

Towards efficient deep neural network training by FPGA-based
batch-level parallelism

Cheng Luo1, †, Man-Kit Sit2, Hongxiang Fan2, Shuanglong Liu2, Wayne Luk2, and Ce Guo2

1State Key Laboratory of ASIC and System, Fudan University, Shanghai 200050, China
2Department of Computing, Imperial College London, London, United Kingdom

Abstract: Training deep neural networks (DNNs) requires a significant amount of time and resources to obtain acceptable res-
ults, which severely limits its deployment in resource-limited platforms. This paper proposes DarkFPGA, a novel customizable
framework to efficiently accelerate the entire DNN training on a single FPGA platform. First, we explore batch-level parallelism
to enable efficient FPGA-based DNN training. Second, we devise a novel hardware architecture optimised by a batch-oriented
data pattern and tiling techniques to effectively exploit parallelism. Moreover, an analytical model is developed to determine
the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA re-
source constraints. Our results show that the accelerator is able to perform about 10 times faster than CPU training and about
a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset
for the Maxeler MAX5 platform.

Key words: deep neural network; training; FPGA; batch-level parallelism

Citation: C Luo, M K Sit, H X Fan, S L Liu, W Luk, and C Guo, Towards efficient deep neural network training by FPGA-based batch-
level parallelism[J]. J. Semicond., 2020, 41(2), 022403. http://doi.org/10.1088/1674-4926/41/2/022403

1. Introduction

Deep neural networks (DNNs) have achieved remarkable
achievements on various demanding applications including im-
age classification[1, 2], object detection[3, 4] and semantic seg-
mentation[5, 6]. In resource-limited settings, the development
of real-time and low-power hardware accelerators is espe-
cially critical, and hence various hardware devices including
FPGAs and ASICs have been utilized for implementing embed-
ded DNN applications. In particular, FPGAs are gaining popular-
ity because of their capability to provide superior energy effi-
ciency and low-latency processing while supporting high re-
configurability, making them suitable for accelerating rapidly
evolving deep neural networks[7−9].

However, most of the existing FPGA accelerators are de-
signed for inference with low-precision DNN models, which
are trained on high-precision models (e.g. 32/64-bit floating
point models) separately on GPU or CPU. Since DNNs em-
ploy different precision formats for training and inference,
they often need further fine-tuning to achieve acceptable ac-
curacy. The separate training/inference processes make exist-
ing FPGA accelerators difficult to support, for example, sys-
tems requiring continual learning[10]. Various low-precision tra-
ining techniques including mixed precision[11, 12], fixed-po-
int[13, 14] and ternary[15, 16] parameters, have been proposed to
reduce the fine-tuning overhead by low-precision models.

In this paper, we explore the benefits and drawbacks of
employing CPU, GPU and FPGA platforms for low-precision
training. An novel FPGA framework is developed to support
DNN training on a single FPGA with a low-precision format of

8-bit integer (int8). Our objective is to determine if the fine-
grained customizability and flexibility offered by FPGAs can
be exploited to outperform cutting-edge GPUs in low preci-
sion training in terms of speed and power consumption.

To meet our objective, the following challenges should
be addressed.

(1) The training process, compared to inference process,
brings additional computations and different operations per-
formed in backward propagation[17]. This leads to differences
in requirements for hardware architecture and computation-
al resources.

(2) Existing FPGA accelerators for inference usually ex-
ploit image-level and layer-level parallelism for efficient com-
puting. On contrast, FPGA accelerators for training need to
proceed with batches of training examples in parallel. There-
fore, effective exploitation of the batch-level parallelism
should contribute significant acceleration.

(3) Throughput is the primary performance metric of con-
cern for training, while inference is latency sensitive. This
cause batch-level parallelism to be neglected at inference ac-
celerators.

To solve these problems, this paper proposes a novel FP-
GA architecture for DNN training by introducing a batch-ori-
ented data pattern which we refer to as channel-height-
width-batch (CHWB) pattern. The CHWB pattern allocates train-
ing samples of different batches at adjacent memory ad-
dresses, which enables parallel data transfer and processing
to be achieved within one cycle. Our architecture can sup-
port the entire training process inside a single FPGA and accel-
erate it with batch-level parallelism. A thorough exploration
of the design space with different levels of parallelism and
their corresponding architectures with respect to resource con-
sumption and performance is also presented in this paper.

Moreover, we propose DarkFPGA, an FPGA-based deep

Correspondence to: C Luo, 16110720014@fudan.edu.cn
Received 7 NOVEMBER 2019; Revised 19 DECEMBER 2019.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 022403

doi: 10.1088/1674-4926/41/2/022403

http://dx.doi.org/10.1088/1674-4926/41/2/022403

learning framework with a dataflow architecture. Our appro-
ach is built on Darknet framework[18], a neural network frame-
work written in C and CUDA, with FPGA implementation writ-
ten in MaxJ[19]. The proposed paper is an extended version
work from an earlier conference paper[20]. Contributions of
the previous version were as follows:

(1) A novel accelerator for a complete DNN training pro-
cess. A dataflow architecture that explores batch-level parallel-
ism for efficient FPGA acceleration of DNN training is de-
veloped, providing a power-efficient and high-performance
solution for efficient training.

(2) A deep learning framework for low-precision training
and inference on FPGAs called DarkFPGA. We perform extens-
ive performance evaluations for our framework on the MAX5
platform for the training of several well-known networks.

(3) An automatic optimization tool for the framework to
explore the design space to determine the optimal paramet-
ers for a given network specification.

Additionally, this paper contributes as follows:
(1) Toward the timing problems caused by batch-level par-

allelism, the pipelining registers are inserted to reduce fan-
out, while the super-logic region allocation is proposed to
avoid long-wires interconnection.

(2) Training with INT8 weights, instead of ternary
weights, is proposed to maintain stable training perform-
ance for low-precision model.

The organization of this paper is organized as follows. Sec-
tion 2 reviews the training and inference processes and some
existing FPGA-based accelerators. Section 3 introduces the
deep learning algorithm training using low-bits number sys-
tem. Section 5 proposes the dataflow accelerators designed
for GEMM operations. Section 6 discusses the design space ex-
ploration for optimizing accelerator design. Section 7 presen-
ts our framework of DarkFPGA. Section 8 shows the experim-
ental results, and we conclude the whole paper on Section 9.

2. Background

This section provides a background information of DNN
training, emphasizing its difference from inference. Mean-
while, the cutting-edge FPGA accelerators for deep neural net-
work are also introduced here.

2.1. Training versus Inference

The training consists of forward propagation to com-
pute the loss of the cost functions, and backward propaga-
tion to compute the gradients of the cost function, sub-
sequently using gradients to update the model weights for
learning desirable behavior. Unlike inference with only for-
ward propagation, training with backward propagation is
more computationally expensive and introduce additional op-
erations for backward propagation.

l

Al Wl
Al+

El+
Wl

El

Fig. 1 illustrates the overview of the inference and train-
ing of a convolutional layer. For a specific layer , the infer-
ence process with forward propagation simply convolves the
input activations () with the weights () to generate the out-
put activations for the next layer (). On contrast, the train-
ing process separately performs forward propagation to com-
pute the errors using the loss function, and backward propaga-
tion to convolve the errors () from the last layer with the
current weights () to calculate the errors to be propagated
to the previous layer (). The backward propagation of train-

Gling also compute the gradients () with respect to the loss
function using multiply–accumulate operation (MAC). These
gradients update the current weights according to the
chosen optimization algorithm like Adam[21].

For better understanding, the pseudocode for training a
convolutional layer is presented on Algorithm 1, which
provides a precise description for the training process. The
meaning of the notations can be found in Table 1, where the
same set of notation is also followed in the rest of this paper.

2.2. Related works

Most FPGA accelerators mainly focus on the DNN infer-
ence acceleration[22−27]. They[24, 28] usually exploits image-
level and layer-level parallelism extensively for efficient infer-
ence speedup. For training accelerators[29−35], Geng et al.[31] ex-
plore layer-level parallelism for training a model on multiple
FPGAs in a pipelined manner. Li et al.[32] study different recon-
figurable communication patterns on a multi-FPGA cluster.
Dicecco et al.[33] study low-precision training with a reduced
precision floating-point library. However, those accelerators
usually deploy the inference architecture naively for training
without considering the batch-level parallelism and addition-
al backward operations, which may lead to undesirable per-
formance.

Algorithm 1: Pseudocode for training convolutional layers

1 Forward propagation:
2 for b = 1 to B do
3 for c = 1 to C × K do
4 for f = 1 to F do
5 for im = 1 to H *W do
6 Al+1[b][f][im] += Wl[f][c] *Al[b][c][im]
7 Backward propagation:
8 for b = 1 to B do
9 for c = 1 to C × K do
10 for f = 1 to F do
11 for im = 1 to H *W do
12 El[b][c][im] += Wl[f][c] *El+1[b][f][im]
13 Gradient Generation:
14 for b = 1 to B do
15 for c = 1 to C × K do
16 for f = 1 to F do
17 for im = 1 to H *W do
18 Gl[b][f][c] += Al[b][c][im] *El+1[b][f][im]

Al CONV Al + 1

Wl

CONV El + 1El

MAC Gl

Al

CONV Al + 1

Inference

Training

Wl

Fig. 1. A overview of inference and training processes on the convolu-
tional layer.

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

Recently, some researchers[29, 36] attempt to tackle the
problem by distributing the DNN computations across a het-
erogeneous FPGA-CPU system. Moss et al.[36] propose to per-
form the core GEMM operations on FPGAs and leave CPU for
the remaining jobs. This solution works well on FPGA-CPU het-
erogeneous system but requires effective load balancing sup-
port for heterogeneous devices, since unpredictable commu-
nication cost between CPUs and FPGAs can make the FPGA-
CPU cross communication a new bottleneck of the design.
Based on our profiling in Section 8, the operations executed
on CPU may require more computational time than FPGA ac-
celeration of matrix multiplication.

With the objective of speeding up training, this paper stud-
ies the acceleration of entire training on a single FPGA, ex-
plores the parallelism in training batches, and provides an ar-
chitecture suitable for bidirectional propagation. We propo-
se a low-precision DNN training framework accelerated on a
single FPGA platform. Compared to other frameworks, our pro-
posed customizable FPGA design achieves about 10 times
speedup over a CPU-based implementation and is about 2.5
times more energy efficient than a GPU-based implementa-
tion.

3. Low-precision DNN training algorithm

Our low-precision training algorithm is developed based
on WAGE[15], which is modified version for better FPGA imple-
mentation using shift-based linear mapping and hardware-
friendly quantization. Our optimizations are illustrated here.

W A
E G

QW
QA QE QG

The basic idea of WAGE[15] is to constrain four operands
to low-bitwidth integers: weight and activation in for-
ward propagation, error and gradient in backward prop-
agation, using corresponding quantization operations ,

, , in computation flow to reduce precision. Experi-
ments show stable accuracy can be obtained on multiple data-
sets. However, for hardware implementation, complex math-
ematical functions including logarithm, exponential opera-
tion which can be easily realized on CPU/GPU are hardly
mapped on FPGA-implementation. Therefore, hardware-
friendly customized operations are necessary for the accur-
ate and efficient FPGA-based deep neural network training.

3.1. Shift-based linear mapping

σ(k)
In order to quantize floating-point numbers to fixed-

point number, k-bit linear mapping is adopted on WAGE[15],
where continuous and unbounded values are discretized
with uniform distance :

σ(k) = (−k), k ∈ N+,

Q(x, k) = Clip{σ(k) × round [x
σ(k)] ,− + σ(k),  − σ(k)}.

[− + σ(k),  − σ(k)]
Here round function maps quantized floating-point number
to nearest fixed-point number. Clip is the saturation function
to clip unbounded values to .

k

Considering large hardware implementation overhead
for floating-point operations, mathematical equivalent in-
teger operations are introduced in our implementation,
where the linear mapping is transformed into shifting from
large data format (32-bit integers) to small integers (-bit in-
tegers) which can be expressed as:

σ(k) = (k−), k ∈ N+,

Q(x, k, shift) = Clip {(x + round_value) ≫ shift,
− + σ(k),  − σ(k)} ,

round_value =  ≪ (shift − ).
Here we replace division operations used in float-point equa-
tions d with shift operations with an additional monolithic scal-
ing factor shift for shifting values distribution to an appropri-
ate order of magnitude. The scaling factor shift is obtained in
WAGE[15] by following equation.

shift(x) = round(logx).

x

With complex logarithm and exponential operation, the
shift(x) requires extensive resources to be implemented on FP-
GA. To handle this problem, we fine-tune this formula, which
is used to obtain the nearest power-of-two value from input

, to obtain ceiling power-of-two value as follow:

shift(x) = ceil(logx).
x

After fine-tuning, the shift factor is obtained from smal-
lest power-of-two value greater than , and can be re-ex-
pressed by bit-wise operations as follow:

shift(x) = (leading1(x) + ).
Here leading1 function detects the position of the most signi-
ficant "important" bit and return the index of the most signific-
ant "important" bit only. After detailed experiments, the fine-
tuning has no effect on the convergence of network tra-
ining but more hardware-friendly for FPGA implementation.

3.2. Quantization details

QW QA QE QG
W A

E G

The quantization operations consist of four operations
, , , . Theses operations is responsible to quant-

ize four training operands including weight , activation , er-
ror and gradient to low-bitwidth format.

3.2.1. Weight QW
Weights are initialized on software platform based on

the initialization method of He et al.[37], which can be formu-
lated as:

W U(−L,+L), L = max{√/nin, Lmin}, Lmin = ,

n in√
/n in

Lmin

where is the layer fan-in number, and the original limit
 is calculated to keep same variance between inputs

and outputs of the same layer theoretically. The additional lim-
it is a minimum value that the uniform distribution
should reach.

3.2.2. Activation QA

ashift
For activation, the bitwith of activation would increase

after computation. A filter-wise scaling factor is intro-

Table 1. Parameters for FPGA training.

Parameter Description

B the batch size of training examples
C the size of channel
F the size of filter
K the kernel size of weights
H the height of frames
W the width of frames

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403 3

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

duced for shifting values distribution to an appropriate order
of magnitude, which can be obtained by following function:

ashift = log(max{shift(Lmin/L), }).
This factor is pre-defined constant for each layer determ-

ined by the network structure. Using this factor we can ob-
tain the quantized activation using the following equation:

aq = Q(a, kA, ashift).
3.2.3. Error QE

Experiments from WAGE[15] demonstrate the orientation
of errors plays an important role on the converge perform-
ance during training. Therefore, orientation-based quantiza-
tion scales errors into [–1,1] by dividing a shift factor as:

eq = Q(e, kE, shift(max∣e∣)),
max∣e∣

max∣e∣
where extracts the layer-wise maximum absolute
value among errors. Since the shift value extracts the smal-
lest power-of-two value for , an obvious optimization
method is using "or" operations instead of max to improve
the hardware performance.

eq = Q(e, kE, shift(or∣e∣)),
or∣e∣where executes the bit-wise or operation on the layer-

wise maximum absolute value among error.

3.2.4. Gradient QG

g

Since we only preserve the relative value of the error
after shifting, the gradients are shifted consequently. Here we
first rescale the gradient with another scaling factor:

gq = Bernoulli{(η × g) ≫ gshift},
gshift = shift(or∣g∣)),

η
η

or∣g∣ max∣g∣
where is learning rate which is constrained as power-of-
two. So can also be represented by the corresponding shift
value. Here gradients are quantized as errors by the bit-wise
operation instead of the maximum function .

Bernoulli[38] function was originally design in floating-
point number system to stochastically sample fractional parts
to either 0 or 1. The nature of the Bernoulli distribution is the
larger number has higher probability to 1 and the smaller num-

ber has higher probability to 0. On contrast in integer system,
Bernoulli function is stochastically rounding the shifting parts
of quantized value, which is realized by a random number gen-
erator MersenneTwister, a widely-used general-purpose pseu-
dorandom number generator[39] to generate Limited range of
random numbers according to shift data with uniform distri-
bution. The MersenneTwister adds Bernoulli property by
addition as following equation:

gq = Clip {(η × g + round_value) ≫ gshift,

−  + σ(k),  − σ(k)} ,
gshift = shift(or∣g∣)),
round_value = random_int mod( ≪ gshift),
random_intwhere is random numbers of 32-bit integer

format.

4. Date pattern and tilling technique

4.1. CHWB Pattern

For DNN training, the weights, activations, errors and
gradients are too large to be stored completely in the on-
chip memory, where only a portion of data can be cached
on-chip while the remaining is kept off-chip. As the band-
width between the on-chip and off-chip memory is limited, ex-
ploring an optimal data access pattern to for efficient band-
width utilization is necessary for training.

Currently, the most widely-used data pattern for training
on GPUs is referred as batch-channel-height-width (BCHW),
which depicts the order of data dimensions in the memory
space[40], where the elements along the lowest dimension W
are stored consecutively. An example of data represented in
the BCHW pattern is shown on Fig. 2(a), whose correspond-
ing data layout is illustrates in the DRAM in Fig. 2(c). But this
pattern is difficult to fetch the elements from different
batches in burst mode, because they are usually not stored
consecutively in memory. Therefore, BCHW data pattern may
under-utilize the bandwidth when exploring batch-level paral-
lelism.

To handle the problem, we develop the channel-height-
width-batch (CHWB) pattern to explore batch-level parallel-
ism without compromising bandwidth utilization on FPGAs.
As shown in Fig. 2(b), the elements from adjacent batches are

…

H × W × BH × W × B

B B

C
C

H × W

B

H

W

C

B

(a) An example of BCHW sequence (b) An example of CHWB sequence

Date
DRAM Addr

0
× 0

1
× 1

2
× 2

3
× 3

0
× 4

1
× 4

2
× 6

3
× 7

...

...
Date

DRAM Addr
0 0 0 0

× 0 × 1 × 2 × 4 × 5
11 1

× 6 × 7
1

× 8
...
...

(c) BCHW sequence in DRAM space (d) CHWB sequence in DRAM space

Fig. 2. (Color online) Comparison of BCHW and CHWB patterns.

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

allocated consecutively, which allows the memory interface
to simultaneously read multiple training examples. In this
manner, CHWB data pattern enables our accelerator to ac-
quire all necessary input data with a single DRAM burst ac-
cess, and greatly improve bandwidth utilization for FPGA
accelerator.

4.2. Tiling

Tiling is a common optimization technique to improve
bandwidth utilization for DNN acceleration on resource-lim-
ited FPGA devices[41]. The strategy partitions large input
frames into smaller tiles of data, where each tile can be fitted
into the on-chip memory of an FPGA. For training with some
resource-intensive tasks such as matrix transpose, tiling
strategy is necessary for their FPGA implementation.

TB TC TF
TI

TI
TC TF

PB PI
TB TI

For the CHWB pattern, we consider tiling along four data
dimensions: batch tile , channel tile , filter tile and im-
age tile , which correspond to the size of a tile along the di-
mension. Consider the input matrix transpose between the im-
age dimension and channel dimension, as well as the weight
matrix transpose between the channel dimension and filter di-
mension during training[42], the image tile , the channel tile

 and the filter tile are all set to same value. In this case,
two levels of parallelism are explored in our design: the
batch-level parallelism and the image-level parallelism ,
which are controlled by the tiling parameters and respec-
tively.

TB × TI × TI
TI × TI

Taking convolution to explain how tiling technique
works. In Fig. 3, the input matrix is stored using CHWB pat-
tern 3-dimensions tiled blocks, while the weight
matrix is stored with two-dimensional tiled blocks. In
the forward propagation, the tiled input matrix and the tiled
weight matrix are sequentially multiplied to obtain one out-
put submatrix.

TB TIThe tiling parameters and must be chosen carefully,
since a larger tile size can improve performance by reducing
the iterations of data transfers, but more on-chip memory re-
sources are required for storing larger tiles. In Section 6. we
will explore the optimization of the tile parameters on re-
source-limited FPGA.

5. FPGA accelerators for DNN training

In this section, we follow the idea of CHWB pattern and
tiling technique to develop the architecture of our training
accelerator.

5.1. System overview

A system overview of our FPGA-based training accelerat-

or is presented on Fig. 4, which consists of a computation ker-
nel, a global controller and a DDR controller for off-chip
memory transfer. The computational kernel consists of a
batch splitter, a set of processing elements (PEs) and a batch
merger. When a stream of training batches arrives at the ker-
nel, the splitter divides the stream into multiple parallel
streams via shift registers to facilitate batch-level parallelism.
The streams are then processed by the PEs in parallel. Each
PE involves a general matrix multiplication kernel (GEMM ker-
nel) or an auxiliary kernel to perform training operations.
After processing, the streams are merged into a single out-
put stream, then sent to the DDR controller. The global control-
ler is responsible for controlling the behaviour of each compu-
tation kernel, including assigning memory addresses for load-
ing/writing data through the DDR controller, enabling spe-
cial operations required by particular layers, and controlling
the direction of the data flow. The CPU sets the network con-
figuration in the global controller before starting training.

5.2. Unified GEMM kernel

Fig. 5 presents the architecture of the GEMM kernel,
which provides a unified datapath to support the convolution-
al and fully-connected computations of the forward and back-
ward propagation, as well as the gradient generation. This uni-
fied approach employ matrix multiplication to implement for
these computations, where only the input/output matrix
to/from the kernel needs to be changed. Therefore, we can
avoid time-consuming dynamic reconfiguration[29] or using
separate kernels for different operations[31].

Before any computation, the input data streams are
stored in the input buffers, which are organized as a double
buffer in order to overlap the data transfer and matrix trans-
position with the computation. As shown in Fig. 6, when the

Matrix

multiply×

…

Input frames: B × H × W × C Weights: F filters, each K × K × C

F × N × BF × (K2C)(K2C) × N × B
Input matrix Weight matrix Output matrix

Im2col

Fig. 3. (Color online) The tiling flow for convolution.

Computational kernel

CPU

DDR

controller

Global

controller

Batch splitter

Batch merger

PEs

Off-chip On-chip

DRAM

Fig. 4. (Color online) System overview.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403 5

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

(i + )th
ith

 tile flows from the batch splitter to the input buffer,
the tile is sent to the GEMM kernel for the computation.
Note that the weight stream bypasses the batch splitter and
enters the input buffers directly, as the weight data are
shared by different tiles across the same batch.

The GEMM kernel fetches data from the input buffers to
perform tiled matrix multiplication. The intermediate values
during each iteration are stored in the output buffers for the
next iteration. The final results are post-processed by the
batch merger then transferred back to the DRAM. The details
of the tiled matrix multiplication are shown in Algorithm 2.
Noted that the shift factor of forward propagation is pre-
defined while the the shift factor of backward propagation is
obtained from output results. Therefore, the quantization func-
tion can be attached after forward propagation to reduce out-
put bandwidth. On contrast, the output results maintain
Int32/Int16 format during backward propagation as well as
gradients generations, which require quantization with the
help of auxiliary kernels.

In order to support different modes of operations for the
forward propagation, the backward propagation and the gradi-
ent generation, the global controller dynamically re-config-
ures the buffers and data flow on the datapath. Under the con-
trol of global controller, the input buffer can be configured to
perform on-the-fly matrix transposition for the computation
of backward propagation. Furthermore, the multiplexer can
be switched to feed the different input streams to their corres-
ponding processing elements, and the demultiplexer can be
switched to direct the output stream to the appropriate post-
processing unit.

5.3. Auxiliary kernels

The auxiliary kernels accelerate supplementary opera-
tions with batch-level parallelism including im2col, col2im,
max-pooling, reshape, summation, nonlinear functions and
quantization as well as their backward counterparts (if neces-

Computational

kernel Processing element

Input

flow

Input

flow

Weight

flow

Output

flow

Gradient

flow

Batch

splitter

Batch

splitter
Input

buffer

Input

buffer

GEMM

D
e

m
u

x

Batch

merger

Batch

merger

Output

buffer
+

Processing element

D
e

m
u

x

...

M
u

x

Fig. 5. (Color online) Hardware architecture of GEMM kernel.

Non-transposed

double buffer

ith tile

(i + 1)th tile

ith tile

(i + 1)th tile

Transposed

double buffer

1

5

9

13

17

21

25

29

2

6

10

14

18

22

26

30

3

7

11

15

19

23

27

31

4

8

12

16

20

24

28

32

1

2

3

4

17

18

19

20

5

6

7

8

21

22

23

24

9

10

11

12

25

26

27

28

13

14

15

16

29

30

31

32

Fig. 6. (Color online) Input double buffer supporting matrix transposi-
tion.

Algorithm 2: Pseudocode of tiled matrix multiplication
1 Consider that the weight matrix and gradient matrix are
 transferred into TI × TI tiled blocks, where input frames, output
 frames and error frames are transferred as 3-dimensions TB × TI ×
 TI tiled blocks. In particular, the input frames and output frames of
 fully-connected layer are transferred as 2-dimensions TB × TI tiled
 blocks
2 Convolutional forward propagation:
3 for f = 1 to F/TI do
4 for im = 1 to (H * W)/TI do
5 for b = 1 to B/TB do
6 for c = 1 to C × K/TI do
7 Al+1(b)(f, im)c = Wl(f, c) × Al(b)(c, im)
8 Al+1(b)(f, im) + = Al+1(b)(f, im)c

9 Quantize (Al+1(b)(f, im))
10 Output Al+1(b)(f, im)
11 Convolutional backward propagation:

C × K/TI12 for c = 1 to do(H ∗W)/TI13 for im = 1 to do
B/TB14 for b = 1 to do
F/TI15 for f = 1 to do

El−(b)(c, im)f = Wl(f, c) × El(b)(f, im)16
El−(b)(c, im) += El−(b)(c, im)f17

El−(b)(c, im)18 Output
19 Convolutional gradients generations:

F/TI20 for f = 1 to do
C × K/TI21 for c = 1 to do
B/TB22 for b = 1 to do(H ∗W)/TI23 for im = 1 to do

Gl(b)(f, c)im = El+(b)(f, im) × Al(b)(c, im)T24
Gl(b)(f, c) += Gl(b)(f, c)im25

Gl(f, c)+ = ∑TB
b= Gl(b)(f, c)im26

Gl(f, c)27 Output
28 Fully-connected forward propagation:

F/TI29 for f = 1 to do
B/TB30 for b = 1 to do
C/TI31 for c = 1 to do

Al+(b)(f)c = Al(b)(c) ×Wl(f, c)T32
Al+(b)(f) += Al+(b)(f)c33

Al+(b)(f)34 Output

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

sary). These supplementary operations processed independ-
ently since they have no learnable weights and occupy only a
small amount of total computation.

For various supplementary operations, various types of
separate processing units is implemented to support them. In
particular, the maxpooling units are responsible for comput-
ing the maximum value and corresponding index over a num-
ber of neighbor pixels, whereas the backward maxpooling
units propagate errors the to chosen index of subgraphs. The
im2col expands the input feature map into column vectors,
and col2im accumulate column the vectors back to input fea-
ture map. The quantization units are designed for casting inter-
mediate variables of errors and gradients generated during
backward propagation and gradients generation to low bit-
width quantized data (8-bit integer in our design). The summa-
tion units simply add two flows together and the reshape
units change the location of data in buffers.

6. Design space exploration

TB TI L

This section presents the design space exploration for op-
timizing the proposed DNN training accelerator. The perform-
ance of FPGA implementations is affected by factors includ-
ing batch tiling size , image tiling size and bitwidth for
training. The bitwidth is pre-defined while the two tiling sizes
are decided by our optimization model. To maximize perform-
ance, we develop bandwidth modelling, resource modelling
and performance modelling to enable design space explora-
tion.

6.1. Resource modeling

There are three kinds of hardware resources in FPGAs:
LUT, Block RAM and DSP, which form the resource con-
straints of our design space. We present equations to estim-
ate the utilization for each of them.

LUTfix DSPfix BRAMfix

First, the resource consumption of the global controller
and the DRAM controller is independent of the design para-
meters, while they are defined as , , .

Second, the resource consumption of the computational
kernels is affected significantly by different design paramet-
ers. For example, BRAMs are utilized in the input buffers of
GEMM kernels and their usage is given by:

BRAM =
 × TB × TI × ( × LI) +  × TI × LW

BRAMSIZE
,

where the constants 4 are contributed by the double buffers
for both the normal matrix and the transposed matrix.

The multiply-and-add units utilize the DSPs as

DSP = TB × TI × Dmul + TB × Al × Dadd + TB × Dadd,

Dmul Dadd
Al

log(TI)
where and are the DSP usage of the multiplier and
adder. is the level of tree adder in the computational ker-
nel, which equals to .

Finally, an approximate regression model is proposed to
estimate the resource consumption of LUT as it is difficult to
predict statically:

LUT = TB × TI × β + TB × δ,

β, δwhere are linear function parameters pre-trained based
on a specific platform.

6.2. Bandwidth modeling

TB

N

TI

f

There are three streams flowing from the DRAM to the
GEMM kernels. In each cycle of convolution, one weight is
read from the weight stream while input values are read
from input frame stream. The results are accumulated in pro-
cessing elements before iterations of the convolution are
completed. When it comes to the fully-connected layer, addi-
tional weights are needed which increase the bandwidth
requirement. Therefore, the theoretical maximum bandwidth
requirements for computing the convolutional and fully-
connected layers with frequency are:

BWCONV = (TB × LI +
TB × TI

N
× LO + LW) × f,

BWFC = (TB × LI +
TB × TI

N
× LO + TI × LW) × f,

LI LO LWwhere , , are the bitwidth of the input frame, the out-
put frame and the weight stream.

TB

For the auxiliary kernel, the bandwidth requirements are
relatively large compared to the small amount of computa-
tions performed. In general, it may take one or two input val-
ues to generate one or two output values, which handles up
to 4 values in each cycle. As these operations benefit from
batch-level parallelism, the bandwidth requirements have
also multiplied times:

BWauxiliary = ( × TB × LI +  × TB × LO) × f.

6.3. Performance modeling

TI

TB
f

In each clock cycle, a GEMM kernel can accomplish mat-
rix multiplication operations. Therefore for our batch-parallel
architect with kernels, the total computational time under
frequency is:

TCONV = B × C × K × F × H ×W
TI × TB × f

,

TFC = B × C × F
TI × TB × f

.

However, the above formulae are only valid for the se-
quential case. In fact, in order to support parallel computing,
tiled matrices are filled with zero values which may affect the
actual computational time. Therefore, the computational
time is estimated as:

TCONV =
⌈B⌉TB × ⌈C × K⌉TI × ⌈F⌉TI × ⌈H ×W⌉TI

TB × TI × f
,

TFC =
⌈B⌉TB × ⌈C⌉TI × ⌈F⌉TI

TB × TI × f
,

⌈X⌉T = ceil(X/T) × T,⌈X⌉T X
T X

where function means mapping to the least multiple
of greater than or equal to , which indicates that these for-
mulae are identical only when tiling sizes are set as factors of
the corresponding parameters.

On the other hand, in each cycle of the auxiliary kernel,
frames batches can be handled simultaneously, where the
computational time of auxiliary kernels is:

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403 7

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

Tauxiliary =
⌈B⌉TB × C × H ×W

TB × f,

Benefited from our dataflow architecture, the transmis-
sion time of the computational kernels can be overlapped by
the communication time.

By evaluating the performance of every combination
based on the above models, a single-objective optimization
tool can be built for minimal execution time as:

Minimize Time = T′CONV + T′FC + T′auxiliary,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
LUT + LUTfix ⩽ LUTlimit,

BRAM + BRAMfix ⩽ BRAMlimit,

DSP + DSPfix ⩽ DSPlimit,

BW ⩽ BWlimit,

LUTlimit BRAMlimit DSPlimit BWlimit
T′CONV T′FC T′auxiliary

where , , , are limited on-
chip resources, and + + are the expected
computation time for a specific network description.

7. The DarkFPGA framework

For our proposed dataflow architecture, we present Dark-
FPGA, a hardware/software co-designed FPGA framework for
effective training. DarkFPGA framework is built with scalable
accelerator architecture which is software-definable to sup-
port various DNN networks and different parallel levels
through deploying different FPGA bitstreams, where a multi-
level parallelism scalable FPGA design is developed.
Moreover, a optimizing tool is included to produce optim-
ised design for optimised performance based on user con-
straints.

We automate the process of exploring design paramet-
ers for the DarkFPGA framework, which accelerates the en-
tire training process with a unified module on FPGA. Our tool
can receive a network description and a training dataset to pro-
duce the most suitable parameters for the accelerator. The
overview of our DarkFPGA framework and optimizing tool
are illustrated in Fig. 7 with six stages:

(1) Parse network description. The tool predicts optim-
ized parameter values and selects a suitable FPGA bitstream
to configure hardware.

(2) Allocate device DRAM space for the activations,
weights, errors and gradients.

(3) Initialize weights and transfer them to DRAM.
(4) Fetch and transfer the training samples to DRAM.

Data reorganization is used to convert training samples into
the CHWB sequence.

(5) Launch FPGA acceleration.
(6) Train neural network iteratively. Transfer loss and accur-

acy information back to the host for each complete training
batch.

8. Experimental result

We evaluate our framework on the Maxeler MAX5 plat-
form, which consists of a Xilinx ultrascale+ VU9P FPGA. Three
16 GB DDR4 DIMMs are installed on the platform with a maxim-
um bandwidth of 63.9 GB/s. Our hardware accelerator works
at 200 MHz. Maxcompiler 2019.1 and Vivado 2018.3 are used
for synthesis and implementation. The VGG-like network[43]

trained on the Cifar10[1] dataset is evaluated in the following
training experiments. Differ form the conference version of
this paper[20], we use INT8 weights instead of ternary weight
during training. Although the use of INT8 weights cause inevit-
able degradation in training performance, it is able to obtain
more stable accuracy performance for training.

Noted while our implementation are able to achieve the
massive parallelization with dataflow architecture, it may
have difficulty in making the timing closure for a high clock
frequency, or even passing the place and route. This is partly
because these direct interconnects become long wires when
the DSP blocks are distributed among the whole FPGA chip,
and large-scale data reuse between DSP blocks introduces
large fan-out[44]. Moreover, the timing closure get worse on Xil-
inx ultrascale+ VU9P FPGA which enables multiple super-lo-
gic regions (SLR) design. In this case, signal paths between
two SLR may introduce large delays and significantly impact
timing. DarkFPGA tackles the timing issue for two major optim-
ization. First, a multiple level of pipelining registers is inser-
ted after high fan-out data stream as a balanced tree to lim-
its the fan-out it can have. Second, the GEMM Kernel of DarkFP-
GA is forced to be divided into two parallel submodules,
which are assigned to a super-logic regions (SLR). These sig-
nal interconnects of GEMM Kernel are limited within their cor-

Net description

Parse network

description

Weight transfer

or initialization

Training

examples

Example

reorganization

Performance

optimization

Configure

FPGA design

Write weights

 to DRAM

Write example

to DRAM

Read

loss/accuracy

Show

information

DarkFPGA

Software

DarkFPGA

hardware

PCIE

DRAM

Accelerator

Allocate

DRAM space

Fig. 7. (Color online) The DarkFPGA framework.

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

responding super-logic regions (SLR).

8.1. Exploration of DarkFPGA performance

TB, TI

Based on the discussions in Section 5 and Section 6, the
performance of DarkFPGA is significantly determined by the
tile sizes (). Therefore, the selection of tile parameters is
analyzed here under the network configuration shown in
Table 2.

TB

TB
TI

TCONV TFC
C F H W

TI
TB

TI
TB TI

The batch tile is crucial for maximising performance,
which is bounded by the training batch size. Consider that
the commonly used batch size is 128, the selection of batch
tile for exploration is constrained among (32, 64, 128).
Also, the image tile is mainly related to the computational
times and , which depends on the network paramet-
ers , , and . According to Table 2, the selection of im-
age tile is constrained among (16, 32, 64). Due to the require-
ments of matrix transposition operations, the batch tile
should be greater than or equal to image tile . Therefore
the design space (,) under evaluation is constrained with-
in (128, 64), (128, 32), (128, 16), (64, 64), (64, 32), (64, 16), (32,
32), (32, 16), (16, 16). In particular, the design space (128, 64)
is removed from evaluation for hardware resource limitation.

TB TI
TB

TI

TB × TI

TB × TI

TB
TB

TI

The corresponding performance and resource consump-
tion under different design parameters (,) is illustrated in
Fig. 8. As shown in Figs. 8(a) and 8(b), the design space (,

) changes from (128, 32) to (32, 16) as the performance de-
creases. We can find that the most critical factors that affect
the performance are the multiplication of two tiling size
(). The reason is that, according to our performance
model, the computational time for matrix multiplication opera-
tions are accelerated by () times, which domain the
training process. And the secondary influencing factor is
batch-level parallelism (). This is because the auxiliary opera-
tions are only accelerated by times, with no relationship
about . Finally, Fig. 8(c) shows the relation between DSP utiliz-
ation and performance, indicating that our design space is
bounded by DSP resources.

TB =  TI = 

Therefore, we customize a DarkFPGA design to determ-
ine the optimal implementation of the training accelerator
when , .

8.2. Heterogeneous versus homogeneous computing

Some of the existing FPGA accelerators rely on hetero-
geneous computing to handle auxiliary operations[36, 45]. To
quantitatively compare the performance discrepancies
between heterogeneous and homogeneous computing, our

DarkFPGA framework is revised to implement heterogen-
eous computation across an FPGA-CPU heterogeneous sys-
tem, which is achieved by delivering auxiliary operations to
CPU and removing the auxiliary kernels.

TB = , TI = 
In this experiment, the tiling size is set to

(). Fig. 9 illustrate the experiment results
which show that homogeneous computing can achieve signi-
ficantly higher performance on our DarkFPGA framework.
Based on the comparison between CPU homogeneous sys-
tem and CPU+FPGA heterogeneous system (Fig. 9(a) versus
Fig. 9(b)), heterogeneous computing can effectively improve
the performance of GEMM, but other parts of the training
would become a new computing bottleneck. This problem
can be addressed with a homogeneous FPGA system, acce-
lerating everything by batch-parallelism to achieve over 10
times speedup (Fig. 9(b) versus Fig. 9(c)). This experiment
clearly showcases the benefits of implementing the entire
training process on the FPGA.

Note that using multi-threaded or high-performance CPU
can significantly improve heterogeneous computing perform-
ance. However their high power consumption brings a tough
challenge for embedded DNN applications.

8.3. Performance comparison with GPU and CPU

Here we compare the performance of DarkFPGA with oth-
er platforms like GPU and CPU. All software results are run-
ning on an Intel Xeon X5690 CPU (6 cores, 3.47 GHz) and an
NVIDIA GeForce GTX 1080 Ti GPU. After finishing the same
number of batches, all platforms achieve similar accuracies. Un-
fortunately, GeForce GTX 1080 Ti does not have native int8
support, we evaluate the GPU performance by limiting the
range of float32 number system, instead of actual GPU low-
precision training.

Table 3 shows the performance and power consumption,
as well as other important metric on different platforms. Dark-
FPGA can achieve over 200 times speedup over a CPU-based
implementation of Darknet and is 2 times slower than a GPU-
based implementation of Darknet on overall performance.
The average power consumption (13.5 W) of FPGA is ob-
tained by the Maxeler performance monitoring tools. By mul-
tiplying time and power consumption, our FPGA-based
design is 5 times more energy efficient than GPU implemen-
tation of Darknet.

Note that Darknet is a lightweight neural network fra-
mework for fast iterative design, which limits the overall per-
formance of GPU and CPU. For fair comparison, we evaluate
the training performance on TensorFlow[46] using multi-
threaded acceleration for CPU and cuDNN[47] acceleration for
GPU, as shown in brackets. It shows that DarkFPGA achieves
10 times speed up over CPU-based implementation and 2.5
times more energy efficient than GPU implementation on
TensorFlow.

8.4. Performance comparison with other FPGA-based

training system

Finally, comparisons between out DarkFPGA and other FP-
GA training accelerators are conducted, in terms of resource
utilization, performance and throughput and on Table 4.
Since many important matrices are not provided and the mod-
els for training are different, comparison between different FP-
GA-based training accelerator in a fair is extremely difficult

Table 2. The network architecture in experiment.

Layer B C F H × W K

CONV1 128 3 128 32 × 32 3 × 3
CONV2 128 128 128 32 × 32 3 × 3
MAXPOOLING 128 128 128 16 × 16 2 × 2
CONV3 128 128 256 16 × 16 3 × 3
CONV4 128 256 256 16 × 16 3 × 3
MAXPOOLING 128 256 256 8 × 8 2 × 2
CONV5 128 256 512 8 × 8 3 × 3
CONV6 128 512 512 8 × 8 3 × 3
MAXPOOLING 128 512 512 4 × 4 2 × 2
FC 128 8096 1024 – –
FC 128 1024 10 – –
SSE 128 10 10 – –

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403 9

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

and not straightforward. Even in such situation, our DarkFP-
GA accelerator still show desirable performance. Our design
outperforms FPDeep[31] in term of performance per FPGA. Ac-
celerator from DiCecco et al.[33] outperform our accelerator in

throughput by training small network similar to LeNet-5[1].
Moreover, in comparison to[35], a lightweight FPGA training ac-
celerator, our DarkFPGA maintains a high throughput when
training more smaller network VGG-16[43] compared with[35].
A work from[34] achieves much higher throughput than our im-
plementation by pruning over 90% weights and 50% activa-
tion during training process, whose performance can be 4×
faster than GPU.

These comparisons can somehow show that our DarkFP-
GA has the capacity to train deep neural network. Our ana-
lyses show that the improvement of performance comes
from FPGA-based batch-level parallelism. In particular, the
dataflow architecture allows us to fully exploit the advant-
ages of batch-level parallelism and maximize throughput
with the help of dataflow programming language[19].

9. Conclusion

This work proposes DarkFPGA, a novel FPGA framework
for efficient training of deep neural networks, with a custo-
mized low-precision DNN training algorithm. The DarkFPGA
accelerator explores batch-level parallelism, which provides
efficient training acceleration for both forward and backw-

Table 3. Performance comparison among FPGA, CPU and GPU.

Parameter CPU GPU DarkFPGA
Platform Intel Xeon

X5690
GTX 1080 Ti MAX5

Platform
No. of cores 6 3584 −
Compiler GCC 5.4.0 CUDA 9.0 Maxcompiler

2019.2
Flag -Ofast − −
Frequency (GHz) 3.47 1.58 0.2
Precision 32-bit

floating point
32-bit
floating point

8-bit fixed
point

Technology (nm) 32 28 16
Processing time per
batch (ms)

66439 (3270) 126 (53.4) 331

Threads 1 (24) − −
Power (W) 131 (204) 187 (217) 13.5
Energy (J) 8712 (667.1) 23.6 (11.6) 4.5
Energy efficiency 1x (13x) 369x (751x) 1936x

0

1

2

3

4

C
o

m
p

u
ta

ti
o

n
a

l t
im

e
 (

s) 5

6

TB = 128

Tl = 32

TB = 64

Tl = 64

TB = 128

Tl = 16

TB = 64

Tl = 32

TB = 64

Tl = 16

TB = 32

Tl = 32

TB = 32

Tl = 16

TB = 16

Tl = 16

TB = 128

Tl = 32

TB = 64

Tl = 64

TB = 128

Tl = 16

TB = 64

Tl = 32

TB = 64

Tl = 16

TB = 32

Tl = 32

TB = 32

Tl = 16

TB = 16

Tl = 16

TB = 128

Tl = 32

TB = 64

Tl = 64

TB = 128

Tl = 16

(a)

(b)

(c)

TB = 64

Tl = 32

TB = 64

Tl = 16

TB = 32

Tl = 32

TB = 32

Tl = 16

0

400

200

600

800

1000

P
e

rf
o

rm
a

n
ce

 (
G

O
P

S
)

1400

1200

1600

0

10

20

30

40

R
e

so
u

rc
e

 u
ti

li
za

ti
o

n
 (

%
) 60

50

70

LUT

DSP

BRAM18

URAM

Fig. 8. (Color online) Performance and resource consumption experiments under different design space using int8 weights. (a) Computational
time. (b) Performance evaluation. (c) Resource consumption.

10 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

ard propagation on a homogeneous FPGA system. Optimiza-
tion strategies such as batch-focused data sequence CHWB
and tiling strategies are employed to improve overall perform-
ance. Furthermore, an optimization tool is developed for de-
termining the optimal design parameters for a specific net-
work description. Future work includes applying DarkFPGA to
multi-FPGA clusters, exploring mixed precision and binarised
training, and supporting cutting-edge network functions like

group normalization and depthwise convolution.

References

LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning ap-
plied to document recognition. Proc IEEE, 1998

[1]

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual re-
cognition challenge. IJCV, 2015

[2]

Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. Advances in Neur-
al Information Processing Systems, 2015, 91

[3]

He K, Gkioxari G, Dollár P, et al. Mask r-cnn. Proceedings of the
IEEE International Conference on Computer Vision, 2017, 2961

[4]

Jia Y, Learning semantic image representations at a large scale.
PhD Thesis, UC Berkeley, 2014

[5]

Long J, Shelhamer E, Darrell T. Fully convolutional networks for se-
mantic segmentation. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015

[6]

Umuroglu Y, Fraser N J, Gambardella G, et al. Finn: A framework
for fast, scalable binarized neural network inference. Acm/sigda In-
ternational Symposium on Field-Programmable Gate Arrays,
2016

[7]

Nurvitadhi E, Venkatesh G, Sim J, et al. Can FPGAs beat GPUs in ac-
celerating next-generation deep neural networks. ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
2017

[8]

Guo K, Zeng S, Yu J, et al. A survey of FPGA-based neural net-
work accelerator. arXiv: 171208934, 2017

[9]

Parisi G I, Kemker R, Part J L, et al. Continual lifelong learning with
neural networks: A review. arXiv: 180207569, 2018

[10]

Micikevicius P, Narang S, Alben J, et al. Mixed precision training.
arXiv: 171003740, 2017

[11]

Das D, Mellempudi N, Mudigere D, et al. Mixed precision training
of convolutional neural networks using integer operations. arXiv:
180200930, 2018

[12]

Banner R, Hubara I, Hoffer E, et al. Scalable methods for 8-bit train-
ing of neural networks. arXiv: 180511046, 2018

[13]

De Sa C, Leszczynski M, Zhang J, et al. High-accuracy low-preci-
sion training. arXiv: 180303383, 2018

[14]

Wu S, Li G, Chen F, et al. Training and inference with integers in
deep neural networks. arXiv: 180204680, 2018

[15]

Wen W, Xu C, Yan F, et al. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. Advances in Neural
Information Processing Systems, 2017

[16]

Zhu H, Akrout M, Zheng B, et al. Benchmarking and analyzing
deep neural network training. IEEE International Symposium on
Workload Characterization (IISWC), 2018

[17]

Redmon J. Darknet: Open source neural networks in C. http://pjred-[18]

Table 4. Performance comparison of different FPGA-based training accelerators.

Accelerator Platform Config Model dataset LUTs (kW) DSPs efficiency Performance
(GOPS)

Throughput
(image/s)

F-CNN[29]

FCCM 16
Altera Stratix V 8 FPGA LeNet-5 MNIST − − − 7

FPDeep[31]

FCCM 18
Virtex7 VC709 10 FPGA AlexNet

imagenet
≈ 460 per FPGA ≈ 2880 per

FPGA
≈ 1022 per
FPGA

−

DiCecco et al.[33]

FPGA 18
Xilinx XCKU115 1 FPGA LeNet-like

CIFAR10
≈ 530 ≈ 883 − 522

Nakahara et al.[34]

FPL 19
UltraScale+
XCVU9P

1 FPGA VGG16 CIFAR10 934 1106 − 4878

Sean et al.[35]

FPT 19
Zynq ZCU111 1 FPGA VGG-16 CIFAR10 73.1 1037 − 3.3

DarkFPGA UltraScale+
XCVU9P

1 FPGA VGG-like CIFAR10 480 4202 1417 386.7

(1) '−' means this metrics is not provided on their papers, '≈' indicate that this value is obtained by approximate estimates. (2) The accelerator
from Ref. [29] didn't compute the gradients for training. (3) The power consumption of Ref. [29] measured from entire development board when our power
consumption is measured from single FPGA chip.

CPU only

Computational time = 65.37 s

Gemm

94.84%

Im2col

4.69%

Maxpooling

0.08%

Other

0.47% Nonlinear

0.37%

Weight update

0.02%

Im2col Nonlinear Maxpoling Weight update

(a) Performance of CPU training

Gemm

CPU + FPGA

Computational time = 3.66 s

Gemm

7.88%

Im2col

83.77% Other

8.35%

Maxpooling

1.46%

Nonlinear

6.58%

Weight update

0.32%

(b) Performance of CPU + FPGA training

Im2col Nonlinear Maxpoling Weight updateGemm

FPGA only

Computational time = 0.33 s

Gemm

87.16%

Im2col

7.62%

Other

5.22%

Maxpooling

0.64%

Nonlinear

4.42%

Weight update

0.15%

(c) Performance of FPGA training

Im2col Nonlinear Maxpoling Weight updateGemm

Fig. 9. (Color online) Performance comparisons between homogen-
eous system and heterogeneous system.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403 11

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

die.com/darknet/
Pell O, Mencer O, Tsoi K H, et al. Maximum performance comput-
ing with dataflow engines. High-performance computing using FP-
GAs, 2013

[19]

Luo C, Sit M K, Fan H, et al. Towards efficient deep neural net-
work training by FPGA-based batch-level parallelism. 2019 IEEE
27th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), 2019, 45

[20]

Kingma D P, Ba J. Adam: A method for stochastic optimization.
 arXiv: 14126980, 2014

[21]

Qiu J, Wang J, Yao S, et al. Going deeper with embedded FPGA
platform for convolutional neural network. Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Program-
mable Gate Arrays, 2016

[22]

Suda N, Chandra V, Dasika G, et al. Throughput-optimized open-
cl-based FPGA accelerator for large-scale convolutional neural net-
works. Proceedings of the 2016 ACM/SIGDA International Symposi-
um on Field-Programmable Gate Arrays, 2016

[23]

Motamedi M, Gysel P, Akella V, et al. Design space exploration of
FPGA-based deep convolutional neural networks. ASP-DAC, 2016

[24]

Zhang C, Sun G, Fang Z, et al. Caffeine: Towards uniformed repres-
entation and acceleration for deep convolutional neural net-
works. IEEE Trans Comput-Aid Des Integr Circuits Syst, 2019, 38,
2072

[25]

Ma Y, Cao Y, Vrudhula S, et al. An automatic rtl compiler for high-
throughput FPGA implementation of diverse deep convolution-
al neural networks. 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), 2017, 1

[26]

Venkataramanaiah S K, Ma Y, Yin S, et al. Automatic compiler
based FPGA accelerator for cnn training. 2019 29th International
Conference on Field Programmable Logic and Applications (FPL),
2019, 166

[27]

Xiao Q, Liang Y, Lu L, et al. Exploring heterogeneous algorithms
for accelerating deep convolutional neural networks on FPGAs.
Proceedings of the 54th Annual Design Automation Conference,
2017

[28]

Zhao W, Fu H, Luk W, et al. F-CNN: An FPGA-based framework for
training convolutional neural networks. IEEE 27th International
Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2016

[29]

Geng T, Wang T, Li A, et al. A scalable framework for acceleration
of cnn training on deeply-pipelined FPGA clusters with weight
and workload balancing. arXiv: 190101007, 2019

[30]

Geng T, Wang T, Sanaullah A, et al. Fpdeep: Acceleration and load
balancing of CNN training on FPGA clusters. IEEE 26th Annual Inter-
national Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), 2018

[31]

Li Y, Pedram A, Caterpillar: Coarse grain reconfigurable architec-
ture for accelerating the training of deep neural networks. IEEE
28th International Conference on Application-Specific Systems, Ar-

[32]

chitectures and Processors (ASAP), 2017
Dicecco R, Sun L, Chow P. FPGA-based training of convolutional
neural networks with a reduced precision floating-point library. In-
ternational Conference on Field Programmable Technology,
2018

[33]

Nakahara H, Sada Y, Shimoda M, et al. FPGA-based training acceler-
ator utilizing sparseness of convolutional neural network. 2019
29th International Conference on Field Programmable Logic and
Applications (FPL), 2019, 180

[34]

Fox S, Faraone J, Boland D, et al. Training deep neural networks
in low-precision with high accuracy using FPGAs. International
Conference on Field-Programmable Technology (FPT), 2019

[35]

Moss D J, Krishnan S, Nurvitadhi E, et al. A customizable matrix mul-
tiplication framework for the Intel HARPv2 Xeon+ FPGA platform:
A deep learning case study. ACM/SIGDA International Symposi-
um on Field-Programmable Gate Arrays, 2018, 107

[36]

He K, Zhang X, Ren S, et al. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. Proceed-
ings of the IEEE International Conference on Computer Vision,
2015, 1026

[37]

Zhou S, Wu Y, Ni Z, et al. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv pre-
print arXiv: 160606160, 2016

[38]

Matsumoto M, Nishimura T. Mersenne twister: a 623-dimension-
ally equidistributed uniform pseudo-random number generator.
ACM Trans Model Comput Simul, 1998, 8(1), 3

[39]

Performance guide of using nchw image data format. [Online].
 Available: https://www.tensorflow.org/guide/performance/over-
view

[40]

Ma Y, Cao Y, Vrudhula S, et al. Optimizing loop operation and data-
flow in FPGA acceleration of deep convolutional neural net-
works. Proceedings of the 2017 ACM/SIGDA International Symposi-
um on Field-Programmable Gate Arrays, 2017

[41]

Steinkraus D, Buck I, Simard P. Using GPUs for machine learning al-
gorithms. Eighth International Conference on Document Analys-
is and Recognition (ICDAR), 2005

[42]

Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv: 14091556, 2014

[43]

Wei X, Yu C H, Zhang P, et al. Automated systolic array architec-
ture synthesis for high throughput cnn inference on FPGAs. Pro-
ceedings of the 54th Annual Design Automation Conference,
2017,

[44]

Krishnan S, Ratusziak P, Johnson C, et al. Accelerator templates
and runtime support for variable precision CNN. CISC Workshop,
2017

[45]

Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-
scale machine learning. OSDI, 2016, 265

[46]

Chetlur S, Woolley C, Vandermersch P, et al. cuDNN: Efficient prim-
itives for deep learning. arXiv: 14100759, 2014

[47]

12 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022403

C Luo et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism

http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1145/272991.272995
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1145/272991.272995
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1145/272991.272995
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
http://dx.doi.org/10.1145/272991.272995
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/overview

