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Abstract
By leveraging the half-precision floating-point for-
mat (FP16) well supported by recent GPUs, mixed
precision training (MPT) enables us to train larger
models under the same or even smaller budget.
However, due to the limited representation range
of FP16, gradients can often experience severe un-
derflow problems that hinder backpropagation and
degrade model accuracy. MPT adopts loss scaling,
which scales up the loss value just before backprop-
agation starts, to mitigate underflow by enlarging
the magnitude of gradients. Unfortunately, scaling
once is insufficient: gradients from distinct layers
can each have different data distributions and re-
quire non-uniform scaling. Heuristics and hyperpa-
rameter tuning are needed to minimize these side-
effects on loss scaling. We propose gradient scal-
ing, a novel method that analytically calculates the
appropriate scale for each gradient on-the-fly. It
addresses underflow effectively without numerical
problems like overflow and the need for tedious hy-
perparameter tuning. Experiments on a variety of
networks and tasks show that gradient scaling can
improve accuracy and reduce overall training effort
compared with the state-of-the-art MPT.

1 Introduction
Training deep neural networks (DNNs) consumes signifi-
cant amounts of time, memory, and energy [Strubell et al.,
2019]. This situation motivates methods and hardware that
make training more efficient. A common solution is us-
ing data types with lower precision. Lowering data preci-
sion can reduce the computational cost, but the representable
range will be narrower and the round-off error will be larger.
Mixed precision training (MPT) [Micikevicius et al., 2018]
that uses a mixture of 32-bit single-precision (FP32) and
16-bit half-precision (FP16) floating point, provides the op-
portunity to gain computation efficiency from low-precision
data types without losing accuracy. MPT adopts FP16 for
compute-intensive yet precision-insensitive operations, e.g.,
∗Work was mainly performed during an internship at Preferred
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general matrix multiplication (GEMM), while employing
FP32 for precision-sensitive functions, such as batch normal-
ization [Ioffe and Szegedy, 2015]. Meanwhile, activations
and gradients, which contribute to most of the memory con-
sumption, are represented in FP16, while the weights are in
FP32 to reduce the round-off error that appears in long-term
accumulation of gradient updates. Nevertheless, since gradi-
ents being backpropagated normally have small magnitude,
storing them in FP16 may cause severe underflow. Typically,
gradients in DNN can be smaller than 10−10, and the smallest
value that FP16 can represent is only around 6×10−8. That is,
values below 6× 10−8 will be rounded to zero, which further
indicates that some critical information may be discarded.

Micikevicius et al. [2018] propose loss scaling to address
this underflow issue. A loss value will be scaled up before
backpropagation, and consequently, gradients being propa-
gated will have larger magnitude. Specifically, suppose the
loss is multiplied by scale α (> 1), then every gradient el-
ement in backpropagation will be α times larger, compared
with training without loss scaling. Meanwhile, when up-
dating model parameters, the gradient update will be corre-
spondingly scaled down by α to keep the same magnitude as
normal training. In another words, only the activation gra-
dients will be scaled up, and weight gradients will be the
same. If α is chosen properly and gradients are distributed
similarly among all layers, underflow rate of gradients will
be reduced and MPT can achieve the same as standard full
precision training, according to evidence provided by recent
papers [Micikevicius et al., 2018; Mellempudi et al., 2019;
Kuchaiev et al., 2018]. If not, numerical issues other than
underflow may arise, e.g., overflow, which can hurt MPT
performance. For example, detection models with a pre-
trained backbone network [Liu et al., 2016] have different
data distribution between gradients in the detection part and
the backbone, which are hard to work with existing MPT
(Section 5.3). Some heuristic rules can mitigate these side-
effects, but the core issue caused by a single uniform scale
remains unresolved.

This paper presents gradient scaling, a novel method that
aims to provide an effective loss scaling approach for MPT.
Instead of scaling the loss value once before backpropaga-
tion, we scale each of the gradient tensors appropriately while
propagating them. Each scale is calculated on-the-fly, based
on the criterion that the estimated underflow rate of the scaled



gradient is just below a given threshold without causing over-
flow. This gradient-wise scaling method together with this
criterion allow us to control the distribution of gradient val-
ues in a fine-grained manner, which minimizes the chance
of causing numerical problems with a global scale which is
too large or too small. Experiments show that our approach,
in various scenarios, stabilizes the training behavior and im-
proves the accuracy compared with the state-of-the-art MPT.
Our contributions are as follows:

• Proposing and formulating gradient scaling, a method
that scales each gradient appropriately during backprop-
agation to address gradient underflow in MPT.
• Deriving the statistical model that estimates the under-

flow rate of gradients, and the criterion that decides each
scale based on this estimation.
• Evaluating MPT with gradient scaling, revealing its po-

tential for higher accuracy compared with existing MPT
on recognition, detection, and segmentation tasks, on a
diverse set of networks.

2 Related Work
There are several recent works on low-precision floating-
point DNN training. MPT [Micikevicius et al., 2018] mainly
explores numerical representation, utilizing a mixture of low
and high precision data types. Within the MPT framework,
Kuchaiev et al. [2018] showcase the advantage of MPT on
sequence modelling tasks over FP32, and Mellempudi et
al. [2019] explore MPT with a mixture of 8-bit floating-point
(FP8) and FP16. Both papers mention dynamic loss scaling, a
variant of the original [Micikevicius et al., 2018] that actively
increases the loss scale at a fixed rate, and passively reduces
the scale only if overflow occurs. Although it relieves the
burden of picking a loss scale manually, dynamic loss scal-
ing should be accompanied with a group of heuristic rules
dedicated to specific models, such as back-off [Kuchaiev et
al., 2018] and increasing minimum threshold [Mellempudi
et al., 2019], to work properly. Tuning these heuristics in-
evitably brings extra workload. Gradient scaling, on the other
hand, can automatically scale gradients without any heuristic,
which makes MPT much easier to use in practice.

Several other papers focus on reducing the round-off er-
ror in low-precision arithmetic. Wang et al. [2018] devise
a chunk-based accumulation mechanism to address swamp-
ing, a phenomenon that appears when adding a small floating-
point number to a much larger one, the smaller operand will
be eliminated [Higham, 1993]. Sakr et al. [2019] address
the same problem, and they propose to find the optimal bit
width of floating point accumulation that minimizes the effect
from swamping, by maximizing the variance retention ratio,
a statistical property that reflects the quality of computation.
Interestingly, we find their approach insightful on answering
why large loss scale fails. Besides accumulation, Hoffer et
al. [2018] identify the numerical issues in batch normaliza-
tion that happen when computing the variance, and propose
to replace it by numerically stabler alternatives. Outside deep
learning, Higham et al. [2019] and Blanchard et al. [2019]
provide theoretical analysis on mixed precision arithmetic
units in NVIDIA GPU typically for linear systems.

3 Estimate Gradient Scale
Underflow happens when non-zero FP32 values are too small
to be represented by FP16, which implies that the FP32-to-
FP16 typecasting should be the target to address underflow.
In MPT, gradient is often typecast at two places:

1. Mixed-precision GEMM that computes gradients dur-
ing backpropagation implicitly typecasts intermediate
results in FP32 to FP16 before output.

2. Gradients can be typecast from FP32 to FP16 during
the backward pass of an explicit FP16-to-FP32 opera-
tor, which is typically inserted before precision-sensitive
operators like softmax.

Typically, if the FP32 input is scaled up before typecast-
ing, the underflow rate of the typecast result will be reduced.
This trick, which is often used in other mixed-precision sce-
narios [Blanchard et al., 2019], inspires us to devise gradient
scaling for MPT.

The objective of gradient scaling is to adopt scaling before
typecasting to reduce the underflow rate. To formulate and
then solve this objective, we need to quantify to what extent
the underflow rate will be reduced by a given scale on ac-
tual gradient data. In this section, we construct a statistical
model to estimate the mapping between the underflow rate
and gradient scale, which helps us decide the gradient scale
for various typecasting operators.

3.1 Preliminaries
An N -bit floating-point number x has one signed bit, Ne ex-
ponent bits, andNm mantissa bits. HereN equals to 1+Ne+
Nm. Suppose these bits are {s, e1, . . . , eNe

,m1, . . . ,mNm
},

then x equals to (−1)s × M × 2E , where M is the sig-
nificand equals to 1 +

∑Nm

i=1mi2
−i, and E is the exponent

equals to
∑Ne

i=1 ei2
Ne−i + 1− 2Ne−1. FP32 has Ne = 8 and

Nm = 23 and represents magnitude ranging from 1.2×10−38
to 3.4× 1038. FP16 only has 5 exponent bits and 11 mantissa
bits, resulting in the representation range of [6×10−8, 65504].
Obviously, FP16 has a much narrower range of representation
than FP32, which is more likely to cause underflow and over-
flow. Micikevicius et al. [Micikevicius et al., 2018] explicitly
show how gradients in SSD training cannot be fully repre-
sented by FP16.

Notations used in this paper are listed as follows:

• The range of FP16 representation is [λmin, λmax], where
λmin = 6× 10−8 and λmax = 65504.
• ∇X , X , and W denote tensors of gradient, activation,

weight respectively. ∇x, x, and w are random variables
representing their elements.
• fG stands for mixed-precision GEMM and fT is the type

cast function from FP32 to FP16.
• α denotes the gradient scale to be calculated, and γ rep-

resents the underflow rate.

3.2 Assumptions about Gradient Distribution
Intuitively, the underflow rate of∇X after casting from FP32
to FP16 can be formulated as P (|∇x| ≤ λmin), the CDF



of the absolute gradient values evaluated at λmin. If ∇X is
scaled by α, the underflow rate γ then becomes:

γ = P (α|∇x| ≤ λmin) (1)
Equation 1 relates the underflow rate and the gradient scale.

Our model should characterizeP (|∇x|) to reveal the underly-
ing mapping between α and γ. However, precisely character-
izing the distribution of all gradients is intractable. Therefore,
we adopt the following assumptions that are commonly used
in prior papers to derive mathematically tractable models.
Assumption 1. ∇X , X , and W are independent of each
other, and their elements are mutually independent and iden-
tically distributed, which can be characterized by random
variables∇x, x, and w, respectively.

Assumption 1 is used in recent papers [He et al., 2015;
Glorot and Bengio, 2010] to derive the statistical relationship
among variables during forward and backward propagation
for scenarios like network initialization.
Assumption 2. Product terms in GEMM are mutually inde-
pendent and identically distributed in zero-mean normal dis-
tribution, i.e., p ∼ N (0, σ2), where p is the random variable
representing any product term.

A linear layer, e.g., convolution, applies GEMM on X and
W in the forward pass to produce output Y = fG(X,W ).
During backpropagation, ∇Y is multiplied by the Jacobian
∂Y
∂X =W to propagate the gradient to the previous layer, i.e.,
∇X = fG(∇Y,W ). Assumption 2 is needed to model the
distribution of the output from this GEMM routine. Sakr et
al. [2019] assume that product terms are i.i.d. with zero mean.
Based on our empirical observation, we additionally suppose
that these product terms share a normal distribution.
Assumption 3. Gradients propagated from softmax has a
log-normal distribution.

We need to typecast softmax input from FP16 to FP32, and
therefore, gradients propagated from softmax will be typecast
from FP32 to FP16. Assumption 3 is applied to estimate the
underflow rate of gradients in such cases. Since softmax gra-
dients are exponentially related1 to the normally distributed
activations (Assumption 2) output from the last linear layer, it
is plausible to assume that they are log-normally distributed.

3.3 Statistical Model
We first introduce the following lemma, which can be directly
derived from the assumptions given above.
Lemma 1. Gradients ∇X calculated from fG(∇Y,W ) are
normally distributed with zero mean and standard deviation

σ∇x =
√
Nσ∇yσw, (2)

where N is the accumulation length in this GEMM.

Proof. Under Assumption 2 each element in ∇X is an accu-
mulation of N product terms {pi}Ni=1 from N (0, σ2

p) . Given
Assumption 1, σp should be σ∇yσw.2 We can then derive
Equation 2 since {pi}Ni=1 are independent of each other.

1When using cross-entropy loss, softmax gradient is in the form
of ex/

∑
ex − y, where y is the one-hot label vector. Ignoring the

multiplier
∑
ex and bias y, we can get the exponential relationship.

2We ignore the mean terms to simplify the expression.

Lemma 1 characterizes the distribution of a gradient pro-
duced by GEMM. The following theorem adopts this lemma
to provide the underflow rate for such scenario.
Theorem 1. Given scale α, the underflow rate of ∇X =
fG(α∇Y,W ) when casting results from FP32 to FP16 is

γ = P (α|∇x| ≤ λmin) = erf

(
λmin

α
√
2Nσ∇yσw

)
, (3)

where erf is the error function.

Proof. |∇x| follows a half-normal distribution since ∇x is
normally distributed (Lemma 1). Equation 3 can be straight-
forwardly derived from the CDF of half-normal distribution
and Equation 2. 3

We also propose the following theorem to estimate the un-
derflow rate when type-casting softmax gradients.
Theorem 2. Given scale α and gradients ∇Y from softmax,
the underflow rate of∇X = fT (α∇Y ) is

γ =
1

2
+

1

2
erf

(
lnλmin − µ− lnα√

2σ

)
, (4)

where µ and σ are measured on ln∇Y .

Proof. ∇y has a log-normal distribution from Assumption
3, which implies that ∇y > 0 and ln∇y ∼ N (µ, σ2).
Scaled ∇y in the log space, i.e., ln(α∇y) = ln∇y +
lnα, has distribution N (µ + lnα, σ2). Meanwhile, since
P (ln(α∇y) ≤ lnλmin) = P (α∇y ≤ λmin), we can calculate
the CDF of ln(α∇y) evaluated at lnλmin to get P (α∇y ≤
λmin). Given that γ = P (α∇y ≤ λmin), we can figure out
Equation 4.

These equations together form the statistical model for gra-
dient scaling. In the next section, we will present how to in-
corporate this model with the backpropagation algorithm to
implement gradient scaling.

4 The Gradient Scaling Algorithm
The statistical model from the previous section relates the un-
derflow rate and gradient scale, such that we can estimate the
required scale from a given underflow rate. That is the core
idea of gradient scaling: this algorithm inserts gradient scale
calculation for each type cast on the backpropagation path to
reduce the rate of underflow. This section provides more de-
tails about this algorithm, including:
• How to scale down gradients before updating weights to

keep its original magnitude by propagating scales.
• The optimization problem to be solved for each scale to

reduce underflow rate without causing overflow.
• Besides fG and fT , how other operators, e.g., concate-

nation and branching, affect the scales being propagated.
Algorithm 1 covers our gradient scaling algorithm. We ex-

plain it piece by piece in the following sections.
3Note that if ReLU is applied to ∇Y before fG, σ∇x becomes√
N/2σ∇yσw as argued by [He et al., 2015], and we should update

Equation 3 accordingly. We will not explicitly mention the differ-
ence in the following discussion.



Algorithm 1: The gradient scaling algorithm.
Input: A DAG of backpropagation operators, of

which op(i) denotes the type of the i-th
operator; a threshold γ′; and a list of initial
gradients in FP32.

1 for i← ID of operators in their reversed topological
order of the given computational graph do

2 if op(i) is fG then
3 variables: scaled input gradient 〈α,∇Y 〉,

weights W , and the accumulation length N
4 statistics: σ ←

√
Nσ∇yσw

5 scale: local gradient scale β ←
min

(
λmin√

2σerf−1(γ)
, λmax
N max |∇X|max |W |

)
.

6 update: W ←W + fG(X,∇Z)/α
7 propagate: 〈βα, fG(β∇Z,W )〉
8 else if op(i) is fT applied to softmax then
9 variable: scaled input gradient 〈α,∇Y 〉

10 statistics: compute µ and σ on ln∇y
11 scale: β ←

min
(
e[lnλmin−µ−σ

√
2erf−1(2γ−1)], λmax

max |∇Y |

)
12 propagate: 〈βα, β∇Y 〉
13 else if op(i) is concatenation then
14 Duplicate the gradient scale to each partition.
15 else if op(i) is branching or splitting then
16 input: a list of gradients {〈αi,∇Xi〉}Mi=1

17 scale: β ← max({αj}Mj=1), such that
βmax |∇Xi|/αi < λmax,∀ 1 ≤ i ≤M

18 propagate: {〈β, β∇Xi/αi〉}Mi=1

19 else
20 Pass through the received scaled gradient.
21 end
22 end

4.1 Propagating Scaled Gradient
We keep track of the scale value during backpropagation in
the form of a 2-tuple 〈α,∇X〉, in which α is the product of
all the scales applied before propagating to ∇X . If we fur-
ther scale 〈α,∇X〉 by a local scale β, suppose the operator is
fT , the new tuple we will get is 〈αβ, β∇X〉. 〈α,∇X〉 also
indicates that without gradient scaling, the magnitude of the
gradient calculated at the same point will be α times smaller.

Weight updates, which are gradients propagated to weight
variables, should have the same magnitude as what we get
without gradient scaling. Otherwise, it may affect gradient
descent optimizers, e.g., SGD and Adam [Kingma and Ba,
2015], in the sense that these gradient scales change the step
size differently for weight update. If the scales are being
tracked and updated correctly, then the weight update, in the
form of 〈α,∇W 〉, can be correctly applied by using ∇W/α.
Line 6 in Algorithm 1 shows how weights are updated.

4.2 Optimizing Gradient Scale
Gradient scale should minimize the underflow rate after type
casting without causing overflow. This requirement can be

formulated as a constrained optimization problem, in which
the objective function can be expanded through Equation 3
and Equation 4, and the constraint ensures the largest value
will not exceed λmax. Note that even if the statistical model
for γ is biased, the overflow constraint is strong enough to
prevent numerical problems.

min
α
γ = P (α|∇X| ≤ λmin) s.t. αmax |∇X| < λmax

Because γ monotonically decreases with α, we end up with
deciding α by λmax/max |∇X|. In cases that max |∇X| �
λmax, making such a decision can result in very large scale
value, which is not necessary and even harmful, since α > 1
will enlarge the variance of gradients, i.e., Var(α∇X) =
α2Var(∇X) > Var(∇X), and may trigger gradient explo-
sion [Glorot and Bengio, 2010; He et al., 2016; Hanin, 2018].

A safer way to decide the scale is by reducing the under-
flow rate only below a predetermined threshold γ′, that is,
finding the lower bound on α given by P (α|∇X| ≤ λmin) ≤
γ′. By default, we set γ′ to 10−3, which indicates our inten-
tion to keep the underflow rate below 0.1%. In practice, we
constrain the scale value to be a power of two, such that scal-
ing up and down will be simply shifting the exponent bits. It
is also worth to mention that α can be smaller than 1, if the
type cast will cause overflow for any α ≥ 1.

4.3 Handling Specific Operators
The input to Algorithm 1 is a DAG representing backpropa-
gation, in which each node denotes an operator of different
types, e.g., type cast, GEMM, etc., and each edge specifies
dependency. This algorithm loops over each node in the or-
der of dependency, and its body is a big switch conditioned
on the operator type. For each case, besides executing the op-
erator itself, we need to make extra effort to scale gradients:
• GEMM and type casting. Simply solve the optimiza-

tion problem based on Equation 3 and 4.
• Concatenation. Since the backward pass of a concate-

nation operator only splits a gradient into multiple parts,
we can just distribute the scale of the original gradient.
• Branching and splitting. Both operators need to com-

bine multiple gradients, possibly with different scales,
together into one scaled gradient. Input gradients should
be rescaled to one common value, which can be selected
from their current scales in a descending order until one
that will not cause overflow to any gradient. Details can
be found in Line 17 of Algorithm 1.

5 Experiments
This section empirically evaluates the effectiveness of gradi-
ent scaling.

5.1 Experimental Setting
Software. We implemented gradient scaling in the
Chainer [Tokui et al., 2019] framework (version 6.3.0).
Chainer provides a dynamic computational graph based
programming paradigm similar to PyTorch. We also use
ChainerCV [Niitani et al., 2017] to apply our algorithm to
concrete training examples. The CUDA library (version
10.1) we use supports FP16 and TensorCore [Gupta, 2019].



Model Type Method Test Acc.

ResNet-18

FP32 N/A 70.76%

FP16

N/A 71.24%
Fixed-LS 71.39%
Dyn-LS 71.39%
GS 71.44%

ResNet-50

FP32 N/A 76.49%

FP16

N/A 76.07%
Fixed-LS 76.03%
Dyn-LS 76.12%
GS 76.22%

Table 1: ResNet-18/50 results on the ILSVRC 2012 dataset.

Hardware. Most of our experiments run on NVIDIA RTX
2080Ti that has the latest Turing architecture [Choquette
et al., 2018] and enables TensorCore operations. We also
have limited access to a multi-GPU cluster that has several
NVIDIA Tesla V100 installed to run distributed training.

Baseline methods. We compare gradient scaling (GS) with
the state-of-the-art MPT method with loss scaling, which has
two variants: using fixed loss scale (Fixed-LS), or dynam-
ically updating loss scale (Dyn-LS). We also compare with
FP32 training results.

Hyperparameters. The only hyperparameter for gradient
scaling is the underflow rate threshold γ′, which is set as
10−3 for all experiments. The update frequency of the gra-
dient scale is per 100 iterations, such that the overhead of
calculating gradient scales can be ignored. Task-specific hy-
perparameters will be listed in the following sections.

5.2 Image Recognition
We first examine ResNet-18 and ResNet-50 [He et al., 2016]
on the ILSVRC 2012 dataset [Russakovsky et al., 2015].
These are convolutional neural networks (CNNs) with ReLU,
batch normalization [Ioffe and Szegedy, 2015], and residual
connections, which sum up two outputs from distinct lay-
ers. Both networks can properly benchmark MPT since they
are typically used for recognition tasks, and their architec-
tures are representative of recently developed CNNs. We
train them in the same hyperparameter setting as [Goyal et
al., 2017]4 with 16 GPUs.

Table 1 presents the results. Due to limited computational
resources, we only train each scenario once, using 128 as the
loss scale for Fixed-LS. Note that among the FP16 results, GS
produces the best test accuracy for both networks. However,
since the residual structure partially mitigates underflow, the
benefit from using gradient scaling is not significant.

5.3 Object Detection
We choose SSD as the benchmark for measuring the perfor-
mance of MPT with different scaling methods on object de-
tection tasks. SSD is trained on a joint of the PASCAL VOC
2007 and 2012 training sets, and validated on the 2007 test

4The script we use is revised from https://github.com/chainer/
chainercv/blob/master/examples/classification.

BS Model Type Method Test mAP

8

SSD-300 FP16

N/A Diverged
Fixed-LS 76.23% (best in 7 runs)
Dyn-LS 69.26%
GS 76.35%

SSD-512 FP16

N/A Diverged
Fixed-LS 79.29% (best in 8 runs)
Dyn-LS 75.33%
GS 79.24%

32 SSD-512

FP32 N/A 80.50%

FP16

N/A Diverged
Fixed-LS 80.01%
Dyn-LS 80.17%
GS 80.31%

Table 2: SSD-300/512 training results. BS denotes batch size.

set. The training method5 is the same as the original paper,
with the data augmentation in [Fu et al., 2017].

SSD uses VGG [Simonyan and Zisserman, 2015] as the
backbone, which is initialized by pre-trained weights in-
stead of random values. The two SSD variants we examine,
SSD-300 and SSD-512, operate on images of 300×300 and
512×512 resolution, respectively. Multiple outputs from the
backbone are branched out to feed into predictors that esti-
mate location and class of possible objects at various scales.
Thes use of pre-trained weights combined with the branching
structure of the architecture can make loss scaling hard to use,
since they enforce the gradients at different places to have dis-
tinct distributions. However, gradient scaling is expected to
be better suited at handling such distributions.

Table 2 shows the result. We first train SSD-300 and 512
with batch size 8, and the reported accuracy is averaged from
multiple runs. Specifically, we use a range of loss scales and
choose the best result for Fixed-LS. We see that GS performs
similarly as the best result from Fixed-LS, and achieves much
higher performance than Dyn-LS. We also trained SSD-512
for the same number of iterations but with batch size 32, and
in this scenario, GS also gives the highest test mAP in MPT
results, only worse than the FP32 baseline. Note that the re-
sults from Fixed-LS are the best among multiple runs, which
implies the additional training effort that Fixed-LS requires.
The following includes some details for further discussion.

Fixed loss scaling. Fixed-LS requires searching for a loss
scale value. Figure 1a shows the non-trivial differences in ac-
curacy among loss scale choices. Taking into account the cost
for searching such a hyperparameter, Fixed-LS can be multi-
ple times slower than GS to achieve the same performance.

Dynamic loss scaling. Dyn-LS performs poorly especially
when the batch size is 8 (Figure 1b). The major reason is that
Dyn-LS implicitly increases the loss scale value and only de-
creases it when overflow occurs. The distribution of gradi-
ents in SSD is very different, and a large loss scale can easily
cause overflow. With the same number of training iterations,
these more frequent overflows correspond to wasted compu-
tation, such that the convergence rate of Dyn-LS slows down.

5The original training script can be found at https://github.com/
chainer/chainercv/blob/master/examples/ssd/.

https://github.com/chainer/chainercv/blob/master/examples/classification
https://github.com/chainer/chainercv/blob/master/examples/classification
https://github.com/chainer/chainercv/blob/master/examples/ssd/
https://github.com/chainer/chainercv/blob/master/examples/ssd/
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Figure 1: SSD MPT details using different scaling methods.
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Figure 2: Mean gradient scales for all layers of SSD-300/512 across
all training iterations. Layer are labeled from input to output in topo-
logical order. Black lines are error bars.

Since larger batch sizes can reduce the chance of exploding
gradient, Dyn-LS performs better when the batch size is 32.

Scale distribution. Figure 2 shows the distribution of gra-
dient scales computed for each convolutional layer. Those
layers with peak scales are located in network branches that
predict object positions and classes at various resolutions.
Other layers use smaller scales to further adjust gradients.

5.4 Segmentation
SegNet [Badrinarayanan et al., 2017], a fully convolutional
network with an encoder-decoder architecture, is our bench-
mark for image segmentation. Its encoder part is a VGG-like
CNN with batch normalization, and its decoder takes the out-
put from the encoder and processes it by multiple upsampling
and convolution layers. The loss is calculated by pixel-wise
softmax. When training it with mixed precision, we can cast
the encoder-decoder part into FP16 and cast the output back
to FP32 for the pixel-wise softmax.

SegNet is evaluated on the CamVid road scenes dataset,
which has 367 training and 233 test images at the resolution
of 360×480. When training it, we use SGD with batch size
12, learning rate 0.1, and momentum 0.9 for 16K iterations.
We compare gradient scaling with other loss scaling methods
for MPT, as well as the FP32 training baseline6.

6The original SegNet training script: https://github.com/chainer/
chainercv/tree/master/examples/segnet. We also collect the FP32
baseline result through this script, which is better than the reported
values from the original paper.

Model Type Method mIoU CLS GLB

SegNet

FP32 N/A 51.1% 68.3% 83.9%

FP16
N/A Diverged
Dyn-LS 48.3% 64.1% 82.4%
GS 49.6% 64.6% 83.4%

Table 3: SegNet MPT test results on CamVid.
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Figure 3: Details in the SegNet training procedure.

As shown in Table 3, GS performs the best among all MPT
results and a bit worse than the FP32 baseline. No exhaus-
tive search for Fixed-LS has been performed, and we only
use Dyn-LS as a counterpart. Validation results in Figure 3a
shows that training by Dyn-LS can be less stable than GS.

Explaining GS benefits. Figure 3b compares the computed
gradient scales in different layers and training iterations. The
last layer (ID=8) is the type cast from FP16 to FP32 before
pixel-wise softmax, layers 4-7 are the convolution layers in
the decoder, and layers 0-3 are in the encoder. The type cast
always requires large scales, otherwise the underflow rate will
be around 70%. GS can correctly calculate this scale for that
type cast. It can also scale down gradients to prevent overflow
when the accumulation length is long, specifically, at the in-
tersection of encoder and decoder, which is not available with
a single loss scale. The accuracy gap between GS and FP32 is
mainly because the extremely small pixel-wise softmax gra-
dients, and fully mitigating underflow requires α > λmax.

6 Conclusion

This paper presents gradient scaling, a novel method to tackle
gradient underflow in MPT. Our empirical evaluation on a va-
riety of vision-based model architectures shows improved ac-
curacy compared to existing MPT methods. For future work,
we plan to evaluate gradient scaling on other tasks and mod-
els, especially those for Natural Language Processing, as well
as extending it to even lower-precision representations such
as 8-bit floating-point, fixed-point, etc.
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