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Abstract—Recent advancements in the throughput of next-
generation sequencing machines pose a huge computational
challenge in analyzing the massive quantities of sequenced data
produced. A critical initial step of genomic data analysis is short
read alignment, which is a bottleneck in the analysis workflow.
This paper explores the use of a reconfigurable architecture
to accelerate this process, based on the seed-and-extend model
of Bowtie2. In the proposed approach, complete information
available in sequencing data is integrated into an FPGA align-
ment pipeline for biologically accurate runtime acceleration.
Experimental results show that our architecture achieves a
similar alignment rate compared to Bowtie2, mapping reads
around twice as fast. Particularly, the alignment time is reduced
from 50 minutes to 26 minutes when processing 300M reads.

I. INTRODUCTION

The significant advancement and decrease in the cost of
next-generation sequencing (NGS) have driven a dramatic
increase in genomic data. The NGS machines are now capable
of generating millions or even billions of short DNA fragments
from the sampled cells within hours [1]. These fragments,
i.e. reads, are produced by randomly segmenting the sampled
DNA strand. As a consequence of this action, the orientation
and position information of the reads with respect to the
original DNA is lost. Therefore, a crucial initial step of
genomic analysis is short read alignment (mapping), where
the short reads generated by the NGS machine are mapped to
a reference genome.

However, the improvement of NGS technology has been
far exceeding Moore’s Law for a decade. Read alignment
using software becomes unworkable because of its prolonged
execution time [2]. This hinders the medical applications of
NGS, such as prenatal diagnostics and monitoring [3], [4]
where individuals’ DNA and RNA should be analyzed quickly
at a low cost. Therefore, it is imperative to accelerate short read
alignment, so as to bridge the gap between alignment research
and practice.

FPGA has shown to be a promising candidate to accelerate
short read mapping because of its highly-parallel bit-wised
architecture [5]. As the sequenced alphabet produced by the
NGS machines can be abstracted into {A, C, G, T, N} which
is represented using 3 bits, mapping the DNA nucleotides
to the reference genome is inherently a bitwise operation.

Different algorithms, for example, the FM-index [6] and
Smith-Waterman [7], have been implemented and accelerated
on FPGA, as they are frequently used in popular software such
as Bowtie2 [8] and BWA-MEM [9].

Despite the success, FPGA-accelerated alignment is still
rarely adopted in genomic research and clinical applications.
The reason is two-fold:

• Most accelerators have failed to utilize the complete in-
formation available in NGS data. For hardware simplicity,
they utilize only the Watson-Crick alphabets {A, G, C, T},
discarding the quality metric information and ambiguous
characters (N characters) that are commonly present in NGS
data. This can result in incorrect alignment and generate
biologically invalid results, which are catastrophic for ap-
plications such as prenatal diagnostics and monitoring.

• Many FPGA researchers select and accelerate alignment
algorithms that are in favor of hardware implementations.
As a result, the alignment workflow can be inconsistent with
state-of-the-art software. For example, Arram et al. [10] pro-
pose an FPGA aligner that performs exact string matching
(ESM) based on the FM-index, followed by approximate
string matching (ASM) based on the seed-and-extend model.
Only reads unmapped by the ESM are directed to the ASM
for processing to improve hardware performance. However,
this methodology is inconsistent with the alignment model
in popular software such as BWA [11], Bowtie [12] and
Bowtie2, which in turn limits the biological validity and
reproducibility of the alignment outputs from hardware.

To increase the utility of short read mapping accelerators
in real applications, we propose a two-stage alignment archi-
tecture that is similar to the seed-and-extend model adopted
by Bowtie2. By exploiting the runtime reconfigurability of
FPGA, we decouple the seeding and extension stage into
two separate FPGA configurations to achieve a balanced,
fully optimized alignment pipeline. Finally, we consider com-
plete NGS data including quality metrics (Phred quality) and
ambiguous characters (N characters) during the alignment
runtime to ensure accuracy. The main contributions of this
work are as follows:

• A novel alignment architecture that is composed of a two-



stage configuration alignment pipeline. It exploits the recon-
figurability of FPGA to achieve highly efficient implementa-
tion for each configuration and a fully optimized alignment
pipeline.

• A hardware implementation of the reconfigurable architec-
ture targeting a single FPGA. The seeding stage is based
on an FM-index implementation and the extension stage is
based on a Smith-Waterman implementation with affine-gap
model.

• An evaluation of the optimal hardware architecture based on
the target platform Xilinx VU9P, together with comparisons
against the state-of-the-art software Bowtie2 on multi-core
processor and some of the existing FPGA solutions.

II. BACKGROUND AND RELATED WORK

This section provides an overview of the algorithms used in
our two-stage architecture: the FM-index and Smith-Waterman
with affine gap model. These two algorithms are also used
in Bowtie2 to realize the seed-and-extend model, which is
essentially the workflow of our accelerator.

A. Alignment Algorithms

FM-index — The FM-index [6] is a suffix-trie method that
combines the properties of suffix array with the Burrows-
Wheeler transform (BWT) [13]. It provides an efficient mech-
anism to exactly align a pattern P to the reference genome
R, with a time complexity linear to |P |. This enables a rapid
search of the pattern in the reference and quickly narrows the
list of candidate alignment locations.

To compute the BWT of R, denoted by BWT (R), we
append a terminating character ‘$’ to R, which is lexicograph-
ically the smallest value. We then generate and sort all the
rotations of R correspondingly, forming a sorted rotation list.
The suffix array can be obtained by considering the characters
before ‘$’ in each entry of the sorted rotation list. BWT (R)
can also be formed by selecting and concatenating the last
characters of all the entries on the sorted list.

To generate the FM-index, we need to extend R and
BWT (R) to form two functions: i(x) and c(n, x). For each
character x, i(x) is the number of characters in R that is
lexicographically smaller than x, while c(n, x) stores the
number of occurrences of x in BWT (R) from position 0 to
position n− 1. Table Ia demonstrates an example of deriving
the BWT of an example reference genome R = CACGT. The
strings preceding the ‘$’ sign in the sorted rotation list form
the suffix array (SA), which indicates the position of each
possible suffix in the original reference. Table Ib illustrates
the i(x) and c(n, x) functions for the reference R.

Alignment of reads using the FM-index operates on the
functions i(x) and c(n, x) recursively. Two pointers top and
bottom are defined to perform the search. top refers to an
index of the SA element where a specific pattern is firstly
located, and bottom is the location where the pattern can be
lastly found. If bottom points to an index that is less than or
equal to the index pointed by the top, the pattern does not
occur on the text.

TABLE I: (a) Example of deriving the suffix array and BWT
of reference genome R. (b) i(x) and c(n, x) functions for R.

(a)

R = CACGT$
Index n SA Sorted Rotations

0 5 $CACGT
1 1 ACGT$C
2 0 CACGT$
3 2 CGT$CA
4 3 GT$CAC
5 4 T$CACG
BWT (R) = TC$ACG

(b)

c(n, x)
Index n A C G T

0 0 0 0 0
1 0 0 0 1
2 0 1 0 1
3 0 1 0 1
4 1 1 0 1
5 1 2 0 1
6 1 2 1 1

i(x) {1, 2, 4, 5}

To search for a specific pattern P with the FM-index, one
character is processed at a time, starting with the last character
of P . The top and bottom are first initialized with the first
and last indices of the c(n, x) function respectively. Then both
pointers are updated according to the following equations:

topnew = c(topcurrent, x) + i(x)

bottomnew = c(bottomcurrent, x) + i(x)
(1)

The final results of top and bottom are the range of indices
in SA that contains P as the prefix.

Smith-Waterman Algorithm with Affine Gap Model — The
Smith-Waterman is a dynamic programming (DP) technique to
perform approximate string matching. It uses a scoring matrix
V to reveal the optimal local alignment between two sequences
P and R, where |P | = m and |R| = n. Every entry in V is
calculated recursively according to the following equation:

V (i, j) = max


0

V (i− 1, j − 1) + σ(P [i], R[j]) Match/Mismatch

si,j,→ Deletion

si,j,↓ Insertion

(2)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

The function σ(x, y) determines the relative weighting of
match or mismatch between characters x and y. Equation (3)
explains the affine gap functions si,j,→ and si,j,↓. The →
and ↓ denote a character deletion and a gap insertion in P
respectively.

si,j,→ = max

{
V (i− 1, j)− α
si−1,j,→ − β

si,j,↓ = max

{
V (i, j − 1)− α
si,j−1,→ − β

(3)

α is the cost for opening-gap penalty while β is the cost for
continuous-gap penalty, with β < α. Accordingly, the penalty
for initiating the gap is more expensive than the gap extension.
Compared to the basic Smith-Waterman algorithm with a
standardized σ function for all match/mismatch, insertion and
deletion, the affine gap model provides a more realistic com-
putation since a mutation normally causes insertion/deletion
of a large block.

Seed-and-Extend Model — Despite the Smith-Waterman
algorithm provides an optimal alignment for alignment with
match/mismatch, insertion and deletion, its time complexity is



O(mn) which is prohibitively expensive given the reference
genome is three billion base pair (bp) in length. Therefore,
the general strategy for approximate alignment in Bowtie2
or BWA-MEM is based on the seed-and-extend model. The
short read is first partitioned into fixed-length subsequence,
i.e. seeds. To achieve high speed, algorithm such as the FM-
index is used to identify the possible matching locations by
exactly aligning seeds to the reference. Finally, the short read
is then mapped to the reference using the Smith-Waterman
algorithm at each matching location. This model substantially
improves the alignment efficiency with a negligible accuracy
loss.

B. Related Work

Comprehensive surveys regarding the FPGA acceleration of
short read alignment are provided in [2], [14]. Basically, many
of the existing accelerators are based on the suffix-trie method,
or the Smith-Waterman algorithm, or both. For example,
Fernandez et al. [15] and Draghicescu et al. [16] introduce the
use of FM-index and BWT to accelerate exact and approximate
string matching respectively. In [10], Arram et al. propose
a reconfigurable aligner that performs exact alignment with
the FM-index, and approximate alignment with the seed-and-
extend model. Recently, Fei et al. [17] propose FPGASW
that accelerates the Smith-Waterman algorithm with affine
gap model for short read mapping. It uses techniques such
as overlapping memory access latency and data dependency
elimination to achieve acceleration. Despite the significant
speed-up given by these works, their underlying algorithms
are not consistent with the ones in popular software. Complete
NGS information is also not considered in these accelerators.

Processing the complete NGS data undoubtedly complicates
the FPGA implementation. Some researchers work around
this problem by proposing a software and hardware co-design
based on the defacto software framework. For example, the
authors in [16] develop a BWT accelerator that ties into
existing software BWA. Chang et al. [18] propose a similar
approach where the seeding stage of BWA-MEM [9] is accel-
erated on FPGA while retaining the expansion stage on CPU.
The works [19], [20] implement a similar approach. However,
these designs still suffer from the software bottleneck and
communication overhead, unless the implementation is based
on a multi-FPGA platform as in [16].

This paper presents an alignment pipeline that is similar to
the algorithmic workflow of Bowtie2, with a substantial exten-
sion to the works [21], [22]. With the consideration of quality
metrics and N characters, these previous works accelerate the
Smith-Waterman algorithm with affine-gap model. However,
they only provide a sub-optimal speed-up since seeding still
relies on the processor. Koliogeorgi et al. [22] reported only
a 35% performance gain when Bowtie2 is required to locate
the seeds.

III. RECONFIGURABLE ARCHITECTURE

State-of-the-art software usually applies a multi-stage ap-
proach to achieve short read mapping. In Bowtie2, it uses

the seed-and-extend model where seed locations are calculated
using the FM-index in the first stage. The seeds, together with
all possible candidate locations, are extended in the second
stage with the Smith-Waterman algorithm. This multi-stage
approach is mainly a performance consideration, as it parti-
tions the alignment workflow into smaller stages. Different
techniques such as SIMD can be applied to each stage so as
to fully utilize the modern CPU hardware.

Our accelerator architecture is based on a similar approach
in Bowtie2 where we divide the entire alignment workflow into
a seeding stage and an extension stage. Each stage corresponds
to an individual FPGA implementation. We propose a novel
runtime reconfigurable architecture where each implementa-
tion is executed in order on FPGA, forming an alignment
pipeline. The candidate alignment locations computed by
the first stage are temporarily buffered on the host and are
redirected to the extension stage after runtime reconfiguration.

A. Motivations for Runtime Reconfiguration

In the various efforts that accelerate alignment with FPGA,
the target device is statically configured with a circuit func-
tionally equivalent to multiple alignment algorithms. A mod-
ule within a circuit that implements a specific algorithm is
interlinked with other modules, forming a complete alignment
workflow. For example, the FPGA design in [15] is com-
posed of interconnected modules that implement exact-match
alignment with standard FM-index, one-mismatch, and two-
mismatch alignment with backtracking FM-index. Despite a
static configuration of these modules as a single implemen-
tation eliminates the time for reconfiguration, it suffers from
several limitations that reduce the overall performance and
usefulness of the design.

Significant Amount of Data Hazard — A typical alignment
workflow is composed of multiple stages in which the execu-
tion of the next stage depends on the results from the current
one. In Bowtie2, a read is only processed by the extension
subroutine if the seeds can be identified and exactly aligned
to the reference. This incurs numerous data hazards for a
statically configurable circuit, as some of the seeds can fail
to be exactly aligned. Since all the stages are mapped onto
FPGA statically, data hazards result in idle cycles for some
modules which reduce hardware efficiency.

Distinct Module Latency — Different alignment modules re-
quire a distinct number of cycles to process a read. Therefore,
some modules are replicated more than others to maintain
a balanced pipeline in a static configuration. For example,
when the seed-and-extend model is mapped onto FPGA, the
Smith-Waterman circuit must be replicated more to match the
throughput of the FM-index module for seed location. This can
be difficult and even impossible due to the limited resources
available on FPGA.

Inflexible Parameters — Depending on the alignment re-
quirements and experiments performed, parameters such as
the maximum number of gap sizes or mismatches can be



different. For a statically configured design where the hardware
is fixed, we have limited control over these parameters. Any
major change on a particular stage in the alignment workflow
requires a tremendous amount of redesign efforts, and it suffers
from a prolonged re-placement and re-routing time. This
substantially reduces the usefulness and limits the flexibility
of an alignment architecture.

IV. ARCHITECTURE IMPLEMENTATION

This section discusses the FPGA implementations of the
two-stage alignment pipeline, targeting a single FPGA device.
Particularly, the modules that handle the quality metrics and
N characters are elaborated. The techniques used to improve
the alignment performance are also discussed.

A. Seeding: FM-index Implementation

The FPGA configuration of the first stage implements the
seed extraction and seed alignment using the FM-index, which
is stored on each DIMM of the onboard memory. Basically,
the seeding process begins with streaming the reads from the
host. By following a similar seeding strategy in Bowtie2, 16
nucleotides are extracted as seeds for every 10 nucleotides in
each read. Then every seed is exactly aligned to the reference
using the FM-index with the pointers Top and Bottom. The
pointers Top and Bottom are updated based on the current
character in the seed, and the correlated i(x) and c(n, x) values
from the onboard memory. The final values for these pointers
indicate the SA range for the seed. For each read, we maintain
a priority list such that seeds with a smaller SA range are given
higher priority in the extension stage. Figure 1a displays a
simplified top-level diagram that implements seed extraction
and seed alignment using the FM-index.

The implementation of FM-index features the following
optimizations to improve the alignment efficiency:

2-bit Representation — Despite the DNA sequence produced
by the NGS machines can be abstracted into {A, C, G, T, N},
statistically, only a small portion of reads contains N charac-
ters. Based on our observation on accession ERR194147 [23]
generated by Illumina HiSeq 2000 sequencing machine, less
than 4% of the reads consist of N characters. With the
aim to optimize the hardware efficiency, each nucleotide is
represented in 2 bits in the FM-index circuit. Reads containing
N characters are not transferred to FPGA and are instead
processed by CPU for seed extraction and seed alignment.
Given that only an inconsiderable amount of reads contains
the N character, the seeding on the processor can be com-
pletely overlapped by the execution of FPGA. Note that seeds
containing N characters are considered unaligned.

Index Compression — When the human reference genome is
converted into FM-index, the resulting table c(n, x) is around
51GB. This is often far larger than the capacity of onboard
memory. To compress the index size so that multiple copies
of the index can be associated with multiple kernels, we only
store a subset of c(n, x). The remaining entries are substituted
with a portion of the original BWT. Intrinsically, we sample
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Fig. 1: Simplified top-level diagram for (a) the FM-index
implementation for the seeding stage, (b) the Smith-Waterman
implementation for the extension stage. For readability, some
data and control paths are omitted in both graphs.

every d entry of c(n, x) and pack the BWT in the range of
every d and d− 1 alongside, forming a bucket. Normally we
set the bucket being a multiple of the burst size to fully utilize
the memory bandwidth. During a character search, the missing
entries can be recalculated on-the-fly using the packed BWT.
The required memory storage is significantly reduced to:

Sampled c(n, x) Size + Packed BWT Size

=
3.2G× 32bit

d
× 4 + 3.2G× 2bit

(4)

Concurrent Processing of Multiple Reads — Based on Equa-
tion II-A, the new pointers for Top and Bottom are calculated
based on the values from c(n, x), which in turn depends on
the pointers’ values from existing iteration. This incurs a large
amount of stall in between memory access. We negate the
latency of memory access by interleaving the processing of
multiple reads. In this approach, a BRAM buffer is used to
store a few reads during alignment. A read is selected from the
buffer every cycle and the next symbol is processed, making
a corresponding memory request. This enables the processing
of reads while others are waiting for the memory data. As
a result, the FM-index circuit is fully utilized as almost one
nucleotide can be processed in each cycle.

B. Extension: Smith-Waterman Implementation with Affine-
Gap Model

Figure 1b displays the top-level architecture of the Smith-
Waterman implementation. It is composed of three major parts:
systolic arrays that fill up si,j,→ and si,j,↓ and V, three matrix
buffers, and a traceback unit. Our design draws inspiration
from the work in [22], however, we rely on our FM-index
circuit to locate the seed instead of using the software Bowtie2.
Basically, accelerating both the seeding and extension steps
provide a more superior speed-up, as the acceleration of only
one step brings limited improvement based on Amdahl’s law.

The systolic array consists of a pipeline of cells where each
of them computes one score for the matrices. The cells are
parallel-loaded with one base of the short read and its Phred
quality, while the reference extracted in the proximity of the
matching position is shifted through the array. This allows the
calculation of the anti-diagonal of the matrix in parallel, which



@SRR3944852.8282187 8282187/1
CTCCTTTGCCTAGTTGGTTTCATATATAATGATCAAATACCTT
+
@@FEGD@F=DDGHGFDDDDFGGBGFAGC?IHDAGCIE3?D?):

Reads character

Phred Quality

Phred Quality of T 
= ASCII of ‘:’ – 33
= 58 – 33 = 25

Fig. 2: Explanation on Phred Quality using an example read.

decreases the time complexity from O(mn) to O(m+n). The
result of the current anti-diagonal is buffered with registers and
is reused in the computation of the next anti-diagonal.

In the second part, we use block RAM to create matrix
buffers in order to store up every score for si,j,→ and si,j,↓ and
V during the anti-diagonal calculation. Despite the calculation
does not require buffering every value in the matrices, the
complete storage reduces the efforts of the traceback unit. It
can reconstruct the alignment path by traversing the matrix in
reverse order, instead of recalculating the values and refilling
the matrices.

Consideration of all NGS Data — A major component of this
work is the capability of recognizing the complete NGS data
in the alignment process. One important information is the
quality metrics, i.e. Phred quality [24], a metric that is usually
neglected in previous works. Its values are ranged from 0 to
42 and are presented in ASCII character (with addition of 33).
Figure 2 displays an example snippet of a read file in which
the second line is the read and the fourth line is Phred quality.
Each DNA character is associated with a quality score q in the
same position and a larger value represents a better quality.

The quality metrics and N characters are processed com-
pletely in the Smith-Waterman implementation. The reference
and the reads are represented in 3 bits. The Phred quality,
which is transferred alongside the reads, is loaded in the sys-
tolic array and used in σ(P [i], R[j]) for mismatch calculation.
Despite the increase in the data transfer, the entire operation
is highly computationally intensive and is therefore bound by
the matrix computation. Note that based on Bowtie2, the σ
function is given by: 2 + floor(4×min(q, 40.0)/40).

V. EVALUATION AND DISCUSSION

A. Experimental Parameters

In this section, we evaluate the alignment pipeline on Max-
eler’s MAX5C DFE provided by Maxeler Technologies [25].
The MAX5C DFE is equipped with Xilinx Virtex UltraScale+
VU9P and three DIMMs of 16GB onboard DRAM. Max-
Compiler 2018.2 and Vivado 2017.4 are used for synthesis and
implementation. The FPGA runs at 200MHz while the host
runs with Intel Xeon CPU E5-2643 and 64GB DDR4-2400
memory. PCI-e 2.0 ×8 is used to transfer the data between
the FPGA and the host, which runs with Centos 7.0. As
the onboard DRAM in the FM-index implementation and the
matrix computations in the Smith-Waterman circuit are the
major alignment bottlenecks, PCIe 2.0 is already sufficient.

Our compressed FM-index is constructed with the parameter
value d = 192. Consequently, the index size becomes 1.06GB
and can be loaded in each DIMM to maximize parallelism
of FM-index implementation. Moreover, the Smith-Waterman
algorithm supports a read length of m = 104 and reference
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Fig. 3: The alignment runtime of the proposed architecture
versus Bowtie2 based on different sizes of the simulated
dataset.

length of n = 160. We need a larger segment from the
reference to enable gapped alignment at the start and the end
of a read.

Given the relatively small workload (1% on average of a
full alignment workload), the reconfiguration time (10-12 s per
configuration) for VU9P does not pose a huge impact on the
overall performance. Moreover, since different datasets and
alignment parameters are used in different works, we define
a normalized metric, base pairs aligned per second per device
(bps−1), to allow a fair comparison.

B. Alignment Runtime

We use ART sequencing read simulator [26] to simulate
single-end, Illumina-like reads based on the Human Genome
Build 38. Parameter qs is set to 5 while others are left as
default. We vary the size of the read dataset by changing the
parameter f in the simulator. We ran the simulated dataset
upon the proposed architecture and also Bowtie2 to record the
execution time.

Figure 3 presents the alignment time for different sizes of
the read dataset. Also displayed are the results for the software
Bowtie2 running on Xeon Silver 4110 using 8 threads and
192GB RAM with the command:
• Bowtie2 -x grch38 index grch38 art.fq --local -p 8 -L

10 -R 0 -S out.sam
Compared to the Bowtie2, the proposed architecture can

achieve around 2× speedup with the Smith-Waterman cir-
cuit taking up more than 75% of the overall computation.
For a statically configured circuit, this requires three-time
replications for the Smith-Waterman module compared to the
FM-index, so as to maintain a balanced pipeline. Given the
limited resources available on FPGA, our runtime reconfig-
urable architecture can provide a more optimized and balanced
alignment pipeline.

Note that the runtime of our Smith-Waterman circuit shares
similar results as illustrated in [22]. While for a large dataset
with around 300M reads the proposed architecture substan-
tially decreases the overall runtime from around 50min to
26min, it can still be further improved to achieve better
acceleration. For example, instead of successively walking
through the candidate locations from each entry in the priority
list, Bowtie2 heuristically selects candidate locations to per-
form extension. This provides better performance because it
finds the alignment sooner and avoids unnecessary extensions.



TABLE II: Performance comparison with previous hardware accelerators that are based on similar algorithms. The speed-up
is based on the software platform chosen by the authors in each respective work.

Year Work Algorithm & Method Platform Device Read Count
(Million)

Read Length
(Base) Speed-up Mbps−1

2013 [4] FM-index Maxeler MAX3 Virtex-6 SX475T 18 75 4.2× 20.8

2015 [27] FM-index Maxeler MPC-X1000 Stratix-V×8 10 75 14.9× 8.3

2016 [19] [20] Smith-Waterman Alpha Data ADM-PCIE-7V3 Virtex-7 XC7VX690T-2 8 150 2× 4.1

2018 [17] Smith-Waterman - Virtex-7 XC7VX485T - 128 25.2× -

2019 [28] SNAP [29] + DP Alpha-Data ADM-PCIE-7V3 Virtex-7 XC7VX690T 100 128 1.86× 2.5

2019 [22] Bowtie2 + Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 60 100 35% 1.03

2020 This work FM-index + Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 293 100 1.9× 18.79

Future work includes further analysis on Bowtie2 so as to
employ the same heuristic on FPGA for added acceleration.

Finally, Table II presents the performance comparison be-
tween the proposed architecture and previous accelerators from
recent years. We select the works that are mostly based on
the FM-index, or the Smith-Waterman algorithm, or both for
fair comparison. Since our performance results are based on
the implemented hardware instead of the theoretical upper
bound values, all the numbers obtained from previous works
are based on this metric. The speed-up on the right is based on
the software platform chosen by the authors in each respective
work. This number provides an indication of the performance
gain against the processor of the time.

The million bps−1 values in Table II indicate that our
alignment pipeline performs similarly compared to previous
accelerators. It showcases the advantages of our architecture
where the addition of computation logic for processing quality
metrics and N characters does not affect alignment time.
However, we could not compare our results to [17] as they
did not specify the size of their dataset in their experiments.

C. Alignment Reported and Resource Consumption

As mentioned in Section I, medical applications require
strict accuracy constraints. Therefore, we evaluate the align-
ment pipeline with a sample of the real dataset: accession
ERR194147 [23]. We select approximately 8M of reads and
obtain the reported alignments as shown in Table III. To
maximize the number of alignments reported in Bowtie2, we
enable the reseeding mechanism in software by specifying the
parameter R = 2.

Because of the reseeding mechanism, Bowtie2 can report
3% more alignments compared to the proposed architecture.
Basically, when a read is considered to have repetitive seeds,
i.e. total number of seed hits ÷ the number of seeds that
aligned at least once > 300, Bowtie2 chooses a new set of
reads with the same length at different offsets and searches
for more alignments. This contributes to more valid alignment
discoveries. Future work will incorporate this functionality in
the FM-index circuit to improve the overall alignment results.

Finally, Table IV indicates the total resource utilization for
each implementation on Xilinx VU9P. With an adequate area
remaining for the FM-index circuit, more computational ker-
nels can be populated on the FPGA if the number of DIMMs

TABLE III: Overall alignment rate of Bowtie2 and the pro-
posed architecture. The number of reads = 8240796.

Bowtie2 This work

Aligned 0 times (rate) 518646 (6.29%) 749399 (9.09%)

Aligned 1 time (rate) 4018761 (48.77%) 4799046 (58.24%)

Aligned > 1 times (rate) 3703389 (44.94%) 2692351 (32.67%)

Overall alignment rate 93.71% 90.91%

TABLE IV: Resource utilization of different implementations
on Xilinx VU9P. Percentage values are relative to the available
resources on target FPGA.

LUT Register BRAM DSP

FM-index 16% 17% 45% 1%

Smith-Waterman 46% 41% 45% 12%

increases. Currently, the number of DIMMs determines the
number of computational kernels in hardware, as each kernel
computes and operates on one copy of the FM-index buffered
in the onboard DRAM. The Smith-Waterman implementation,
however, consumes almost half of the available resources. Fur-
ther optimization to the hardware implementation is required
to decrease the area cost by leveraging an automatic design
analyzer and merger [30], so as to include more computational
kernels and increase the parallelism.

VI. CONCLUSION

A novel, two-stage reconfigurable architecture is proposed
to accelerate the seed-and-extend model, similar to the ones
in Bowtie2. With complete consideration of NGS data, the
proposed alignment pipeline can achieve a comparable align-
ment rate and exhibit around 2 times speedup versus Bowtie2.
Further research includes optimizing the seeding stage with
the heuristic in Bowtie2, decreasing the resource utilization of
the Smith-Waterman circuit, and supporting pair-end reads.
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