignoring new requests.

B. Modified parallel merge tree

The modified linear sorters are appropriate for both sorting
and merging, but they are limited to single rate input/output. In
this subsection, we propose to use an upgraded parallel merge
tree (PMT [8]), to merge the results of multiple merge-capable
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Fig. 7. The merge-capable high-throughput sorter (for a throughput of 4). Wire widths are multiples of the value width.

linear sorters. In this way, we can efficiently support a custom
amount of throughput, as well as many-leaf merging.

The parallel merge tree here adopts FLiMS [13] as a
building block, an efficient high-throughput merger for 2 lists.

Figure 7 shows how the parallel merge tree increases the
throughput of our merge sorter. First, there are w linear sorters,
where w is the degree of parallelism. Each linear sorter has
a length of k/w, where k is the total merge capacity or the
sorted chunk size. This structure is able to both sort an input
of k elements, and merge k sorted lists of arbitrary length.

In sort mode, the value of a two bit counter is appended
to the most significant bits of all output of the linear sorters.
This 2-bit counter is incremented when a new sorted chunk is
flushed to the PMT. It is used by FLiMS to be able to give the
correct sorting priority to independently sorted chunks. Note
that one bit is not enough, as during the half-cleaners stage,
between one value with a chunk order of 0 and one with 1, it
is not possible to differentiate easily which came first.

C. On-chip buffers

This subsection describes each of the buffers required for
efficiently merging or sorting using our approach. Note that
there are many such design choices.

a) PMT FIFOs: In order for the first phase to be able to
support bursts of length k, the FIFOs after the linear sorters
have a depth of k/w elements. This is required because the
linear sorters are flushed automatically when full. A ready
signal represents the space availability for a forthcoming burst.
With respect to the FIFOs of all levels in the merge tree,
each FLiMS module of a previous level (as well as the linear
sorters) must stall when there is no space left for its output.

b) Burst buffer: The output to DRAM is written in bursts. A
burst buffer is near the output and is enabled from the second
phase and beyond. When no space is left, the FLiMS of the
last level in the PMT is stalled.

c) List buffers (BRAM): The block memory is divided in
w × w banks. The first dimension is for the w linear sorters,
which merge an independent range of k/w lists. The second
dimension is for being able to fill a buffer with a throughput
w. In the first phase (sort), the output of the PMT is written
across all w partitions, with round-robin priority per sorted
chunk, to distribute the merging workload evenly across the
w linear sorters. In the second phase, each linear sorter reads

from its own partition with a throughput of 1, and the merged
output is redirected to DRAM.

d) Fill request buffers: In the third phase, the linear sorter
functionality remains similar, and each list buffer of size k
represents data in DRAM. When a list buffer is halfway empty,
a request is stored in a fill request queue. When a list buffer is
empty or a fill request buffer is full, a stall signal is triggered
for the respective merge-capable linear sorter.

e) Next head buffers: For an efficient merge operation, there
needs to be a buffer between the linear sorters and BRAM.
This is because the BRAM introduces a latency of 1 cycle and
this could potentially halve the overall throughput. The next
head buffers prefetch the next head for each of the k lists, as
soon as a head is read, so that the BRAM latency is hidden.

IV. PROPERTIES AND OPTIMISATION

A. As a small-scale sorter

Our approach provides a good combination of logic, storage
and time requirements. Table I, compares the complexities of
a series of small-scale sorters. The proposed sorter combines
the minimum for storage and time, that are in O(n) and
O(n/w), where n is the input size and w the throughput.
The only exception in time is that of sorting networks, which
are only practical for small n. With respect to the logic, there
are two competing streaming sorting networks [22]. The first,
although with lower complexity, it requires a rather high value
for n to become more logic efficient, that would have more
implications on its storage which is in O(n log2 n). The second
one has the least logic, but as its time is not linear, its overall
throughput as a stream processor is reduced considerably.

A sorter is fully-streaming when processes consecutive
chunks without the need to wait in-between [22]. Our proposal
is fully-streaming for chunks of size k =

√
n (phase 1). During

phase 2, the logic is being reused for merging, unless we
double the logic. When processing multiple chunks separately,
the overall throughput is getting halved. For data that fit on-
chip (k2), in contrast to [23], there is virtually zero latency
between reading all the unsorted data and writing the result.

B. As a large-scale sorter

In terms of logic complexity, it is inferior to many-leaf
mergers. The number of comparator cells in many-leaf mergers
[6], [15] is log2 k, whereas our proposal requires a comparator



TABLE I
COMPARISON WITH VARIOUS SMALL-SCALE SORTERS, INSPIRED BY [22], [23]

Approach Throughput Logic Storage Time Storage type Fully-Streaming Merging

Linear sorter [18] 1 O(n) O(n) O(n) FF Yes No
Bitonic and odd-even mergesort [14] n O(n log2 n) O(n log2 n) O(log2 n) FF Yes No

Interleaved linear sorter [24] 1 ≤ w ≤ n O(wn) O(wn) O(n/w) FF Yes No
Streaming sorting networks [22] 2 ≤ w ≤ n O(w log2 n) O(n log2 n) O(n/w) BRAM Yes No

Folded streaming sorting networks [22] 2 ≤ w ≤ n O(w) O(n) O(n log2 n/w) BRAM No No
Partially ordered set linear sorter [23] 1 ≤ w ≤ n/2 O(w2 + wn) O(n) O(n/w) BRAM No No

Proposed design 1 ≤ w ≤
√
n O(w2 logw +

√
n) O(n) O(n/w) BRAM/DRAM No Yes

per list. However, the related work (II-A to II-C) require and
assume pre-sorted sequences, making them more appropriate
for merging only. In many-leaf sorting a small-scale sorter is
required to be present anyway, and for small-scale sorting, our
proposal offers improvements over the related work.

One recent large-scale FPGA sorter uses samplesort as its
main algorithm [17]. Although not merge-based, the partitions
need to be sorted individually, using an open-source small-
scale sorter [25]. In principle, samplesort’s advantage is the
elimination of a merge phase, although many-leaf merge can
hide this phase if it happens on-the-fly. Being mostly focused
on a specialised full-system implementation, the evaluation for
small lists, narrow data and different distributions is left for
future work. It is also not appropriate for data with many
duplicates. Nevertheless, samplesort could still benefit from
our work as an efficient small-scale sorter.

C. Rate mismatch

Parallel merge trees can suffer from rate mismatch, that hap-
pens when the input data distribution lead to underutilisation of
certain mergers, resulting in reduced throughput [6], [8], [15].
A notable example is when the data are already (or nearly)
sorted [8]. In our proposal this can be avoided in small-scale
sorting. In the sort (1st) phase, the data arrive in bundles of
w, and each value goes to a different linear sorter. This will
lead to sets of w sorted chunks of similar distribution and
therefore the utilisation of the merge tree will be uniform. In
the merge (2nd) phase, each of the w partitions of k/w sorted
chunks will have similar distribution overall, as the chunks
are stored across the partitions with a round-robin priority.
However, as each sorted chunk will end up in its entirety to
the output (ignoring cases of duplicates), the PMT will need to
have buffers of adequate length. During the 3rd phase, as the
sorted regions can exceed the on-chip buffer sizes, the sorter’s
throughput will eventually slow down to 1 for sorted input.

D. Skewed datasets optimisation

Another contributor to rate mismatch is when there are a lot
of duplicates in the input (skewed datasets). PMT [8] proposes
a simple solution which causes the merger blocks to ‘oscillate’
when there are duplicates. This ensures that the input queues
are consumed with a similar rate, that collectively balances
the utilisation of the merge tree. However, PMT’s mergers
inherit the long feedback problem, which was addressed in

subsequent works [7], [11]–[13]. We propose the equivalent
optimisation for FLiMS [13] (figure 2), while keeping the
decentralised nature of the selector stage. The code for the new
selector units is illustrated in algorithm A. An 1-bit register
called sideLast represents the queue out of which the head
was dequeued during the previous cycle, and is appended to
the least significant bit in the comparison, to enforce a sort
priority on equal values.
1 int i; . i is the entity tag
2 reg cAi, cBi, ini; . registers of data width
3 reg sideLast; . 1-bit register
4 while forever do
5 receive (positive clock edge);
6 if {cAi, !sideLast}<{cBi, sideLast} then
7 ini ← cAi;
8 cAi ← dequeue(Ai);
9 sideLast ← 0;

10 else
11 ini ← cBi;
12 cBi ← dequeue(Bw−1−i);
13 sideLast ← 1;
14 end
15 end
16 Algorithm: A - Modified MIN i unit pseudocode

In order to prove that FLiMS continues to sort correctly,
the selector stage must be shown to still produce a bitonic
sequence [13] (up to one local maximum and up to one
local minimum). On each cycle, each of the w MINi units
compares aj to bw−1−j , where i is a rotation of j by a common
offset o ∈ [0, 1, ..., w−1] and a and b represent the input lists
in ascending order. This emulates a half-cleaner, that selects
(and dequeues) a total of the smallest w elements from a total
of 2w elements. The resulting sequence has up to one local
maximum (if we consider the rotation). Our modification only
takes effect when ∃h ∈ [0, 1, ..., w − 1] : ah = bw−1−h. We
notice that this happens only consecutively and for the maxi-
mum value, as (a0, a1, ..., aw−1) is monotonically increasing
and (bw−1, bw−2, ..., b0) is monotonically decreasing. As a
consequence, the position of the maximum (split) in the bitonic
sequence can be at the start, end or between this region of
duplicates. The sideLast registers correspond to the last half-
cleaner decisions, which is of the form {1}m{0}n,m+n = w,
after considering the offset. The region of duplicates will be
a sublist of this expression, with its 1s and 0s replaced by
consecutive duplicates from a and b respectively. As a result,
there will be up to one local maximum (split) in this region,
and therefore up to one local maximum in the entire half-



cleaner result, which consists a bitonic sequence. Dequeuing
consecutive entries ensures the integrity of the input data.

E. Throughput optimisation

One complication from using a form of linear sorters in
our solution could be a reduction to the operating frequency.
This is because linear sorters require broadcasting to multiple
comparator cells, that becomes expensive for many cells
[20]. Our proposal solves this problem partially, due to the
arrangements to achieve high-throughput. It essentially splits a
sorter of length k to w linear sorters of length k/w. Therefore,
each broadcast is more local, as there are w independent linear
sorters that are w times shorter, for the same chunk size k.

An optimisation is proposed to further increase the operating
frequency of the generated sorters and saturate the bandwidth
of the port. Since our approach allows a custom degree of
parallelism (w), a sorter with a width multiple of the datapath
width can be generated instead. For example, by doubling the
value of w and appropriately interleaving the input and output,
the sorter logic can operate at half the operating frequency
of the base clock. This emulates a sorter of half the value
of w and double the frequency (as in our evaluation). This
modification is relatively inexpensive, as only w changes in
the logic complexity (see table I) and w is relatively a small
number. This optimisation can also help in situations where
the value width is high and the comparator logic latency
contributes to the critical path of the design.

F. Input buffer rate

A design choice for balancing the resources utilisation for
a specific device is to use additional BRAM for the 3rd phase
(merging from DRAM). Instead of only reusing the BRAM of
the 2nd phase (merging from BRAM, totalling k× k values),
our generator script accepts one more parameter, the buffer
rate (r). It represents the ratio of the BRAM to be used as
input buffers in the 3rd phase over the BRAM required for the
2nd phase. By increasing r, the input buffers are lengthened
accordingly, improving the performance when merging from
DRAM. As the input buffers can be filled with longer DMA
transfers, a higher throughput can be achieved [26] and the
memory access pattern from DRAM becomes more linear.

V. EVALUATION

In this section, we evaluate example applications of the
sorter design. As our proposal has a plethora of applications,
all source code is provided for further exploration1.

The evaluation platform was Avnet’s Ultra96 board, which
combines a Xilinx Zynq UltraScale+ ZU3EG device with 2GB
RAM shared between the programmable logic and the four
A53 (mid-range) ARM cores, running Linux at a frequency
of 1.2 GHz. The generated peripherals have an 128-bit-wide
datapath and most data transfers are done by a DMA engine.

The software part of the sorter behaves as a callable C
function. The baseline for comparing to CPU sorting is GCC
C++ standard library’s std::sort() implementation (single-core),
that is considered a widely-available well-performing baseline
for evaluating high performance sorting in software [27].

1Source code available: http://philippos.info/sorter

A. Sorter generator script

The generator script produces a Verilog sorter for user-
specified values for w, buffer rate r and a flag to enable the
skewness optimisation. The remaining parameters can also be
modified after generation: total merge capacity or inner chunk
size k, value width d, comparison width (as means to facilitate
payloads) and various queue lengths. The combination of w
and the data width specifies the throughput of the sorter (e.g.
w = 4 and 32-bit values for reading and writing at 128 bits
per cycle). All integer parameters are in powers of 2, except
the comparison width.

B. Use case 1: Sorting

The first application for evaluation is sorting a list of 32-
bit integers. The first selected configuration was a sorter with
k = 128, w = 4, 128-bit datapath and an operating frequency
of 250MHz. This frequency can saturate the achievable band-
width of that port at 128 bits per cycle [28] and was achieved
with the throughput optimisation (internally with w = 8).
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Fig. 8. Sorting performance

As shown in figure 8, the sorter achieves a speedup of up to
around 36 times for data that fit in a single pass (k2 = 16384)
and above around 15 times for all other input sizes. A big
contributor to performance is the number of passes, especially
for the 2nd phase and above, as the memory access pattern
becomes less linear. Different combinations of chunk sizes for
the same number of passes seems to have a negligible variation
in performance (showing the maximum in the figure).

Also evaluated is a sorter configuration optimised for single
pass sorting. With k set to 256, it is able to sort 65536 32-bit
values in a single pass and with a speedup of 49x over the A53
core and 19x over an Intel i7-8809G core running at 4.2 GHz
(in turbo boost). Note that the i7 is on a different system and
with a more advanced memory. Table II illustrates the results
of the evaluation, as well as the hardware resource utilisation.

C. Use case 2: Distinct count with groups

The second application is for accelerating database ana-
lytics. Our emerging task is to find the distinct count of
keys per group. The input is a list of < group id, key >
pairs, with each field being 32-bit wide, totalling 64-bits per

http://philippos.info/sorter


pair. The resulting data are 64-bit-wide pairs as well, with
the last 32-bit value representing the distinct count of the
respective group. For instance, the distinct count of the list
(A1, A2, B2, B2, C3, G4, G5, G7) is (A2, B1, C1, G3).

The proposed hardware accelerator, illustrated in figure 9,
adapts some building blocks from [26] to perform this task as
a non-blocking high-throughput stream processor. The output
of the sorter bypasses the distinct counter, until the last pass
takes place, when the sorted output gets its final form to be
processed on-the-fly.

g0 g1 ... gw-1

<group_id, key>

f
0

f
1 ... f

w-1

<group_id>

<group_id, index>

<group_id, distinct_count>

1 cycle
delay

1. Invalidating duplicate 
keys per group_id

Round-Robin Module

f'
0

f'
1 ... f'

w-1

2. Invalidating duplicate 
group-ids, adding index

Round-Robin Module

3. Subtracting the indices 
to find the distinct_count

64-bit merge sorter (last pass)

1b. Removing the sparsity

2b. Removing the sparsity

Fig. 9. Distinct counter engine

The functionality of this pipeline goes as follows. First,
the fi modules invalidate duplicate occurrences of the same
< group id, key > combination. This is achieved by compar-
ing each entry with its immediate predecessor, as the stream
is already sorted. Similarly, the f ′i modules only allow to
pass unique group ids, but with an index appended, repre-
senting their order just before removing duplicate group ids.
Finally, the gi modules subtract the indices of consecutive
< group id, index > entries to provide the final distinct
count per group id. Any occurring sparsity is removed using
round-robin modules. Also known as parallel round-robin
arbiters [29] (not to be confused with [30]), they rearrange
arriving entries to achieve a round-robin arbitration effect to
the output, but with full throughput.

In order to estimate the performance under different inputs,
we average multiple runs of two opposite cases. One with
100% unique groups, that consumes the most time, as the
number of lines in output is the same as sorting. The second
type of input is with near 0% unique groups (all duplicates),
which outputs a couple of lines in the last pass, maximising
the FPGA workload ratio to data movement. The performance
variation between the two types is relatively small, as sorting
still takes the majority of time. This is especially true for inputs
that require more than one pass, because the data movement
savings actually happen only during the last pass, and also the
CPU performance improves for many duplicate values as well.
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Fig. 10. Distinct count performance

Figure 10 and table II summarise the results of this explo-
ration. The average speedup of the selected configuration over
std::sort() plus distinct count on the A53 core reaches up to
27 times, for 16384 tuples, and over 9 times for the other
input lengths. Most variation between the input types happens
at 16384 (single pass), where the 27 times speedup is actually
the average of around 24 and 30 times for the inputs with
100% unique groups and near 0% unique groups respectively.

TABLE II
RESULTS SUMMARY (FOR BOTH USE CASES)

Design configurationa Vivado 2019.2 report FPGA Speedup overc

fmax′b A53 i7
k w d r LUT FF BRAM (MHz) Min Max Min Max

1: sort
128 4(×2) 32-bit 8× 26K 39K 128 250 15 36 6 17
256 4(×2) 32-bit 1× 44K 61K 64 214 6 49 2 19

2: sort & distinct
128 2(×2) 64-bit 4× 35K 50K 120 250 9 27 3 12

aAll designs feature the skewness optimisation and no payload.
bNearest lower frequency to fmax evenly dividing 1500MHz.
cMax. is at input size k × k (1 pass). Min. only refers to > 1 passes.

VI. FUTURE WORK AND CONCLUSIONS

Future work includes bringing our evaluation closer to pro-
duction level, starting from a higher-end FPGA to a distributed
FPGA system, to overcome the bandwidth limitations [31].
An operation that could be desirable in database applications
is stable sorting [6], that is to be able to output records with
the same key in the same order as they appear in the input. It
sounds possible to modify our solution to support stable sort,
although the skewed dataset optimisation at IV-D would not be
applicable. Other future work could include comparison with
SIMD [27], [32] and GPU-based [33] solutions. Ideally, this
design will be integrated in an analytics platform and enable
hot-plugging of a series of high-throughput stream processors
[34], such as our proposed distinct counter, by exploiting
partial reconfiguration in the datacenter [35].

This paper introduces a novel hardware sorter adaptable to
different input-sizes, bandwidth and use cases. As a small-
scale sorter, it has a competitive combination of logic, storage
and time requirements, but also works as a merger of multiple



input lists. The merging capability was embedded to the linear
sorter, to enable scalability to arbitrary problem sizes. The
approach to use a parallel merge tree to combine single-rate
mergers provides the means to saturate the bandwidth while
still performing many-leaf merge. Additional enhancements
allow efficient sorting of skewed and sorted datasets, as well as
design choices for increasing the transfer speeds to saturate the
available bandwidth. Our open-source script generates Verilog
code for a sorter of a custom degree of parallelism, merge
capacity, data and payload width. Finally, we provide example
use cases implemented indicatively on a resource-constrained
platform, including our in-house analytics application.
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