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Abstract: Training deep neural  networks (DNNs) requires a significant amount of  time and resources to obtain acceptable res-
ults,  which  severely  limits  its  deployment  in  resource-limited  platforms.  This  paper  proposes  DarkFPGA,  a  novel  customizable
framework to efficiently  accelerate the entire DNN training on a single FPGA platform. First,  we explore batch-level  parallelism
to enable  efficient  FPGA-based DNN training.  Second,  we devise  a  novel  hardware architecture  optimised by a  batch-oriented
data  pattern  and  tiling  techniques  to  effectively  exploit  parallelism.  Moreover,  an  analytical  model  is  developed  to  determine
the  optimal  design  parameters  for  the  DarkFPGA  accelerator  with  respect  to  a  specific  network  specification  and  FPGA  re-
source constraints.  Our results  show that the accelerator is  able to perform about 10 times faster than CPU training and about
a third of  the energy consumption than GPU training using 8-bit  integers  for  training VGG-like  networks  on the CIFAR dataset
for the Maxeler MAX5 platform.
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1.  Introduction

Deep  neural  networks  (DNNs)  have  achieved  remarkable
achievements on various demanding applications including im-
age  classification[1, 2],  object  detection[3, 4] and  semantic  seg-
mentation[5, 6].  In  resource-limited  settings,  the  development
of  real-time  and  low-power  hardware  accelerators  is  espe-
cially  critical,  and  hence  various  hardware  devices  including
FPGAs and ASICs have been utilized for implementing embed-
ded DNN applications. In particular, FPGAs are gaining popular-
ity because of their capability to provide superior energy effi-
ciency  and  low-latency  processing  while  supporting  high  re-
configurability,  making  them  suitable  for  accelerating  rapidly
evolving deep neural networks[7−9].

However,  most  of  the  existing  FPGA  accelerators  are  de-
signed  for  inference  with  low-precision  DNN  models,  which
are  trained  on  high-precision  models  (e.g.  32/64-bit  floating
point  models)  separately  on  GPU  or  CPU.  Since  DNNs  em-
ploy  different  precision  formats  for  training  and  inference,
they often need further fine-tuning to achieve acceptable ac-
curacy.  The separate training/inference processes make exist-
ing  FPGA  accelerators  difficult  to  support,  for  example,  sys-
tems requiring continual learning[10]. Various low-precision tra-
ining  techniques  including  mixed  precision[11, 12],  fixed-po-
int[13, 14] and ternary[15, 16] parameters, have been proposed to
reduce the fine-tuning overhead by low-precision models.

In  this  paper,  we  explore  the  benefits  and  drawbacks  of
employing  CPU,  GPU  and  FPGA  platforms  for  low-precision
training.  An  novel  FPGA  framework  is  developed  to  support
DNN training on a single FPGA with a low-precision format of

8-bit  integer  (int8).  Our  objective  is  to  determine  if  the  fine-
grained  customizability  and  flexibility  offered  by  FPGAs  can
be  exploited  to  outperform  cutting-edge  GPUs  in  low  preci-
sion training in terms of speed and power consumption.

To  meet  our  objective,  the  following  challenges  should
be addressed.

(1)  The  training  process,  compared  to  inference  process,
brings  additional  computations  and  different  operations  per-
formed in  backward propagation[17].  This  leads  to  differences
in  requirements  for  hardware  architecture  and  computation-
al resources.

(2)  Existing  FPGA  accelerators  for  inference  usually  ex-
ploit  image-level  and layer-level  parallelism for  efficient com-
puting.  On  contrast,  FPGA  accelerators  for  training  need  to
proceed  with  batches  of  training  examples  in  parallel.  There-
fore,  effective  exploitation  of  the  batch-level  parallelism
should contribute significant acceleration.

(3) Throughput is the primary performance metric of con-
cern  for  training,  while  inference  is  latency  sensitive.  This
cause batch-level parallelism to be neglected at inference ac-
celerators.

To solve these problems, this paper proposes a novel FP-
GA  architecture  for  DNN  training  by  introducing  a  batch-ori-
ented  data  pattern  which  we  refer  to  as  channel-height-
width-batch (CHWB) pattern. The CHWB pattern allocates train-
ing  samples  of  different  batches  at  adjacent  memory  ad-
dresses,  which  enables  parallel  data  transfer  and  processing
to  be  achieved  within  one  cycle.  Our  architecture  can  sup-
port the entire training process inside a single FPGA and accel-
erate  it  with  batch-level  parallelism.  A  thorough  exploration
of  the  design  space  with  different  levels  of  parallelism  and
their corresponding architectures with respect to resource con-
sumption and performance is also presented in this paper.

Moreover,  we  propose  DarkFPGA,  an  FPGA-based  deep
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learning  framework  with  a  dataflow  architecture.  Our  appro-
ach is built on Darknet framework[18], a neural network frame-
work written in C and CUDA, with FPGA implementation writ-
ten  in  MaxJ[19].  The  proposed  paper  is  an  extended  version
work  from  an  earlier  conference  paper[20].  Contributions  of
the previous version were as follows:

(1)  A  novel  accelerator  for  a  complete  DNN  training  pro-
cess. A dataflow architecture that explores batch-level parallel-
ism  for  efficient  FPGA  acceleration  of  DNN  training  is  de-
veloped,  providing  a  power-efficient  and  high-performance
solution for efficient training.

(2)  A  deep  learning  framework  for  low-precision  training
and inference on FPGAs called DarkFPGA. We perform extens-
ive  performance evaluations  for  our  framework  on the  MAX5
platform for the training of several well-known networks.

(3)  An  automatic  optimization  tool  for  the  framework  to
explore  the  design  space  to  determine  the  optimal  paramet-
ers for a given network specification.

Additionally, this paper contributes as follows:
(1) Toward the timing problems caused by batch-level par-

allelism,  the  pipelining  registers  are  inserted  to  reduce  fan-
out,  while  the  super-logic  region  allocation  is  proposed  to
avoid long-wires interconnection.

(2)  Training  with  INT8  weights,  instead  of  ternary
weights,  is  proposed  to  maintain  stable  training  perform-
ance for low-precision model.

The organization of this paper is organized as follows. Sec-
tion 2 reviews the training and inference processes and some
existing  FPGA-based  accelerators.  Section  3  introduces  the
deep  learning  algorithm  training  using  low-bits  number  sys-
tem.  Section  5  proposes  the  dataflow  accelerators  designed
for GEMM operations. Section 6 discusses the design space ex-
ploration for optimizing accelerator design. Section 7 presen-
ts our framework of  DarkFPGA. Section 8 shows the experim-
ental results, and we conclude the whole paper on Section 9.

2.  Background

This  section  provides  a  background  information  of  DNN
training,  emphasizing  its  difference  from  inference.  Mean-
while, the cutting-edge FPGA accelerators for deep neural net-
work are also introduced here.

2.1.  Training versus Inference

The  training  consists  of  forward  propagation  to  com-
pute  the  loss  of  the  cost  functions,  and  backward  propaga-
tion  to  compute  the  gradients  of  the  cost  function,  sub-
sequently  using  gradients  to  update  the  model  weights  for
learning  desirable  behavior.  Unlike  inference  with  only  for-
ward  propagation,  training  with  backward  propagation  is
more computationally expensive and introduce additional op-
erations for backward propagation.
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Fig.  1 illustrates  the  overview  of  the  inference  and  train-
ing  of  a  convolutional  layer.  For  a  specific  layer ,  the  infer-
ence process  with forward propagation simply  convolves  the
input activations ( ) with the weights ( ) to generate the out-
put activations for the next layer ( ).  On contrast,  the train-
ing process separately performs forward propagation to com-
pute the errors using the loss function, and backward propaga-
tion  to  convolve  the  errors  ( )  from  the  last  layer  with  the
current  weights  ( )  to  calculate the errors  to be propagated
to the previous layer ( ).  The backward propagation of  train-

Gling  also  compute  the  gradients  ( )  with  respect  to  the  loss
function  using  multiply–accumulate  operation  (MAC).  These
gradients  update  the  current  weights  according  to  the
chosen optimization algorithm like Adam[21].

For  better  understanding,  the  pseudocode  for  training  a
convolutional  layer  is  presented  on  Algorithm  1,  which
provides  a  precise  description  for  the  training  process.  The
meaning of the notations can be found in Table 1,  where the
same set of notation is also followed in the rest of this paper.

2.2.  Related works

Most  FPGA  accelerators  mainly  focus  on  the  DNN  infer-
ence  acceleration[22−27].  They[24, 28] usually  exploits  image-
level  and layer-level  parallelism extensively  for  efficient  infer-
ence speedup. For training accelerators[29−35], Geng et al.[31] ex-
plore  layer-level  parallelism  for  training  a  model  on  multiple
FPGAs in a pipelined manner. Li et al.[32] study different recon-
figurable  communication  patterns  on  a  multi-FPGA  cluster.
Dicecco et  al.[33] study  low-precision  training  with  a  reduced
precision  floating-point  library.  However,  those  accelerators
usually  deploy  the  inference  architecture  naively  for  training
without considering the batch-level  parallelism and addition-
al  backward  operations,  which  may  lead  to  undesirable  per-
formance.

Algorithm 1: Pseudocode for training convolutional layers

1 Forward propagation:
2 for b = 1 to B do
3     for c = 1 to C × K do
4         for f = 1 to F do
5            for im = 1 to H *W do
6                 Al+1[b][f][im] += Wl[f][c] *Al[b][c][im]
7 Backward propagation:
8 for b = 1 to B do
9     for c = 1 to C × K do
10         for f  = 1 to F do
11             for im = 1 to H *W do
12                 El[b][c][im] += Wl[f][c] *El+1[b][f][im]
13 Gradient Generation:
14 for b = 1 to B do
15     for c = 1 to C × K do
16         for f = 1 to F do
17             for im = 1 to H *W do
18                Gl[b][f][c] += Al[b][c][im] *El+1[b][f][im]
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Fig. 1. A overview of inference and training processes on the convolu-
tional layer.
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Recently,  some  researchers[29, 36] attempt  to  tackle  the
problem  by  distributing  the  DNN  computations  across  a  het-
erogeneous FPGA-CPU system.  Moss et  al.[36] propose to  per-
form the core GEMM operations on FPGAs and leave CPU for
the remaining jobs. This solution works well on FPGA-CPU het-
erogeneous system but requires effective load balancing sup-
port  for  heterogeneous devices,  since unpredictable commu-
nication  cost  between  CPUs  and  FPGAs  can  make  the  FPGA-
CPU  cross  communication  a  new  bottleneck  of  the  design.
Based  on  our  profiling  in  Section  8,  the  operations  executed
on CPU may require more computational time than FPGA ac-
celeration of matrix multiplication.

With the objective of speeding up training, this paper stud-
ies  the  acceleration  of  entire  training  on  a  single  FPGA,  ex-
plores the parallelism in training batches, and provides an ar-
chitecture  suitable  for  bidirectional  propagation.  We  propo-
se  a  low-precision  DNN  training  framework  accelerated  on  a
single FPGA platform. Compared to other frameworks, our pro-
posed  customizable  FPGA  design  achieves  about  10  times
speedup  over  a  CPU-based  implementation  and  is  about  2.5
times  more  energy  efficient  than  a  GPU-based  implementa-
tion.

3.  Low-precision DNN training algorithm

Our  low-precision  training  algorithm  is  developed  based
on WAGE[15], which is modified version for better FPGA imple-
mentation  using  shift-based  linear  mapping  and  hardware-
friendly quantization. Our optimizations are illustrated here.

W A
E G

QW
QA QE QG

The  basic  idea  of  WAGE[15] is  to  constrain  four  operands
to  low-bitwidth  integers:  weight  and  activation  in  for-
ward propagation,  error  and gradient  in  backward prop-
agation,  using  corresponding  quantization  operations ,

, ,  in  computation  flow  to  reduce  precision.  Experi-
ments show stable accuracy can be obtained on multiple data-
sets.  However,  for  hardware  implementation,  complex  math-
ematical  functions  including  logarithm,  exponential  opera-
tion  which  can  be  easily  realized  on  CPU/GPU  are  hardly
mapped  on  FPGA-implementation.  Therefore,  hardware-
friendly  customized  operations  are  necessary  for  the  accur-
ate and efficient FPGA-based deep neural network training.

3.1.  Shift-based linear mapping

σ(k)
In  order  to  quantize  floating-point  numbers  to  fixed-

point  number, k-bit  linear  mapping  is  adopted  on  WAGE[15],
where  continuous  and  unbounded  values  are  discretized
with uniform distance : 

σ(k) = (−k), k ∈ N+,

Q(x, k) = Clip{σ(k) × round [ x
σ(k) ] ,− + σ(k),  − σ(k)}.

[− + σ(k),  − σ(k)]
Here  round  function  maps  quantized  floating-point  number
to  nearest  fixed-point  number.  Clip  is  the  saturation function
to clip unbounded values to .

k

Considering  large  hardware  implementation  overhead
for  floating-point  operations,  mathematical  equivalent  in-
teger  operations  are  introduced  in  our  implementation,
where  the  linear  mapping  is  transformed  into  shifting  from
large  data  format  (32-bit  integers)  to  small  integers  ( -bit  in-
tegers) which can be expressed as: 

σ(k) = (k−), k ∈ N+,

Q(x, k, shift) = Clip {(x + round_value) ≫ shift,
− + σ(k),  − σ(k)} ,

round_value =  ≪ (shift − ).
Here we replace division operations used in float-point equa-
tions d with shift operations with an additional monolithic scal-
ing factor  shift  for  shifting values distribution to an appropri-
ate order of magnitude. The scaling factor shift is obtained in
WAGE[15] by following equation. 

shift(x) = round(logx).

x

With  complex  logarithm  and  exponential  operation,  the
shift(x) requires extensive resources to be implemented on FP-
GA.  To handle this  problem, we fine-tune this  formula,  which
is  used  to  obtain  the  nearest  power-of-two  value  from  input

, to obtain ceiling power-of-two value as follow: 

shift(x) = ceil(logx).
x

After  fine-tuning,  the  shift  factor  is  obtained  from  smal-
lest  power-of-two  value  greater  than ,  and  can  be  re-ex-
pressed by bit-wise operations as follow: 

shift(x) = (leading1(x) + ).
Here leading1 function detects the position of the most signi-
ficant "important" bit and return the index of the most signific-
ant  "important"  bit  only.  After  detailed experiments,  the fine-
tuning  has  no  effect  on  the  convergence  of  network  tra-
ining but more hardware-friendly for FPGA implementation.

3.2.  Quantization details

QW QA QE QG
W A

E G

The  quantization  operations  consist  of  four  operations
, , , .  Theses  operations  is  responsible  to  quant-

ize four training operands including weight , activation , er-
ror  and gradient  to low-bitwidth format.

3.2.1.    Weight QW
Weights  are  initialized  on  software  platform  based  on

the initialization method of  He et  al.[37],  which  can be  formu-
lated as: 

W U(−L,+L), L = max{√/nin, Lmin}, Lmin = ,

n in√
/n in

Lmin

where  is  the  layer  fan-in  number,  and  the  original  limit
 is  calculated  to  keep  same  variance  between  inputs

and outputs of the same layer theoretically. The additional lim-
it  is  a  minimum  value  that  the  uniform  distribution
should reach.

3.2.2.    Activation QA

ashift
For  activation,  the  bitwith  of  activation  would  increase

after  computation.  A  filter-wise  scaling  factor  is  intro-

Table 1.   Parameters for FPGA training.

Parameter Description

B the batch size of training examples
C the size of channel
F the size of filter
K the kernel size of weights
H the height of frames
W the width of frames
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duced for  shifting values distribution to an appropriate order
of magnitude, which can be obtained by following function: 

ashift = log(max{shift(Lmin/L), }).
This factor is  pre-defined constant for each layer determ-

ined  by  the  network  structure.  Using  this  factor  we  can  ob-
tain the quantized activation using the following equation: 

aq = Q(a, kA, ashift).
3.2.3.    Error QE

Experiments  from  WAGE[15] demonstrate  the  orientation
of  errors  plays  an  important  role  on  the  converge  perform-
ance  during  training.  Therefore,  orientation-based  quantiza-
tion scales errors into [–1,1] by dividing a shift factor as: 

eq = Q(e, kE, shift(max∣e∣)),
max∣e∣

max∣e∣
where  extracts  the  layer-wise  maximum  absolute
value  among  errors.  Since  the  shift  value  extracts  the  smal-
lest  power-of-two  value  for ,  an  obvious  optimization
method  is  using  "or"  operations  instead  of  max  to  improve
the hardware performance. 

eq = Q(e, kE, shift(or∣e∣)),
or∣e∣where  executes  the  bit-wise  or  operation  on  the  layer-

wise maximum absolute value among error.

3.2.4.    Gradient QG

g

Since  we  only  preserve  the  relative  value  of  the  error
after shifting, the gradients are shifted consequently. Here we
first rescale the gradient  with another scaling factor: 

gq = Bernoulli{(η × g) ≫ gshift},
gshift = shift(or∣g∣)),

η
η

or∣g∣ max∣g∣
where  is  learning  rate  which  is  constrained  as  power-of-
two. So  can also be represented by the corresponding shift
value.  Here  gradients  are  quantized  as  errors  by  the  bit-wise
operation  instead of the maximum function .

Bernoulli[38] function  was  originally  design  in  floating-
point number system to stochastically sample fractional parts
to either 0 or 1. The nature of the Bernoulli  distribution is the
larger number has higher probability to 1 and the smaller num-

ber has higher probability to 0. On contrast in integer system,
Bernoulli  function is stochastically rounding the shifting parts
of quantized value, which is realized by a random number gen-
erator MersenneTwister, a widely-used general-purpose pseu-
dorandom number generator[39] to generate Limited range of
random  numbers  according  to  shift  data  with  uniform  distri-
bution.  The  MersenneTwister  adds  Bernoulli  property  by
addition as following equation: 

gq = Clip {(η × g + round_value) ≫ gshift,

−  + σ(k),  − σ(k)} ,
gshift = shift(or∣g∣)),
round_value = random_int mod( ≪ gshift),
random_intwhere  is  random  numbers  of  32-bit  integer

format.

4.  Date pattern and tilling technique

4.1.  CHWB Pattern

For  DNN  training,  the  weights,  activations,  errors  and
gradients  are  too  large  to  be  stored  completely  in  the  on-
chip  memory,  where  only  a  portion  of  data  can  be  cached
on-chip  while  the  remaining  is  kept  off-chip.  As  the  band-
width between the on-chip and off-chip memory is limited, ex-
ploring  an  optimal  data  access  pattern  to  for  efficient  band-
width utilization is necessary for training.

Currently,  the most  widely-used data  pattern for  training
on  GPUs  is  referred  as  batch-channel-height-width  (BCHW),
which  depicts  the  order  of  data  dimensions  in  the  memory
space[40],  where  the  elements  along  the  lowest  dimension W
are  stored  consecutively.  An  example  of  data  represented  in
the  BCHW  pattern  is  shown  on Fig.  2(a),  whose  correspond-
ing data  layout  is  illustrates  in  the  DRAM in Fig.  2(c).  But  this
pattern  is  difficult  to  fetch  the  elements  from  different
batches  in  burst  mode,  because  they  are  usually  not  stored
consecutively  in  memory.  Therefore,  BCHW data  pattern may
under-utilize the bandwidth when exploring batch-level paral-
lelism.

To  handle  the  problem,  we  develop  the  channel-height-
width-batch  (CHWB)  pattern  to  explore  batch-level  parallel-
ism  without  compromising  bandwidth  utilization  on  FPGAs.
As shown in Fig. 2(b), the elements from adjacent batches are

 

…

H × W × BH × W × B

B B

C
C

H × W

B

H

W

C

B

(a) An example of BCHW sequence (b) An example of CHWB sequence
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(c) BCHW sequence in DRAM space (d) CHWB sequence in DRAM space 
 

Fig. 2. (Color online) Comparison of BCHW and CHWB patterns.
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allocated  consecutively,  which  allows  the  memory  interface
to  simultaneously  read  multiple  training  examples.  In  this
manner,  CHWB  data  pattern  enables  our  accelerator  to  ac-
quire  all  necessary  input  data  with  a  single  DRAM  burst  ac-
cess,  and  greatly  improve  bandwidth  utilization  for  FPGA
accelerator.

4.2.  Tiling

Tiling  is  a  common  optimization  technique  to  improve
bandwidth  utilization  for  DNN  acceleration  on  resource-lim-
ited  FPGA  devices[41].  The  strategy  partitions  large  input
frames into smaller tiles of data, where each tile can be fitted
into the on-chip memory of  an FPGA.  For  training with some
resource-intensive  tasks  such  as  matrix  transpose,  tiling
strategy is necessary for their FPGA implementation.

TB TC TF
TI

TI
TC TF

PB PI
TB TI

For the CHWB pattern, we consider tiling along four data
dimensions: batch tile ,  channel tile ,  filter tile  and im-
age tile ,  which correspond to the size of a tile along the di-
mension. Consider the input matrix transpose between the im-
age dimension and channel  dimension,  as  well  as  the weight
matrix transpose between the channel dimension and filter di-
mension during training[42],  the  image tile ,  the  channel  tile

 and the  filter  tile  are  all  set  to  same value.  In  this  case,
two  levels  of  parallelism  are  explored  in  our  design:  the
batch-level  parallelism  and  the  image-level  parallelism ,
which are controlled by the tiling parameters  and  respec-
tively.

TB × TI × TI
TI × TI

Taking  convolution  to  explain  how  tiling  technique
works.  In Fig.  3,  the  input  matrix  is  stored  using  CHWB  pat-
tern  3-dimensions  tiled  blocks,  while  the  weight
matrix  is  stored  with  two-dimensional  tiled  blocks.  In
the  forward  propagation,  the  tiled  input  matrix  and  the  tiled
weight  matrix  are  sequentially  multiplied  to  obtain  one  out-
put submatrix.

TB TIThe tiling parameters  and  must be chosen carefully,
since  a  larger  tile  size  can  improve  performance  by  reducing
the iterations of data transfers,  but more on-chip memory re-
sources  are  required  for  storing  larger  tiles.  In  Section  6.  we
will  explore  the  optimization  of  the  tile  parameters  on  re-
source-limited FPGA.

5.  FPGA accelerators for DNN training

In  this  section,  we  follow  the  idea  of  CHWB  pattern  and
tiling  technique  to  develop  the  architecture  of  our  training
accelerator.

5.1.  System overview

A system overview of  our  FPGA-based training accelerat-

or is presented on Fig. 4, which consists of a computation ker-
nel,  a  global  controller  and  a  DDR  controller  for  off-chip
memory  transfer.  The  computational  kernel  consists  of  a
batch splitter,  a  set  of  processing elements  (PEs)  and a  batch
merger.  When a stream of training batches arrives at  the ker-
nel,  the  splitter  divides  the  stream  into  multiple  parallel
streams  via  shift  registers  to  facilitate  batch-level  parallelism.
The  streams  are  then  processed  by  the  PEs  in  parallel.  Each
PE involves a general matrix multiplication kernel (GEMM ker-
nel)  or  an  auxiliary  kernel  to  perform  training  operations.
After  processing,  the  streams  are  merged  into  a  single  out-
put stream, then sent to the DDR controller. The global control-
ler is responsible for controlling the behaviour of each compu-
tation kernel, including assigning memory addresses for load-
ing/writing  data  through  the  DDR  controller,  enabling  spe-
cial  operations  required  by  particular  layers,  and  controlling
the direction of the data flow. The CPU sets the network con-
figuration in the global controller before starting training.

5.2.  Unified GEMM kernel

Fig.  5 presents  the  architecture  of  the  GEMM  kernel,
which provides a unified datapath to support the convolution-
al and fully-connected computations of the forward and back-
ward propagation, as well as the gradient generation. This uni-
fied approach employ matrix  multiplication to implement for
these  computations,  where  only  the  input/output  matrix
to/from  the  kernel  needs  to  be  changed.  Therefore,  we  can
avoid  time-consuming  dynamic  reconfiguration[29] or  using
separate kernels for different operations[31].

Before  any  computation,  the  input  data  streams  are
stored  in  the  input  buffers,  which  are  organized  as  a  double
buffer  in  order  to  overlap  the  data  transfer  and  matrix  trans-
position  with  the  computation.  As  shown  in Fig.  6,  when  the
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Fig. 3. (Color online) The tiling flow for convolution.
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(i + )th
ith

 tile  flows  from  the  batch  splitter  to  the  input  buffer,
the  tile  is  sent  to  the  GEMM  kernel  for  the  computation.
Note  that  the  weight  stream  bypasses  the  batch  splitter  and
enters  the  input  buffers  directly,  as  the  weight  data  are
shared by different tiles across the same batch.

The  GEMM  kernel  fetches  data  from  the  input  buffers  to
perform  tiled  matrix  multiplication.  The  intermediate  values
during  each  iteration  are  stored  in  the  output  buffers  for  the
next  iteration.  The  final  results  are  post-processed  by  the
batch merger then transferred back to the DRAM. The details
of  the  tiled  matrix  multiplication  are  shown  in  Algorithm  2.
Noted  that  the  shift  factor  of  forward  propagation  is  pre-
defined while  the the shift  factor  of  backward propagation is
obtained from output results. Therefore, the quantization func-
tion can be attached after forward propagation to reduce out-
put  bandwidth.  On  contrast,  the  output  results  maintain
Int32/Int16  format  during  backward  propagation  as  well  as
gradients  generations,  which  require  quantization  with  the
help of auxiliary kernels.

In order to support different modes of operations for the
forward propagation, the backward propagation and the gradi-
ent  generation,  the  global  controller  dynamically  re-config-
ures the buffers and data flow on the datapath. Under the con-
trol of global controller, the input buffer can be configured to
perform  on-the-fly  matrix  transposition  for  the  computation
of  backward  propagation.  Furthermore,  the  multiplexer  can
be switched to feed the different input streams to their corres-
ponding  processing  elements,  and  the  demultiplexer  can  be
switched to direct the output stream to the appropriate post-
processing unit.

5.3.  Auxiliary kernels

The  auxiliary  kernels  accelerate  supplementary  opera-
tions  with  batch-level  parallelism  including  im2col,  col2im,
max-pooling,  reshape,  summation,  nonlinear  functions  and
quantization as well  as their  backward counterparts (if  neces-
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Fig. 5. (Color online) Hardware architecture of GEMM kernel.
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Fig. 6. (Color online) Input double buffer supporting matrix transposi-
tion.

Algorithm 2: Pseudocode of tiled matrix multiplication
1 Consider that the weight matrix and gradient matrix are
    transferred into TI × TI tiled blocks, where input frames, output
    frames and error frames are transferred as 3-dimensions TB × TI ×
    TI tiled blocks. In particular, the input frames and output frames of
    fully-connected layer are transferred as 2-dimensions TB × TI tiled
    blocks
2 Convolutional forward propagation:
3 for f = 1 to F/TI do
4      for im = 1 to (H * W)/TI do
5          for b = 1 to B/TB do
6              for c = 1 to C × K/TI do
7                  Al+1(b)(f, im)c = Wl(f, c) × Al(b)(c, im)
8                  Al+1(b)(f, im) + = Al+1(b)(f, im)c

9              Quantize (Al+1(b)(f, im))
10              Output Al+1(b)(f, im)
11 Convolutional backward propagation:

C × K/TI12 for c = 1 to  do(H ∗W)/TI13      for im = 1 to  do
B/TB14          for b = 1 to  do
F/TI15              for f = 1 to  do

El−(b)(c, im)f = Wl(f, c) × El(b)(f, im)16                  
El−(b)(c, im) += El−(b)(c, im)f17                  

El−(b)(c, im)18              Output 
19 Convolutional gradients generations:

F/TI20 for f = 1 to  do
C × K/TI21      for c = 1 to  do
B/TB22          for b = 1 to  do(H ∗W)/TI23          for im = 1 to  do

Gl(b)(f, c)im = El+(b)(f, im) × Al(b)(c, im)T24              
Gl(b)(f, c) += Gl(b)(f, c)im25                  

Gl(f, c)+ = ∑TB
b= Gl(b)(f, c)im26              

Gl(f, c)27          Output 
28 Fully-connected forward propagation:

F/TI29 for f = 1 to  do
B/TB30      for b = 1 to  do
C/TI31          for c = 1 to  do

Al+(b)(f)c = Al(b)(c) ×Wl(f, c)T32              
Al+(b)(f) += Al+(b)(f)c33              

Al+(b)(f)34          Output 
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sary).  These  supplementary  operations  processed  independ-
ently since they have no learnable weights and occupy only a
small amount of total computation.

For  various  supplementary  operations,  various  types  of
separate processing units is implemented to support them. In
particular,  the  maxpooling  units  are  responsible  for  comput-
ing the maximum value and corresponding index over a num-
ber  of  neighbor  pixels,  whereas  the  backward  maxpooling
units propagate errors the to chosen index of subgraphs. The
im2col  expands  the  input  feature  map  into  column  vectors,
and col2im accumulate column the vectors back to input fea-
ture map. The quantization units are designed for casting inter-
mediate  variables  of  errors  and  gradients  generated  during
backward  propagation  and  gradients  generation  to  low  bit-
width quantized data (8-bit integer in our design). The summa-
tion  units  simply  add  two  flows  together  and  the  reshape
units change the location of data in buffers.

6.  Design space exploration

TB TI L

This section presents the design space exploration for op-
timizing the proposed DNN training accelerator. The perform-
ance  of  FPGA  implementations  is  affected  by  factors  includ-
ing batch tiling size ,  image tiling size  and bitwidth  for
training. The bitwidth is pre-defined while the two tiling sizes
are decided by our optimization model. To maximize perform-
ance,  we  develop  bandwidth  modelling,  resource  modelling
and  performance  modelling  to  enable  design  space  explora-
tion.

6.1.  Resource modeling

There  are  three  kinds  of  hardware  resources  in  FPGAs:
LUT,  Block  RAM  and  DSP,  which  form  the  resource  con-
straints  of  our  design  space.  We  present  equations  to  estim-
ate the utilization for each of them.

LUTfix DSPfix BRAMfix

First,  the  resource  consumption  of  the  global  controller
and  the  DRAM  controller  is  independent  of  the  design  para-
meters, while they are defined as , , .

Second,  the  resource  consumption  of  the  computational
kernels  is  affected  significantly  by  different  design  paramet-
ers.  For  example,  BRAMs  are  utilized  in  the  input  buffers  of
GEMM kernels and their usage is given by: 

BRAM =
 × TB × TI × ( × LI) +  × TI × LW

BRAMSIZE
,

where  the  constants  4  are  contributed  by  the  double  buffers
for both the normal matrix and the transposed matrix.

The multiply-and-add units utilize the DSPs as 

DSP = TB × TI × Dmul + TB × Al × Dadd + TB × Dadd,

Dmul Dadd
Al

log(TI)
where  and  are the DSP usage of the multiplier and
adder.  is  the  level  of  tree  adder  in  the  computational  ker-
nel, which equals to .

Finally,  an  approximate  regression  model  is  proposed  to
estimate  the  resource  consumption  of  LUT  as  it  is  difficult  to
predict statically: 

LUT = TB × TI × β + TB × δ,

β, δwhere  are  linear  function  parameters  pre-trained  based
on a specific platform.

6.2.  Bandwidth modeling

TB

N

TI

f

There  are  three  streams  flowing  from  the  DRAM  to  the
GEMM  kernels.  In  each  cycle  of  convolution,  one  weight  is
read  from  the  weight  stream  while  input  values  are  read
from input frame stream. The results  are accumulated in pro-
cessing  elements  before  iterations  of  the  convolution  are
completed. When it  comes to the fully-connected layer,  addi-
tional  weights  are  needed  which  increase  the  bandwidth
requirement.  Therefore,  the  theoretical  maximum  bandwidth
requirements  for  computing  the  convolutional  and  fully-
connected layers with frequency  are: 

BWCONV = (TB × LI +
TB × TI

N
× LO + LW) × f,

BWFC = (TB × LI +
TB × TI

N
× LO + TI × LW) × f,

LI LO LWwhere , ,  are the bitwidth of  the input frame,  the out-
put frame and the weight stream.

TB

For  the  auxiliary  kernel,  the  bandwidth  requirements  are
relatively  large  compared  to  the  small  amount  of  computa-
tions performed. In general,  it  may take one or two input val-
ues  to  generate  one or  two output  values,  which  handles  up
to  4  values  in  each  cycle.  As  these  operations  benefit  from
batch-level  parallelism,  the  bandwidth  requirements  have
also multiplied  times: 

BWauxiliary = ( × TB × LI +  × TB × LO) × f.

6.3.  Performance modeling

TI

TB
f

In each clock cycle, a GEMM kernel can accomplish  mat-
rix  multiplication  operations.  Therefore  for  our  batch-parallel
architect  with  kernels,  the  total  computational  time under
frequency  is: 

TCONV = B × C × K × F × H ×W
TI × TB × f

,

TFC = B × C × F
TI × TB × f

.

However,  the  above  formulae  are  only  valid  for  the  se-
quential  case.  In  fact,  in  order  to  support  parallel  computing,
tiled matrices are filled with zero values which may affect the
actual  computational  time.  Therefore,  the  computational
time is estimated as: 

TCONV =
⌈B⌉TB × ⌈C × K⌉TI × ⌈F⌉TI × ⌈H ×W⌉TI

TB × TI × f
,

TFC =
⌈B⌉TB × ⌈C⌉TI × ⌈F⌉TI

TB × TI × f
,

⌈X⌉T = ceil(X/T) × T,⌈X⌉T X
T X

where  function  means  mapping  to  the  least  multiple
of  greater than or equal to , which indicates that these for-
mulae are identical only when tiling sizes are set as factors of
the corresponding parameters.

On  the  other  hand,  in  each  cycle  of  the  auxiliary  kernel,
frames  batches  can  be  handled  simultaneously,  where  the
computational time of auxiliary kernels is: 
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Tauxiliary =
⌈B⌉TB × C × H ×W

TB × f,

Benefited  from  our  dataflow  architecture,  the  transmis-
sion time of the computational kernels can be overlapped by
the communication time.

By  evaluating  the  performance  of  every  combination
based  on  the  above  models,  a  single-objective  optimization
tool can be built for minimal execution time as: 

Minimize Time = T′CONV + T′FC + T′auxiliary,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
LUT + LUTfix ⩽ LUTlimit,

BRAM + BRAMfix ⩽ BRAMlimit,

DSP + DSPfix ⩽ DSPlimit,

BW ⩽ BWlimit,

LUTlimit BRAMlimit DSPlimit BWlimit
T′CONV T′FC T′auxiliary

where , , ,  are  limited  on-
chip  resources,  and  +  +  are  the  expected
computation time for a specific network description.

7.  The DarkFPGA framework

For our proposed dataflow architecture, we present Dark-
FPGA,  a  hardware/software  co-designed  FPGA  framework  for
effective  training.  DarkFPGA  framework  is  built  with  scalable
accelerator  architecture  which  is  software-definable  to  sup-
port  various  DNN  networks  and  different  parallel  levels
through  deploying  different  FPGA  bitstreams,  where  a  multi-
level  parallelism  scalable  FPGA  design  is  developed.
Moreover,  a  optimizing  tool  is  included  to  produce  optim-
ised  design  for  optimised  performance  based  on  user  con-
straints.

We  automate  the  process  of  exploring  design  paramet-
ers  for  the  DarkFPGA  framework,  which  accelerates  the  en-
tire training process with a unified module on FPGA. Our tool
can receive a network description and a training dataset to pro-
duce  the  most  suitable  parameters  for  the  accelerator.  The
overview  of  our  DarkFPGA  framework  and  optimizing  tool
are illustrated in Fig. 7 with six stages:

(1)  Parse  network  description.  The  tool  predicts  optim-
ized  parameter  values  and  selects  a  suitable  FPGA  bitstream
to configure hardware.

(2)  Allocate  device  DRAM  space  for  the  activations,
weights, errors and gradients.

(3) Initialize weights and transfer them to DRAM.
(4)  Fetch  and  transfer  the  training  samples  to  DRAM.

Data  reorganization  is  used  to  convert  training  samples  into
the CHWB sequence.

(5) Launch FPGA acceleration.
(6) Train neural network iteratively. Transfer loss and accur-

acy  information  back  to  the  host  for  each  complete  training
batch.

8.  Experimental result

We  evaluate  our  framework  on  the  Maxeler  MAX5 plat-
form, which consists of a Xilinx ultrascale+ VU9P FPGA. Three
16 GB DDR4 DIMMs are installed on the platform with a maxim-
um  bandwidth  of  63.9  GB/s.  Our  hardware  accelerator  works
at  200 MHz.  Maxcompiler  2019.1  and Vivado 2018.3  are  used
for  synthesis  and  implementation.  The  VGG-like  network[43]

trained  on  the  Cifar10[1] dataset  is  evaluated  in  the  following
training  experiments.  Differ  form  the  conference  version  of
this  paper[20],  we  use  INT8  weights  instead  of  ternary  weight
during training. Although the use of INT8 weights cause inevit-
able  degradation in  training performance,  it  is  able  to  obtain
more stable accuracy performance for training.

Noted  while  our  implementation  are  able  to  achieve  the
massive  parallelization  with  dataflow  architecture,  it  may
have  difficulty  in  making  the  timing  closure  for  a  high  clock
frequency,  or  even passing the place and route.  This  is  partly
because  these  direct  interconnects  become  long  wires  when
the  DSP  blocks  are  distributed  among  the  whole  FPGA  chip,
and  large-scale  data  reuse  between  DSP  blocks  introduces
large fan-out[44]. Moreover, the timing closure get worse on Xil-
inx  ultrascale+  VU9P  FPGA  which  enables  multiple  super-lo-
gic  regions  (SLR)  design.  In  this  case,  signal  paths  between
two  SLR  may  introduce  large  delays  and  significantly  impact
timing. DarkFPGA tackles the timing issue for two major optim-
ization.  First,  a  multiple  level  of  pipelining  registers  is  inser-
ted  after  high  fan-out  data  stream  as  a  balanced  tree  to  lim-
its the fan-out it can have. Second, the GEMM Kernel of DarkFP-
GA  is  forced  to  be  divided  into  two  parallel  submodules,
which  are  assigned  to  a  super-logic  regions  (SLR).  These  sig-
nal interconnects of GEMM Kernel are limited within their cor-
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Fig. 7. (Color online) The DarkFPGA framework.
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responding super-logic regions (SLR).

8.1.  Exploration of DarkFPGA performance

TB, TI

Based  on  the  discussions  in  Section  5  and  Section  6,  the
performance  of  DarkFPGA  is  significantly  determined  by  the
tile  sizes  ( ).  Therefore,  the  selection  of  tile  parameters  is
analyzed  here  under  the  network  configuration  shown  in
Table 2.

TB

TB
TI

TCONV TFC
C F H W

TI
TB

TI
TB TI

The  batch  tile  is  crucial  for  maximising  performance,
which  is  bounded  by  the  training  batch  size.  Consider  that
the  commonly  used  batch  size  is  128,  the  selection  of  batch
tile  for  exploration  is  constrained  among  (32,  64,  128).
Also,  the  image  tile  is  mainly  related  to  the  computational
times  and , which depends on the network paramet-
ers , ,  and .  According  to Table  2,  the  selection  of  im-
age tile  is constrained among (16, 32, 64). Due to the require-
ments  of  matrix  transposition  operations,  the  batch  tile 
should  be  greater  than  or  equal  to  image  tile .  Therefore
the design space ( , ) under evaluation is constrained with-
in (128,  64),  (128,  32),  (128,  16),  (64,  64),  (64,  32),  (64,  16),  (32,
32),  (32,  16),  (16,  16).  In  particular,  the  design  space  (128,  64)
is removed from evaluation for hardware resource limitation.

TB TI
TB

TI

TB × TI

TB × TI

TB
TB

TI

The  corresponding  performance  and  resource  consump-
tion under different design parameters  ( , )  is  illustrated in
Fig.  8.  As  shown  in Figs.  8(a) and 8(b),  the  design  space  ( ,

)  changes  from  (128,  32)  to  (32,  16)  as  the  performance  de-
creases.  We  can  find  that  the  most  critical  factors  that  affect
the  performance  are  the  multiplication  of  two  tiling  size
( ).  The  reason  is  that,  according  to  our  performance
model, the computational time for matrix multiplication opera-
tions  are  accelerated  by  ( )  times,  which  domain  the
training  process.  And  the  secondary  influencing  factor  is
batch-level parallelism ( ). This is because the auxiliary opera-
tions  are  only  accelerated  by  times,  with  no  relationship
about . Finally, Fig. 8(c) shows the relation between DSP utiliz-
ation  and  performance,  indicating  that  our  design  space  is
bounded by DSP resources.

TB =  TI = 

Therefore,  we  customize  a  DarkFPGA  design  to  determ-
ine  the  optimal  implementation  of  the  training  accelerator
when , .

8.2.  Heterogeneous versus homogeneous computing

Some  of  the  existing  FPGA  accelerators  rely  on  hetero-
geneous  computing  to  handle  auxiliary  operations[36, 45].  To
quantitatively  compare  the  performance  discrepancies
between  heterogeneous  and  homogeneous  computing,  our

DarkFPGA  framework  is  revised  to  implement  heterogen-
eous  computation  across  an  FPGA-CPU  heterogeneous  sys-
tem,  which  is  achieved  by  delivering  auxiliary  operations  to
CPU and removing the auxiliary kernels.

TB = , TI = 
In  this  experiment,  the  tiling  size  is  set  to

( ). Fig.  9 illustrate  the  experiment  results
which show that homogeneous computing can achieve signi-
ficantly  higher  performance  on  our  DarkFPGA  framework.
Based  on  the  comparison  between  CPU  homogeneous  sys-
tem  and  CPU+FPGA  heterogeneous  system  (Fig.  9(a) versus
Fig.  9(b)),  heterogeneous  computing  can  effectively  improve
the  performance  of  GEMM,  but  other  parts  of  the  training
would  become  a  new  computing  bottleneck.  This  problem
can  be  addressed  with  a  homogeneous  FPGA  system,  acce-
lerating  everything  by  batch-parallelism  to  achieve  over  10
times  speedup  (Fig.  9(b) versus Fig.  9(c)).  This  experiment
clearly  showcases  the  benefits  of  implementing  the  entire
training process on the FPGA.

Note that using multi-threaded or high-performance CPU
can significantly improve heterogeneous computing perform-
ance. However their high power consumption brings a tough
challenge for embedded DNN applications.

8.3.  Performance comparison with GPU and CPU

Here we compare the performance of DarkFPGA with oth-
er  platforms  like  GPU  and  CPU.  All  software  results  are  run-
ning  on  an  Intel  Xeon  X5690  CPU  (6  cores,  3.47  GHz)  and  an
NVIDIA  GeForce  GTX  1080  Ti  GPU.  After  finishing  the  same
number of batches, all platforms achieve similar accuracies. Un-
fortunately,  GeForce  GTX  1080  Ti  does  not  have  native  int8
support,  we  evaluate  the  GPU  performance  by  limiting  the
range  of  float32  number  system,  instead  of  actual  GPU  low-
precision training.

Table 3 shows the performance and power consumption,
as well as other important metric on different platforms. Dark-
FPGA can achieve over  200 times speedup over  a  CPU-based
implementation of Darknet and is 2 times slower than a GPU-
based  implementation  of  Darknet  on  overall  performance.
The  average  power  consumption  (13.5  W)  of  FPGA  is  ob-
tained by the Maxeler performance monitoring tools. By mul-
tiplying  time  and  power  consumption,  our  FPGA-based
design  is  5  times  more  energy  efficient  than  GPU  implemen-
tation of Darknet.

Note  that  Darknet  is  a  lightweight  neural  network  fra-
mework for  fast  iterative  design,  which limits  the overall  per-
formance  of  GPU  and  CPU.  For  fair  comparison,  we  evaluate
the  training  performance  on  TensorFlow[46] using  multi-
threaded acceleration  for  CPU and cuDNN[47] acceleration  for
GPU,  as  shown  in  brackets.  It  shows  that  DarkFPGA  achieves
10  times  speed  up  over  CPU-based  implementation  and  2.5
times  more  energy  efficient  than  GPU  implementation  on
TensorFlow.

8.4.  Performance comparison with other FPGA-based

training system

Finally, comparisons between out DarkFPGA and other FP-
GA  training  accelerators  are  conducted,  in  terms  of  resource
utilization,  performance  and  throughput  and  on Table  4.
Since many important matrices are not provided and the mod-
els for training are different, comparison between different FP-
GA-based  training  accelerator  in  a  fair  is  extremely  difficult

Table 2.   The network architecture in experiment.

Layer B C F H × W K

CONV1 128 3 128 32 × 32 3 × 3
CONV2 128 128 128 32 × 32 3 × 3
MAXPOOLING 128 128 128 16 × 16 2 × 2
CONV3 128 128 256 16 × 16 3 × 3
CONV4 128 256 256 16 × 16 3 × 3
MAXPOOLING 128 256 256 8 × 8 2 × 2
CONV5 128 256 512 8 × 8 3 × 3
CONV6 128 512 512 8 × 8 3 × 3
MAXPOOLING 128 512 512 4 × 4 2 × 2
FC 128 8096 1024 – –
FC 128 1024 10 – –
SSE 128 10 10 – –
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and  not  straightforward.  Even  in  such  situation,  our  DarkFP-
GA  accelerator  still  show  desirable  performance.  Our  design
outperforms FPDeep[31] in term of performance per FPGA. Ac-
celerator from DiCecco et al.[33] outperform our accelerator in

throughput  by  training  small  network  similar  to  LeNet-5[1].
Moreover, in comparison to[35], a lightweight FPGA training ac-
celerator,  our  DarkFPGA  maintains  a  high  throughput  when
training  more  smaller  network  VGG-16[43] compared  with[35].
A work from[34] achieves much higher throughput than our im-
plementation  by  pruning  over  90%  weights  and  50%  activa-
tion  during  training  process,  whose  performance  can  be  4×
faster than GPU.

These comparisons  can somehow show that  our  DarkFP-
GA  has  the  capacity  to  train  deep  neural  network.  Our  ana-
lyses  show  that  the  improvement  of  performance  comes
from  FPGA-based  batch-level  parallelism.  In  particular,  the
dataflow  architecture  allows  us  to  fully  exploit  the  advant-
ages  of  batch-level  parallelism  and  maximize  throughput
with the help of dataflow programming language[19].

9.  Conclusion

This  work  proposes  DarkFPGA,  a  novel  FPGA  framework
for  efficient  training  of  deep  neural  networks,  with  a  custo-
mized  low-precision  DNN  training  algorithm.  The  DarkFPGA
accelerator  explores  batch-level  parallelism,  which  provides
efficient  training  acceleration  for  both  forward  and  backw-

Table 3.   Performance comparison among FPGA, CPU and GPU.

Parameter CPU GPU DarkFPGA
Platform Intel Xeon

X5690
GTX 1080 Ti MAX5

Platform
No. of cores 6 3584 −
Compiler GCC 5.4.0 CUDA 9.0 Maxcompiler

2019.2
Flag -Ofast − −
Frequency (GHz) 3.47 1.58 0.2
Precision 32-bit

floating point
32-bit
floating point

8-bit fixed
point

Technology (nm) 32 28 16
Processing time per
batch (ms)

66439 (3270) 126 (53.4) 331

Threads 1 (24) − −
Power (W) 131 (204) 187 (217) 13.5
Energy (J) 8712 (667.1) 23.6 (11.6) 4.5
Energy efficiency 1x (13x) 369x (751x) 1936x
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Fig. 8. (Color online) Performance and resource consumption experiments under different design space using int8 weights. (a) Computational
time. (b) Performance evaluation.  (c) Resource consumption.
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ard  propagation  on  a  homogeneous  FPGA  system.  Optimiza-
tion  strategies  such  as  batch-focused  data  sequence  CHWB
and tiling strategies are employed to improve overall perform-
ance.  Furthermore,  an  optimization  tool  is  developed  for  de-
termining  the  optimal  design  parameters  for  a  specific  net-
work description. Future work includes applying DarkFPGA to
multi-FPGA  clusters,  exploring  mixed  precision  and  binarised
training,  and  supporting  cutting-edge  network  functions  like

group normalization and depthwise convolution.
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