
Optimizing FPGA-Based CNN Accelerator
Using Differentiable Neural Architecture Search

Hongxiang Fan∗, Martin Ferianc†, Shuanglong Liu‡, Zhiqiang Que∗, Xinyu Niu§, Wayne Luk∗
∗ Dept. of Computing, School of Engineering, Imperial College London, UK

{h.fan17, z.que, w.luk}@imperial.ac.uk
† Dept. of Electronic and Electrical Engineering, University College London, UK, martin.ferianc.19@ucl.ac.uk

‡ Hunan Normal University, Changsha, China, s.liu13@imperial.ac.uk
§ Corerain Technologies Ltd., Shenzhen, China, xinyu.niu@corerain.com

Abstract—Neural architecture search (NAS) aims to find the
optimal neural network automatically for different scenarios.
Among various NAS methods, the differentiable NAS (DNAS)
approach has demonstrated its effectiveness in terms of searching
cost and final accuracy. However, most of previous efforts focus
on applying DNAS to GPU or CPU platforms, and its potential
is less exploited on the FPGA. In this paper, we first propose a
novel FPGA-based CNN accelerator. An accurate performance
model of the proposed hardware design is also introduced. To
improve accuracy as well as hardware performance, we then
apply DNAS and encapsulate the proposed performance model
into the objective function. Based on our FPGA design and
NAS method, the experiments demonstrate that the network
generated by NAS achieves nearly 95% accuracy on CIFAR-
10, while decreasing latency by nearly 12 times compared with
existing work.

Index Terms—Neural Architecture Search (NAS), FPGA

I. INTRODUCTION

The potential of neural architecture search (NAS) in ar-

tificial intelligence (AI) tasks such as image classification,

object detection or speech recognition has been recognised [1],

[2]. Compared to manual design methods for neural networks

(NNs), current NAS methods are able to automatically find

optimised neural architectures by improving their software-

related hyperparameters such as the number of layers, the num-

ber of channels and topological connections [3], [4]. Among

various NAS methods, differentiable neural architecture search

(DNAS), which makes use of gradient values to optimize

neural networks, has been shown to be effective in finding

NNs with improved accuracy. However, most existing DNAS

methods only focus on searching neural networks for GPU or

CPU platforms.

Field-programmable gate arrays (FPGAs), due to their

reconfigurability and high energy efficiency, are becoming

increasingly popular in the accelerating convolutional neural

networks (CNNs) [5]–[8]. This paper aims to exploit the

potential of DNAS to improve the performance of FPGA-

based CNN accelerators.

The main contributions of this work are the following:

• An FPGA-based CNN accelerator built on the single pro-

cessing engine design approach, which enables the mapping

of large neural networks into a single FPGA device (Sec-

tion II);

Fig. 1. System overview. FU means functional unit.

• Adopting DNAS with an accurate performance model for

the proposed FPGA-based CNN accelerator, which achieves

high accuracy as well as high hardware performance on the

CIFAR-10 dataset. (Section III).

II. THE HARDWARE ACCELERATOR

A. FPGA-Based CNN Accelerator

The system overview of the proposed FPGA-based CNN

accelerator is presented in Figure 1. It mainly consists of an

FPGA system, an off-chip memory and a host processor.

The FPGA system is designed to perform all the computa-

tions of CNNs, which are mainly composed of convolutional

(CONV) module, functional unit (FU), weight buffer, output

buffer and input buffer. The CONV module is used to perform

convolution. It supports three types of parallelism: filter paral-

lelism (PF), channel parallelism (PC) and vector parallelism

(PV). The FU supports operations including batch normal-

ization, rectified linear unit (ReLU) activation, pooling and

residual shortcut (SC). The computation of each convolutional

layer starts from loading the weights and input data from the

off-chip memory to the on-chip weight buffer and input buffer

respectively via DMA. The data then flow through the CONV
and FU modules sequentially to perform the main calculations.

Note that only the necessary operations will be enabled in FU.

The outputs of the current layer generated from the FU are then

streamed back to the off-chip memory for the computation of

the next layer. The double buffer technique is used in both the

465

2020 IEEE 38th International Conference on Computer Design (ICCD)

2576-6996/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCD50377.2020.00085

Authorized licensed use limited to: Imperial College London. Downloaded on December 30,2020 at 19:43:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PARAMETERS’ NOTATION USED WITH RESPECT TO THE NEURAL

NETWORK AND HARDWARE PARAMETERS.

Parameter Description
EFFio Efficiency of IO
CLKio Clock frequency of IO
CLKpe Clock frequency of processing engine
Hin The height of input feature map
Win The width of input feature map
Hout The height of output feature map
Wout The width of output feature map
PF Filter parallelism
PC Channel parallelism
PV Vector parallelism
BW Bandwidth between off-chip and on-chip memory
Nc The number of channels
Nf The number of filters
G The number of groups in group convolution
K The kernel size of convolution

input and weight buffers, to enable an overlap of the input and

weight transfer times, thus decreasing the overall latency.

The host processor is used to set different hyperparameters

for the FPGA system, such as the input image size and the

number of channels, while running various CNN layers. The

FPGA system adopts the APB bus. The peripheral component

interconnectexpress 3.0 (PCIe3) is the host bus, and DDR4 is

used in off-chip memory.

B. Performance Model

To speed-up our optimization process for searching the

optimal NN architecture on the given hardware, we propose

an accurate performance model to predict the hardware per-

formance given an NN architecture.

Because the proposed CNN accelerator computes the net-

work’s output layer-by-layer, the total latency is given by:

Ttotal =
N∑
i=0

Ti, (1)

where N is the number of layers in the network and Ti

is the latency incurred by the ith layer. As channel-major

computational pattern is adopted, the accelerator generates

outputs in totally BF = Nf/PF batches with each batch

producing PF × Hout × Wout output pixels. Therefore, we

further divide Ti into:

Ti =
BF∑
j=0

Ti,j . (2)

The per-batch latency Ti,j in layer i is dominated by the

following three parts: (1) T load
i,j : time for loading input data

and weights from off-chip memory into the input buffer and

the weight buffer, (2) T store
i,j : time for storing the outputs back

to the off-chip memory, (3) T compute
i,j : time for the computation

of the jth batch in layer i. To approximate the estimated

performance as close as possible to the real performance,

Fig. 2. An overview of DNAS for FPGA-based CNN accelerator.

we calculate the execution time in terms of clock cycles.

Therefore, these three parts can be formulated as:

1) Loading time, which is composed of the input data loading

time T input
i,j and the weights loading time Tweight

i,j :

T input
i,j =

Nci ×Wini
×Hini

BW × EFFio × CLKio
(3)

Tweight
i,j =

Ki ×Ki ×Nci × PF

BW × EFFio × CLKio
(4)

As the input data are cached in the input buffer for reuse,

the input data loading time only happens during the initial

batch, which can be formulated as:

T load
i,j =

{
T load
j=1,i = T input

i,j + Tweight
i,j

T load
j �=1,i = Tweight

i,j

(5)

2) Storing time associated with the transfer of the output data

to the off-chip memory for the use of the next layer:

T store
i,j =

PF ×Wouti ×Houti

BW × EFFio × CLKio
(6)

3) Computational time for the PE to process the data. Since

it is primarily dominated by the convolution operation (>
99% of time) and the other operations (BN, Pool, ReLU,
Pool or SC) incur only a negligible cost, the computational

time can be formulated as:

T compute
i,j =

Ki ×Ki ×Nci × PF ×Wouti ×Houti

G× PF × PC × CLKpe
(7)

In our accelerator, these three parts are overlapped between

each other to achieve high performance. Therefore, the time

spent on the ith layer can be formulated as:

Ti =
BF∑
j=0

max(T load
i,j , T store

i,j , T compute
i,j). (8)

III. HARDWARE-AWARE NEURAL ARCHITECTURE

SEARCH

A. Overview

An overview of the proposed search method is presented in

Figure 2, where the search is performed on a GPU and the

neural network found is accelerated on an FPGA. This paper

adopts the differentiable NAS approach [9], [10] which can

be formulated as an optimization problem as follows:

min
a∈A

min
wa

L (a,wa) (9)

Given the NN architecture design space A, the optimization

process aims to find the optimal NN architecture a ∈ A

466

Authorized licensed use limited to: Imperial College London. Downloaded on December 30,2020 at 19:43:24 UTC from IEEE Xplore. Restrictions apply.

with the associated weights wa to achieve the minimal loss

L (a,wa). To enable the algorithm to select the operations

with the highest hardware performance while maintaining high

accuracy, we define the loss function as follows:

L (a,wa) = CE (a,wa) + γ × LT (a)
δ
, (10)

where CE (a,wa) represents the main objective associated

with the overall accuracy, e.g. the cross-entropy loss of archi-

tecture a with weights wa. The term LT (a) denotes the latency

of the hardware design with the selected neural architecture

a. The coefficients γ and δ are used to control the magnitude

of the latency term during the optimization. The performance

model proposed in Section II-B is used to determine the term

LT (a), which can speed up the optimization process.

B. Search Space

As other researchers have demonstrated [3], [11], the defi-

nition of the search space is vital for finding an NN capable of

achieving high accuracy. In this paper, we adopt the NN design

space used in [11]. The search space concentrates on searching

architecture parameters in a layer-wise manner within a fixed

micro-architecture. Table II summarizes the micro-architecture

through the input shapes, available operation types, number of

filters, number of repeated blocks and stride for convolutional

operations. The first convolutional layer, the penultimate av-

erage pooling (AvgPool) and the last fully connected layers

are fixed. In the middle of the NN, there are three stages

and each stage contains nine searchable blocks. The details

of a searchable block are illustrated in Figure 3. The block

contains K1×K1 and point-wise (1×1) standard convolutions

at the top and bottom, where K1 is the kernel size of the

first convolution. A K2-by-K2 group convolution with G2

groups is in the middle, where K2 denotes the kernel size for

the group convolution. Therefore, the searchable layer-wise

architecture parameters determining a include the values of

K1,K2 and G2. The search domain of K1,K2 and G2 is

presented in the table of Figure 3.

TABLE II
THE MICRO-ARCHITECTURE OF THE SEARCH SPACE.

Input Operation Filter Block Stride
Shape Number Number

322 × 3 3× 3 conv 16 1 1

322 × 16 AnyNet Block 32 9 1
322 × 32 AnyNet Block 64 9 2
162 × 64 AnyNet Block 128 9 2

82 × 128 AvgPool - 1 8
64 Fully Connect 10 1 -

IV. EXPERIMENTS

The proposed hardware design is implemented on an Intel

Arria 10 SX660 platform using Verilog. 1GB DDR4 SDRAM

is installed on the platform as off-chip memory. Quartus 17

Prime Pro is used for synthesis and implementation. An Intel

Fig. 3. The structure of a searchable block.

TABLE III
ERROR OF PERFORMANCE ESTIMATION FOR ResNet–50, VGG–16 AND

Inception

Estimated Actual Execution Prediction
Time (ms) Time (ms) Error

ResNet–50 [12] 16.69 17.21 3.10%

VGG–16 [13] 77.01 80.78 4.89%

Inception [14] 70.21 71.13 1.31%

XeonE5-2680 v2 CPU is the host processor in our system.

The parallelism levels PC, PV , PF are set to be 64, 1 and

64 respectively. The hardware is clocked at 220 MHz.

A. Accuracy of Performance Model

To evaluate the accuracy of the performance model (Sec-

tion II-B), three different CNN models, including ResNet–
50 [12], VGG–16 [13] and Inception [14] are used in our

experiments. Table III presents the result of the three models

in terms of the estimated time, the actual execution time

and the prediction error of the performance model. It can

be seen from Table III that the prediction error is within

5% for these three models. In particular, the prediction error

for Inception [14] is less than 2These results show that

the proposed performance model is sufficiently accurate for

estimating the actual hardware performance, so it can be used

to speed up the optimization process of DNAS.

B. Effectiveness of DNAS

To demonstrate the effectiveness of the proposed method,

the CIFAR–10 [15] dataset is used in our experiments. The

input resolution of the network is set to be to 32-by-32. During

the search phase, the supernet is trained for 90 epochs, with

the first 10 epochs for warm-up training [12]. In the loss

function, the γ and δ are set to be 0.3 and 0.1 respectively. The

SGD is used as our optimizer for training the supernet with a

cosine schedule without restart [16]. The initial learning rate

for weight and architecture parameters are set to be 0.1 and

0.01 respectively. The structure of the found network by the

proposed method is illustrated in Figure 4, where k1, k2 and

g2 denote the kernel of the first convolution, the kernel and

group of the second convolution. To get the final accuracy, we

train all such found NNs from scratch for 200 epochs using

the same setting as the supernet training.

467

Authorized licensed use limited to: Imperial College London. Downloaded on December 30,2020 at 19:43:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The neural architecture of networks found for CIFAR–10 dataset.

TABLE IV
ACCURACY AND PERFORMANCE ON CIFAR-10 DATASET

Latency (ms)
Accuracy

CPU GPU FPGA

54.11 12.68 2.71 94.18%

We evaluate the found networks on three different hardware

platforms: Intel Xeon Silver4110 CPU, NVIDIA GTX 1080

Ti GPU, and Intel Arria 10 SX660 FPGA. The latency is the

average value of the results of running the network 1000 times.

The PyTorch framework is used for implementing designs

for the CPU and GPU. The batch size is set to be 1 in

all the hardware platforms for a fair comparison. The final

result is presented in Table IV. Compared with GPU and CPU

implementations, the networks found for FPGA can achieve

nearly 5 times and 20 times speedup because of the proposed

DNAS approach for NN hardware design.

TABLE V
COMPARISON BETWEEN THE PROPOSED METHOD AND EXISTING WORK

ON CIFAR–10

Latency Search Cost Accuracy
(ms) GPU Hours

reinforcement learning
33.67 108000 84.53%

based NAS [17]

RNAS (ours) 2.71 25.1 94.18%

Table V compares the proposed method with the exist-

ing reinforcement learning based hardware-aware NAS ap-

proach [17] in terms of latency, search cost (GPU hours)

and accuracy on CIFAR–10. When compared with [17], the

proposed method reduces search time from 108000 to 25.1

GPU hours while improving accuracy by 9.65% and reducing

latency by nearly 12 times.

V. CONCLUSION

This work proposes a novel hardware architecture and

adopts the hardware-aware differentiable neural architecture

search (DNAS) to achieve high performance on an FPGA.

Future work includes expanding the search space with more

choices of operations, integrating optimization for recurrent

neural networks into the current optimization step, and im-

proving the search efficiency.

ACKNOWLEDGEMENT

The support of the China Scholarship Council, United King-

dom EPSRC (grant numbers EP/L016796/1, EP/N031768/1,

EP/P010040/1 and EP/L00058X/1), National Natural Science

Foundation of China (Grant no. 62001165), Corerain, Maxeler,

Intel and Xilinx is gratefully acknowledged.

REFERENCES

[1] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[2] A. Baruwa, M. Abisiga, I. Gbadegesin, and A. Fakunle, “Leveraging
end-to-end speech recognition with neural architecture search,” arXiv
preprint arXiv:1912.05946, 2019.

[3] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” arXiv preprint arXiv:1902.07638, 2019.

[4] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Effi-
cient neural architecture search via parameter sharing,” arXiv preprint
arXiv:1802.03268, 2018.

[5] H. Fan, S. Liu, M. Ferianc, H.-C. Ng, Z. Que, S. Liu, X. Niu, and
W. Luk, “A real-time object detection accelerator with compressed
SSDLite on FPGA,” in FPT, pp. 14–21, IEEE, 2018.

[6] H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, “Static block floating-
point quantization for convolutional neural networks on FPGA,” in FPT,
pp. 28–35, IEEE, 2019.

[7] H. Fan, C. Luo, C. Zeng, M. Ferianc, Z. Que, S. Liu, X. Niu, and W. Luk,
“F-E3D: FPGA-based acceleration of an efficient 3D convolutional
neural network for human action recognition,” in ASAP, vol. 2160, pp. 1–
8, IEEE, 2019.

[8] H. Fan, H.-C. Ng, S. Liu, Z. Que, X. Niu, and W. Luk, “Reconfigurable
acceleration of 3D-CNNs for human action recognition with block
floating-point representation,” in FPL, pp. 287–2877, IEEE, 2018.

[9] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[10] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 10734–
10742, 2019.

[11] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” arXiv preprint arXiv:2003.13678,
2020.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[15] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” MSc thesis, University of Toronto, 2009.

[16] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[17] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi,
and J. Hu, “Hardware/software co-exploration of neural architectures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, early access, 2020.

468

Authorized licensed use limited to: Imperial College London. Downloaded on December 30,2020 at 19:43:24 UTC from IEEE Xplore. Restrictions apply.

