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Abstract
Deep Neural Networks (DNNs) are resilient to reduced data
precision, which motivates exploiting low-precision data
formats for more efficient computation, especially on cus-
tom hardware accelerators. Multiple low-precision types can
be mixed to fit the dynamic range of different DNN layers.
However, these formats are not often supported on popular
microprocessors and Deep Learning (DL) frameworks, hence
we have to manually implement and optimize such novel
data types and integrate them with multiple DL framework
components, which is tedious and error-prone.

This paper first reviews threemajor challenges in program-
ming mixed-precision DNNs, including generating high-
performance arithmetic and typecast functions, reducing the
recompilation time and bloated binary size caused by exces-
sive template specialization, and optimizing mixed-precision
DNN computational graphs. We present our approach, Low-
gen, a framework that addresses these challenges. For each
challenge, we present our solution implemented and tested
on our in-house, TensorFlow-like DL framework. Empirical
evaluation shows that Lowgen can automatically generate
efficient data type implementations that enable significant
speed-up, which greatly lowers the development effort and
enhances research productivity on mixed-precision DNN.

CCS Concepts: • Software and its engineering→Devel-
opment frameworks and environments; Source code
generation; Just-in-time compilers.
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1 Introduction
Using mixed-precision DNNs is beneficial. We can run some
layers in a DNN with a much lower data precision than
floating-point without losing much accuracy [7, 15], and this
reduction in precision results in less computation budget.
Using different precisions for layers in a mixed manner can
further improve the trade-off between computation budget
and model accuracy [16]. It is therefore plausible to try out
and to mix new data types when building DNNs, especially
for custom accelerators, e.g., GPU [22], TPU [14], FPGA [11],
etc., on which low-precision data types are natively sup-
ported, and the benefits from mixing types are significant.
Integrating a new data type into an accelerator is costly

both in time and money. Before we decide which data type
should be placed on an accelerator, it is sensible to simulate
its performance first on widely available platforms, e.g., x86
CPUs. To accomplish this simulation task, we should imple-
ment the target data type based on existing types, e.g., float,
and examine it on real-world DNN models. Nevertheless, DL
frameworks that are commonly used to experiment with
DNN models poorly support such data type development
scenarios. Specifically, utilities for designing and integrat-
ing new data types and optimization dedicated to mixed-
precision graphs are not accessible in existing DL frame-
works. For instance, to implement a new type, we should
first handcraft its definition in the low-level runtime library,
which requires much expertise in system architecture and
much effort to tune performance; then, we need to update
the communication protocols among modules to recognize
this new type; and finally, it is necessary to develop specific
optimization passes. As a result, researchers need to take
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much effort to experiment with any new data type, resulting
in a high barrier to adoption of mixed-precision DNNs..

This paper presents Lowgen, a supplementary framework
that makes programming mixed-precision DNN much sim-
pler. Here, supplementary means Lowgen is not standalone,
instead, it contains utilities that can be integrated into an
existing DL framework. It provides a source-to-source trans-
former that generates high-performance data type definition
from a short, un-optimized piece of code. It also embeds
a JIT compilation mechanism to dynamically integrate the
generated data definition into a compiled DL runtime. Fi-
nally, an optimization algorithm on mixed-precision DNN
graphs is proposed in Lowgen, which reduces redundant
typecast nodes and places them at the right place. We have
implemented Lowgen upon our in-house, TensorFlow-like
DL framework and empirically studied its effectiveness on
bfloat16 [15], a recently proposed low-precision type.

The major contributions of this paper:

• summarizing the challenges in implementing mixed-
precision DNNs on state-of-the-art DL frameworks;

• proposing Lowgen, a supplementary framework that
can address these challenges, which contains a high-
performance code generator, a JIT compilation utility,
and a mixed-precision graph optimizer;

• empirically evaluating Lowgen on a specific custom
data type and various DNN models.

2 Background and Problem Setting
2.1 DL Framework
A DL framework, such as TensorFlow [1] and PyTorch [24],
provides us with the essential toolkit to build a DNN with
much less effort as doing so from scratch. A typical DL frame-
work has three major components: a high-performance run-
time library for DNN execution, a graph library that con-
structs and manipulates the computation graph of DNN, and
a set of easy-to-use API exposed to end-users. They work
collaboratively to enhance the DNN development experi-
ence. Without loss of generality, this paper mainly looks at
TensorFlow [1, 2], one of the most popular DL frameworks.
Figure 1 illustrates its major modules. We have the following
additional remarks on them.

Runtime library. A runtime library mainly implements
basic linear algebra subprograms (BLAS) on tensors that are
fundamental to DNN operations. TensorFlow normally dele-
gates this task to existing platform-specific BLAS libraries,
e.g., Eigen [10], cuDNN [6], etc. These BLAS routines will
be wrapped into DNN operators, which are further exposed
to upper-level framework components. Typically, a DNN
operator normally has a C++ template specification, which
is parameterized by the data type and target platform, and
for each valid pair of type and platform, there will be an

Static Graph API
(TensorFlow v1)

Graph
Construction

(tf.Graph)

CPU Runtime
(Eigen)

Eager Exec API
(TensorFlow v2)

Graph Optimizer
(Grappler)

GPU Runtime
(CUDA &
OpenCL)

User
API

Graph
Library

Runtime
Library

Figure 1. The general architecture of TensorFlow. Each rec-
tangle indicates a specific module, in which module names
are bolded and corresponding instances are wrapped in
brackets. Dotted lines separate modules into three major
components (names are labelled to the right).

template<typename T, typename Device>
class Conv2DOp: public OpBase<T, Device> {
// class contents ...

};
template<> // specialization
class Conv2DOp<float, CPUDevice> {
// specific implementation for floating-point on CPU.

};
// Use a macro to register the mapping between operator
// label and template specialization
REGISTER_OP("Conv2D", Conv2DOp<float, CPUDevice>)

Figure 2. Template-based operator definition for Conv2D.
There are a template definition, a specialization, and a regis-
tration macro to bind the operator name to an instance.

explicit template specialization instance. Figure 2 shows the
pattern of how DNN operator templates are implemented.

Graph library. DL frameworks treat a DNN as a compu-
tation graph, in which each node represents a specific DNN
operator, and each directed edge indicates the data produced
by the edge source and consumed by the destination. The
graph library is responsible for constructing, optimizing, and
executing the computation graph. TensorFlow provides an
internal Python API, tf.Graph, to construct and manipulate
graphs. Grappler [31] is another internal library that helps to
optimize DNN graphs, with techniques like constant folding
and arithmetic simplification. When executing the graph,
the graph library will look up the label attached to each node
in the runtime library for the corresponding operator.

User API. The interface provided to end-users is mostly
Python, which delegates the workload to the underlying, and
rather fixed, graph and runtime libraries. This API should
take care of DNN model construction, dataset IO, training
schedule, etc. There are two styles of API in TensorFlow:
static, which constructs the graph before execution; and
dynamic, which can execute while building the graph.



On the Challenges in Programming Mixed-Precision Deep Neural Networks MAPL ’20, June 15, 2020, London, UK

Tnew operator+(const Tnew &a, const Tnew &b) {
return static_cast<Tnew>(static_cast<Tsim>(a) +

static_cast<Tsim>(b)); }

Figure 3. A C++ analog of the simulated addition arith-
metic. Since Tnew is practically stored as Tsto, builtin function
static_cast<Tsim> acts as fsto→sim, and its counterpart
static_cast<Tnew> is fsim→sto. Using Tsto directly in C++
for typecasting may be ambiguous.

2.2 Implementing a New Data Type
Theoretically, inventing a novel data type (Tnew) is about
defining the mapping from a bit representation to a value
in the real domain and specifying how its arithmetic works.
When implementing these two steps in software, we need to
find an existing storage type (Tsto), e.g., unsigned integer, to
hold the bit representation; and a simulation type (Tsim), e.g.,
floating-point, to carry out the arithmetic operations of Tnew,
which are not available on existing processors. Besides, we
should define the typecast functions that convert between
Tsim and Tsto, fsim→sto and fsto→sim, such that we can bring
the values stored as Tsto to Tsim to do simulated arithmetic,
and cast the result back to Tsto. Figure 3 shows an example
of how the simulated data type works.
So far, implementing a new data type requires defining

Tsim and Tsto and the typecast functions. Arithmetic opera-
tions normally match the previously shown pattern (Figure 3)
and can be intuitively implemented. However, the program-
ming paradigm imposed by DL framework adds two more
constraints that make the development less straightforward:

• The runtime library should be extended to support the
new data type, and therefore, a data type should be im-
plemented in C++. Specifically, we should instantiate
its corresponding numeric traits, and realize specific
interface functions required by upstream libraries. To
achieve acceptable performance, we also need to take
effort to build vectorized arithmetic functions to utilize
parallel hardware.

• The graph library and user API should recognize this
new type. The data type field of each node should ac-
cept this new type, and in case there is any pair of
nodes with incompatible types, we should be able to
insert explicit typecast nodes, which should include
cases of converting between the new type and any
other existing types. Meanwhile, since the data type
changes the underlying runtime, we may need to re-
compile the affected libraries.

The flow chart in Figure 4 illustrates the steps we should
take to build a new data type and integrate into a DL frame-
work. The overall development cycle can become too long to
support productive research. The next section will elaborate
in details the specific challenges we need to deal with during
the implementation.

(1) Decide storage and simulation types and
implement typecast functions

(2) Implement essential elementary arithmetic
operations and optimize for parallel platform

(3) Build interface to the template
functions/classes in the runtime library

(4) Integrate the type into the graph library and
provide corresponding graph optimization

(5) Extend the user API to support the new type

Feedback
from 
benchmark
results

Figure 4. A flow chart of the process of implementing a new
data type into a DL framework.

3 Challenges
Each step of implementation listed in Figure 4 imposes a
different kind of challenge. Step 1 is mainly for a data type
designer, who needs to propose the essential components of
a data type based on heuristics. Step 2, 3, and 4 are what this
paper focuses on, and we will discuss them in the following
sections. Step 5 is beyond the scope of this paper.

We particularly examine the implementation of one data
type, bfloat16 (Brain Floating Point), which has 1 signed
bit, 8 exponent bits, and 7 mantissa bits, which is a half trun-
cated format from single-precision floating-point (float).
Recently, bfloat16 is proven to perform well in DNN [15]
and already supported by TPU. Nevertheless, this paper looks
specifically at the challenges in the development phase of
bfloat16, when no native hardware support is available
for it, while we need to evaluate its performance to decide
whether it is appropriate for an accelerator.

3.1 Efficient Arithmetic Implementation
A mixed-precision DNN, even if its types can only be sim-
ulated, still needs high-performance execution. Otherwise,
we cannot evaluate its accuracy efficiently on a baseline
dataset that may have many thousands of images. To meet
this challenge, at the runtime library level, we should en-
sure that the elementary arithmetic operations are efficiently
implemented, which in practice depends on the following
aspects:
(1) Scalar arithmetic operator, which is normally the start-

ing point of implementation, should have low com-
putation budget, e.g., calling only a small number of
instructions. It is in the developers’ common skill set.
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struct bfloat16 {
public:

// float32 -> bfloat16
explicit bfloat16(float v) {
uint32_t u = *(
reinterpret_cast<uint32_t*>(&v));

uint32_t lsb = (u >> 16) & 1;
uint32_t round_bias = 0x7fff + lsb;
val = static_cast<uint16_t>(
(u + round_bias) >> 16);

}
// bfloat16 -> float32
explicit operator float() const {
uint32_t v =
static_cast<uint32_t>(this->val)
<< 16;

return *(
reinterpret_cast<float*>(&v));

}
// storage type
uint16_t val;

};

(a) The minimal definition of bfloat16
that a data type designer can come up
with. It contains Tsto, Tsim, fsim→sto, and
fsto→sim. In this snippet, fsim→sto im-
plements a tricky rounding mechanism,
and fsto→sim extends the storage value
by zero to the least significant bits.

inline bfloat16 operator+(
bfloat16 a, bfloat16 b) {

return bfloat16(static_cast<float>(a) +
static_cast<float>(b));

}
inline bfloat16 operator*(

bfloat16 a, bfloat16 b) {
return bfloat16(static_cast<float>(a) *

static_cast<float>(b));
}
inline bfloat16 operator/(

bfloat16 a, bfloat16 b) {
return bfloat16(static_cast<float>(a) /

static_cast<float>(b));
}

template <>
inline bfloat16 exp(const bfloat16& x) {
return static_cast<bfloat16>(

expf(static_cast<float>(x)));
}
template <>
inline bfloat16 abs(const bfloat16& x) {
return static_cast<bfloat16>(

fabsf(static_cast<float>(x)));
}

(b) Scalar-level arithmetic implemented.
Some extend built-in operators, and others
implement math functions.

EIGEN_STRONG_INLINE __m64 to_bfloat16(__m128& x) {
__m128i dx = _mm_castps_si128(x);
// add the rounding base
__m128i rb = _mm_set_epi32(
0x7fff, 0x7fff, 0x7fff, 0x7fff);

__m128i ma = _mm_set_epi32(
0x10000, 0x10000, 0x10000, 0x10000);

__m128i mx = _mm_and_si128(dx, ma);
mx = _mm_add_epi32(rb,
_mm_shufflelo_epi16(
_mm_shufflehi_epi16(mx, 0xb1), 0xb1));

__m128i dy = _mm_add_epi32(mx, dx);
// shuffle back
dy = _mm_shuffle_epi32(
_mm_shufflelo_epi16(
_mm_shufflehi_epi16(dy, 0x8d), 0x8d), 0xd8);

return _mm_cvtsi64_m64(_mm_cvtsi128_si64(dy));
}
EIGEN_STRONG_INLINE __m128 to_float32(const __m64& x) {
__m128i y = _mm_cvtsi64_si128(_mm_cvtm64_si64(x));
y = _mm_shuffle_epi32(y, 0x72);
y = _mm_shufflehi_epi16(y, 0xd8);
y = _mm_shufflelo_epi16(y, 0xd8);
return _mm_castsi128_ps(y);

}
template <>
EIGEN_STRONG_INLINE __m64 padd<__m64>(
const __m64& a, const __m64& b) {
return to_bfloat16(
_mm_add_ps(to_float32(a), to_float32(b)));

}

(c) Vector-level arithmetics and typecast func-
tions manually implemented in a way that Eigen
can recognize.

Figure 5. Example of different aspects of an efficient implementation of data type bfloat16. By default we target Intel SSE
instruction set for vectorization.

(2) To make use of the parallelism enabled by vector pro-
cessing units, we should provide vectorized versions of
these scalar-level functions, which is unfortunately not
a skill generally accessible to most data type designers.
Parallelizing code by SIMD instructions needs much
knowledge of the target instruction set and requires
exhaustive profiling.

(3) Since these implementations will be called by upper-
level modules in the runtime library, e.g., Eigen, which
extensively use templates to gain more performance
but with the cost of losing readability and extendability,
a developer cannot make an efficient implementation
without understanding the codebase well.

Figure 5 illustrates different phases in the arithmetic imple-
mentation procedure. A data type designer is expected to pro-
pose Figure 5a in the beginning. Figure 5b shows the scalar
arithmetic functions that follow almost the same pattern
as Figure 3, and it is possible to generate these functions by a
code template. Figure 5c is the most difficult: vectorized type-
cast functions have to originate from the human-designed
typecast functions in Figure 5a and cannot be generated by
code templates.

3.2 Recompilation and Code Bloating
We should explicitly specialize an operator template to sup-
port any new data type (Figure 2). It implies that whenever

we implement or revise our data types, the whole DL frame-
work codebase needs recompilation since almost all other
components depend on data type definition. Considering
the enormous scale of a modern DL framework codebase,
the recompilation time is mostly intolerable. Intuitively, it is
better to decouple parts that are affected by changes in data
type from the rest of the codebase, such that we only need
to recompile small code pieces for each revision.
Another problem is code bloating. DNN operators need

to be instantiated for each data type, which takes up space
in the compiled binary file. Given the large set of operators
supported by a DL framework, adding a new data type would
greatly increase the binary size. It is possible to mitigate
this problem: suppose we have a set of data types to be
supported and a specific DNN only uses a subset of them,
we can just compile those pairs of type and operator that are
only required by the DNN we intend to run. However, we
need Just-In-Time (JIT) compilation support since we know
these pairs only when executing a DNN.

3.3 Typecast Nodes in Graph
Once we have the new type well optimized and fully inte-
grated with the runtime library, we need further support
at the graph level. A common scenario is that a user labels
specific kinds of operators, e.g., convolution and matrix mul-
tiplication, by low-precision data types with the expectation
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of reducing overall DNN workload. There are quite a lot of
other operators that users cannot deliberately specify their
data types. Some of these operators need to run at high-
precision, e.g., softmax, while others are type-agnostic, e.g.,
transpose, which give an identical result with any data type.
How to decide the types of the latter group of operators has
an impact on performance through typecast nodes inserted.

Reshape
(bfloat16)

Typecast
(float)

Typecast
(bfloat16)

(a)An example of case 1. Reshape is a type-agnostic operator. Names
in brackets denote the types of node output. Here we can remove
all typecast nodes and change the type of reshape directly to float.

Concatenate
(float)

Typecast
(float)

Typecast
(float)

Typecast
(float)

Typecast
(float)

(b) An example of case 2. Concatenate is an operator that joins
multiple input tensors into one, which is also type-agnostic. Here
we show that instead of doing three typecast in the input, moving
the typecast to the output and change the type of concatenate to
bfloat16 is beneficial.

Figure 6. Two example showcase graph transformations we
perform to eliminate non-essential typecast nodes.

A typecast node simply converts the type of the input data
to its target type. It needs to iterate through every element
in the input and call typecast functions, as well as allocating
memory space for its output. It is almost always better to
remove non-essential typecast nodes. Figure 6 shows two
cases that typecast nodes can be removed, both are around
type-agnostic operators. In the first case, the inner operator
can produce identical results with different types, such that
there is no need to typecast. Nodes in the second case have
typecast nodes on either the side of the input or the output,
and we can move them back and forth in case the typecast
workload is different on each side. Neither of these cases can
be optimized by existing graph optimization passes.

4 The Lowgen Framework
This paper proposes Lowgen to address these challenges.
Lowgen aims to reduce the overall workload of implementing
and experimenting with new data types in a mixed-precision
DNN scenario. It is not a standalone DL framework; instead,
it is designed to be integrated into any DL framework that
has a similar architecture to TensorFlow.With Lowgen, users
who intend to develop a new data type only need to spec-
ify the essential parts, i.e., Tsim, Tsto, fsim→sto, and fsto→sim.

Lowgen can generate efficient arithmetic implementation,
provide a JIT compilation mechanism to dynamically special-
ize operator templates, and optimize mixed-precision DNN
graphs. We look at each part in the following sections, still
using bfloat16 as the target data type.

4.1 Generate High-Performance Data Type
Based on our previous example (Figure 5), Lowgen only
expects users to provide Figure 5a and it is responsible to
generate the rest with high quality. Specifically, the user
input to Lowgen is a piece of C++ code that contains one
class that defines the new data type. That class should have
three essential parts: one data field of the storage type Tsto,
an explicit constructor that takes a single argument of the
simulation type Tsim, which is given by fsim→sto, and an
explicit typecast function fsto→sim.

Lowgen generates high-performance data type by source-
to-source transforming this input file. The transformation
should generate elementary arithmetic functions, both in
scalar and vector forms, and vectorized typecast functions,
fsim→sto and fsto→sim. Generating arithmetic functions is
trivial to implement, while generating vectorized typecast
functions is challenging. Lowgen addresses this challenge
by a novel method which is simple and effective: we directly
map each instruction in the scalar typecast functions to its
vectorized counterparts. The rest of this section presents the
intuition behind this approach and its implementation.

Intuition. A typecast function normally consists of a sim-
ple dataflow, which has a single source, i.e., the scalar data
input to be typecast, and a single sink, i.e., the scalar out-
put of the target type (ignoring all constants). This property
suggests that executing a typecast function on multiple inde-
pendent input scalars in parallel will not incur race condition.
Therefore, replacing scalar instructions by their vectorized
counterparts, which practically executes multiple continu-
ously addressed input sources in parallel, is a viable solution
to vectorize the whole typecast function. We only need to
perform a sanity check on the aforementioned dataflow con-
dition before running the replacement.

Implementation. Given the AST parsed by Clang [18],
Lowgen iterates every AST node in the typecast function
declaration and generate code accordingly. If the node be-
ing visited is a variable declaration, then in the vectorized
function body, we create a corresponding vector variable. If
we come across a unary or binary operator, and their vec-
torized counterparts are available in the target instruction
set, we then directly carry out the replacement. If there is
an if-else construct, we first generate vector instructions for
all branches and then create a vector mask calculated from
the branch condition to aggregate branch results. There are
cases that multiple AST nodes should be mapped to a single
vector instruction, or a single node needs to be implemented
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Table 1. Comparison of the overall forward execution time (ms) per input sample between float, bfloat16 without any
optimization in Lowgen, and bfloat16 implementation generated by Lowgen. We also list the speedup of bfloat16 models
compared with the baseline.

Model Task float bfloat16 (Lowgen) bfloat16 (baseline) Speedup
ResNet-v1-50 [12] Classification 624.61 2312.38 17517.80 7.576
ResNet-v1-101 [12] Classification 1143.13 4923.54 37500.10 7.616
ResNet-v2-50 [13] Classification 990.51 3425.27 32049.40 9.357
Inception-v4 [30] Classification 1267.38 5913.06 44277.00 7.488
YOLO-v3-Tiny [26] Detection 525.66 1780.26 14557.60 8.177
YOLO-v3 [26] Detection 3813.83 14834.20 164261.00 11.073
SSD [20] Detection 301.66 928.24 7671.72 8.265
SSD-FPN [19] Detection 5976.73 29243.90 301022.00 10.293
Faster-RCNN [27] Detection 52013.30 134392.00 1244230.00 9.258
DeepLab-v3 [4] Segmentation 10329.90 41503.90 468629.00 11.291
U-Net [28] Segmentation 64139.40 59886.10 65217.4 1.089

by a sequence of vector instructions. Lowgen provides ad-
hoc pattern matchers (inherited from ASTMatcher in Clang)
and code templates to handle such cases.

4.2 Just-In-Time Operator Template Specialization
Once we have the data type generated, we then need to
specialize DNN operator templates with it. Our objective
is to perform the specialization right after the DNN model
information is given, such that we can just specialize those
DNN operators that actually need this new type. Lowgen
provides a novel JIT compilation mechanism for this purpose.
(1) We first fetch all pairs of operator and type in the given

DNN model and identify which operators need Tnew.
(2) Next, we re-assemble the operator implementation,

typically a template class, into a temporary file, and
we specialize this template by Tnew.

(3) Finally, we compile the generated code into a shared
library. Given the user API is in Python, we can load
the generated shared library into the current Python
process and use it to execute the mixed-precision DNN.

This technique has limitations though, especially when we
cannot access the operator template source file that includes
the declaration, or when the frontend is not Python and
cannot load shared libraries during execution. We will look
for alternatives in future work.

4.3 Mixed-Precision Graph Optimization
We now have the data type implemented and imported, and
the next step is to experiment with it. A common experi-
mentation scenario is that, given a reference DNN model,
we intend to mark some of its nodes to use Tnew and see its
performance. Intuitively, we need to insert typecast nodes
around these marked nodes since they have incompatible
types with their peripherals. But as we mentioned earlier,
there might be redundancy in these auto-inserted typecast

nodes and we can transform the mixed-precision graph to
get rid of them. Lowgen implements the two types of trans-
formations mentioned in Figure 6.

(1) Type 1. We examine all pairs of typecast nodes in the
graph and see whether all the paths that connect them
are type-agnostic. If so, we remove both typecast nodes
and change the types of nodes on these paths.

(2) Type 2. We iterate every type-agnostic node that has
adjacent typecast nodes and evaluate whether the ex-
pected typecast workload may reduce after moving
typecast nodes to the other end. The expected work-
load is calculated simply by counting the total number
of elements to be typecast.

5 Empirical Evaluation
We evaluate Lowgen on one specific scenario: implementing
bfloat16 and experimenting its performance on various
DNN models. Instead of integrating Lowgen directly into
TensorFlow, we use our own in-house DL framework that
has similar architecture to TensorFlow but is much easier to
extend. Our framework has its own implementation of the
runtime library based on Eigen, the graph library that can
construct and optimize TensorFlow-like DNN graphs, and a
Python-based user API. Our framework also supports con-
verting DNN model representation to and from TensorFlow
graphs.

Our experiments are carried out on a wide range of DNN
models, which have state-of-the-art accuracy on tasks in-
cluding image classification, object detection and semantic
segmentation. We first showcase the overall performance
gain we can get from using Lowgen, which is significant.
Next, besides the reduction on overall execution time, we
describe the following benefits of Lowgen: we compare the
performance measured in runtime and lines of code of the
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Lowgen generated bfloat16 definition and a manually writ-
ten one; we examine the effectiveness of dynamic template
instantiation for DNN operators, mainly about the compila-
tion time and binary size; and we study whether applying
the mixed-precision graph generation can practically reduce
the overall execution time.

5.1 Experimental Setup
The experimental platform is Intel Xeon Silver 4110 CPU
that has 8 cores and runs at 2.10 GHz base frequency. We
target the Intel Streaming SIMD Extensions (SSE) instruction
set when generating vectorized functions. The in-house DL
framework itself is compiled by GCC v5.4.0 with the -O3
flag turned on. The Eigen module integrated into our DL
framework is v3.3.7 and compiled with OpenMP to support
multi-threading. By default, all the experiments in this paper
use 2 inter-operator threads to run DNN operators in paral-
lel, and 8 intra-operator threads that Eigen will employ to
parallelize its BLAS routines.

5.2 Overall Execution Time
Table 1 summarizes the execution time measured on vari-
ous DNN models. All these models are first implemented
and evaluated by our in-house DL framework with float.
Then we build a baseline bfloat16 implementation, which
includes the class definition and scalar arithmetic functions
declaration (Figures 5a and 5b). No vectorization is supported
in this case. Finally, we use Lowgen to generate a vectorized
bfloat16 definition and collect the performance. Typecast
nodes in the mixed-precision DNN graph are optimized in
both cases. These performance numbers exclude the trivial
JIT overhead.

From Table 1 we first notice that the speed-up we can get
from Lowgen is significant. It mainly comes from the exten-
sive vectorization that Lowgen generates. Intel SSE supports
128bit width vectors, which can give about 4 times speedup,
given that the arithmetic functions are simulated by 32bit
float. The additional speedup comes from scheduling: both
the internal scheduler of Eigen and our inter-operator sched-
uler can parallelize the execution efficiently. This speedup is
significant: before optimized by Lowgen, we need normally
several hours to finish one round of evaluation; with the
help from Lowgen, we can usually obtain the result within
an hour.
Meanwhile, we notice that bfloat16 with Lowgen still

runs around 4 times slower than float, which is understand-
able since bfloat16 DNN models are simulated by float.
bfloat16 DNN workload consists of everything from its
float counterpart, with additional overhead that cannot be
avoided, e.g., typecasting. The major objective of Lowgen
is not to run DNN faster in low-precision types than float;
we are interested in getting the simulation more efficient
than a naive implementation with reduced development cost.
One outlier is U-Net, which is a memory-bound DNN model

based on our implementation, and therefore, float is not
much faster than others and can have worse performance.

5.3 Other Lowgen Benefits
Lines of code. Take the bfloat16 implementation as an

example, to get the fully optimized performance, we need
roughly 600 lines of code, including the data type definition,
scalar and vectorized arithmetic functions, and optimized
typecast functions. With help from Lowgen, we only need
around 30 lines of code that specify the core structure: Tsto,
fsim→sto, and fsto→sim.

O
bj

ec
t f

ile
 s

iz
e 

re
du

ct
io

n 
ra

te
 (%

)
0.00

2.00

4.00

6.00

8.00

10.00

Res
Net 

v1
 50

Res
Net 

v1
 

Res
Net 

v2
 50

Inc
ep

tio
n v

4

YOLO
 v3

 tin
y

YOLO
 v3 SSD

SSD-F
PN

Dee
pL

ab
 v3

U-N
et

Fas
ter

-R
CNN

Reduction of object file (.o) size with JIT specialization

Figure 7. Measuring the reduction rate of the size of com-
piled object files (*.o) on different DNN models due to Low-
gen.

Size of compiled operators. Figure 7 summarizes the re-
duction of compiled object file size when the JIT template
specialization technique is applied. Different DNN models
have different operators marked as bfloat16, such that they
can benefit at different scales from Lowgen.

Table 2. Comparing the peak memory usage of running
SSD and Inception-v4 with (opt) and without (base) typecast
optimization. ↓ # Typecast denotes the number of typecast
nodes eliminated.

Model Mem. (base) Mem. (opt) ↓ # Typecast
SSD 89.6 MB 88.9 MB 12
Inception-v4 578.4 MB 572.9 MB 93

Graph optimization. With redundant typecast nodes
eliminated, we expect that mixed-precision DNN can run
faster with a smaller memory footprint. There are two DNN
models that can benefit much from this optimization, SSD
and Inception-v4. They both have many type-agnostic nodes:
SSD uses a lot of reshape nodes before its output, and there
are extensive concatenate nodes in Inception-v4. Table 2 lists
the comparison result.
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6 Related Work
There are many aspects of the PL research that are related to
our work. First, the high-performance data type generator in
Lowgen is highly related to auto-vectorization, a technique
that converts loops that execute one element at a time to
those process multiple elements in parallel through vector
instructions. It is an extensively studied method [8, 17, 21]
and accessible in recent compiler releases. However, since
there is no loop structure in the data type definition input to
Lowgen, auto-vectorization is not an applicable method and
we find a simpler solution to perform vectorization.

The concept of JIT compilation [3] is adapted in our ap-
proach as well. In DL community, people normally use JIT
to enhance performance during runtime by compiling and
optimizing segments of code and customize DNN implemen-
tation [9, 23, 25]. JIT in Lowgen has a similar motivation
but with a different perspective: we intend to customize the
DL workload relating to mixed-precision support for DNN
operators based on runtime information, such as the types
in the DNN models to be executed.
There is much recent development in DL compilers that

aims to further improve the execution performance targeting
various platforms [5, 29, 32]. Lowgen uses similar techniques
as in those DL compilers, while it concentrates on improv-
ing mixed-precision DNN performance, which has not been
effectively supported by them.

7 Summary
This paper discusses the programming challenges in im-
plementing and evaluating mixed-precision DNN models
when using state-of-the-art DL frameworks. We show that
even though the highly modularized framework architecture
enhances the performance, it prevents users to efficiently
design and implement new data types and evaluate them
in mixed-precision DNNs. We list three specific challenges
including the difficulties in implementing high-performance
vectorized data type definition, the recompilation and code
bloating issues caused by specializing templates for new
types, and the redundant typecast nodes that can be elimi-
nated. We summarize our preliminary solutions into a frame-
work, Lowgen, which has a high-performance code generator
for efficient data types, a JIT compilationmechanism that can
specialize operator templates during runtime, and a graph
optimizer that transforms mixed-precision DNN graphs to
remove unnecessary or resource-consuming typecast nodes.
Lowgen can support any TensorFlow-like DL framework to
extend their ability for handling mixed-precision DNNs. For
a specific data type bfloat16, we have empirically evaluated
Lowgen on a wide range of DNN models, and the results
look promising: we can get on average 8.317 times speed up
over the baseline by using Lowgen.

Much future work can be carried out. First of all, Lowgen
is evaluated on our in-house DL framework, and we look

forward to testing it on the official TensorFlow codebase.
Also, bfloat16 is a rather simple custom data type: it has
exactly 2 bytes and the typecast between it and float is
not very complicated. Other data types may not have byte-
aligned storage, and may use non-trivial typecast functions.
Extending our approach to support additional applications
and other SIMD platforms is also on our agenda.
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