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Abstract—FPGAs have recently shown promise for accelerating
machine learning training. This has led to research into the
co-design of narrow-precision accelerator architectures and the
investigation of novel machine learning models. Such research
can be extremely expensive, as the steep cost of training a model
can increase several-fold due to the need of performing hyper-
parameter tuning and adjustments to the model to ensure accept-
able convergence speed and accuracy. In this scenario, monitoring
key data on-chip is essential to more quickly understand and
diagnose problems, significantly reducing training costs.

Previous work has proposed on-chip debug instrumentation
to monitor key signals for both general-purpose circuits and
inference algorithms. This instrumentation either performs lim-
ited on-chip compression, or is extremely restricted in the
amount of run-time customization that may occur. We argue
that for training applications, the extremely long and expensive
training runs warrant significantly more flexibility in the on-chip
instrumentation, even at the expense of some chip area.

In this paper, we propose flexible debug instrumentation that
allows for the live debugging of machine learning systems during
training. Different from previous debug instrumentation, our
instrumentation offers firmware programmability, allowing the
researcher to gather data in a large variety of ways that would
likely not be anticipated at compile time.

I. INTRODUCTION

It has become well-established that FPGA-based hardware

accelerators can provide energy-efficient compute horsepower

for a variety of complex applications [1]. Major companies

such as Microsoft, Amazon, IBM, and Baidu have recently

incorporated FPGAs into their data centres [2]–[4]. Today,

many of the target applications involve machine learning

inference for tasks such as search engine ranking and natural

language processing [5], [6]. However, the process of training
machine learning models still heavily relies on GPUs.

Training machine learning models using FPGAs has been

explored by academic work [7]–[10] and has recently spurred

the attention of FPGA vendors and FPGA groups from com-

panies with large-scale FPGA-accelerated data centers [11]–

[14]. Using FPGAs for training may be compelling since it

may offer higher performance-per-watt than a GPU. This is

due to optimizations such as custom data paths and arithmetic

representations on FPGAs [15], [16]. Cost-effective training

is especially desirable for large networks, since training large

models like GPT-3 [17] using GPUs may cost several million

USD [18], [19].

Implementing training on FPGAs is challenging. In order

to take advantage of the customisability of these devices,

it may be necessary to significantly redesign and/or refine

the underlying machine learning model. As a result, multiple

expensive training runs are needed for adjustments to ensure

acceptable accuracy and convergence speeds, increasing the

cost of training several-fold. Often, the need for these adjust-

ments only become apparent after long run-times; issues such

as overfitting, poor generalization performance, sudden drops

of accuracy, and long-term numerical instabilities may only

become observable after many training iterations. We believe

that the ability to diagnose such problems during training by

tracking the behaviour of the circuit as it runs is essential to

effectively create networks suitable for training on FPGAs.

Frameworks that gather run-time information of a running

circuit have been proposed. For machine learning inference

applications, frameworks which provide on-chip visibility of

large matrices and arrays by recording the behaviour of the

design as it runs at speed have been presented [20], [21].

These techniques, however, may not work well for training ap-

plications. These techniques rely on identifying and inserting

a small subset of debug instruments at compile time, limiting

the range of behaviours that can be observed. For training, we

anticipate that more flexible instrumentation that allows us to

observe many different aspects of the training behaviour would

be desirable, as would the ability to stream this data off-chip

rather than storing it in on-chip buffers. Flexibility will cost

chip area, however, since training is often performed on large

data-centre FPGAs, it may be more acceptable to insert larger

and more flexible instrumentation.

In this paper, we present a flow to accelerate the debug of

machine learning training on FPGAs. Our contributions in this

paper are the following:

1) We provide motivational examples that highlight the

need for increasing the observability of the run-time

Figure 1. Training Debug Instrumentation
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behaviour of training applications,

2) We propose a flexible on-chip debug infrastructure for

FPGA machine learning training, describing its archi-

tecture and implementation in detail, and

3) We quantify the impact of adding such an infrastructure

to hardware accelerators and study how this impact

changes according to a set of parameters.

This paper is organized as follows. Section II describes

recent domain-agnostic and domain-specific efforts in on-chip

debug. Section III then presents a taxonomy on machine

learning bugs and presents a motivational example for this

work. Section IV introduces our enhanced debug flow and

instrumentation architecture. Section V shows examples of

data gathering techniques enabled by our instrumentation.

Section VI evaluates our proposal in terms of data gathering

capabilities, area overhead, and circuit speed.

II. PREVIOUS WORK AND CONTEXT

A. Machine Learning Software Debug

High-level software debug of the machine learning model is

essential to catch bugs at an early stage. In [22] researchers at

Google presented TensorFlow Debugger (tfdbg), a specialized

debugger for TensorFlow dataflow-based graphs. Tfdbg fo-

cuses on organizing the intermediate and internal graph states

and presenting them in a clear and understandable fashion by

keeping copies of intermediate values as they flow through

the graph. This gives the user more visibility into the model

execution graph, which otherwise would be encapsulated as

a black-box function call, abstracting away internal graph

detail, parallel and potentially distributed execution routines.

This command-line interface (CLI) of tfdbg has been ex-

tended as a graphical user interface (GUI) in TensorBoard

[23]. Tensorboard also includes a graph visualizer that helps

users understand complex machine learning architectures by

performing a series of transformations to declutter the graph.

Some work has also considered techniques to debug prob-

lems based on a reference model. In [24] Uber presented

Manifold, a framework that utilizes visual analysis techniques

to compare and debug pairs of similar machine learning

models (e.g. a full model and its distilled version). This model-

agnostic tool does not rely on access to the internal logic of the

model. Instead, Manifold visually compares different statistical

metrics of the inputs and outputs of the pair models, allowing

the user to focus on those discrepancies (symptoms) and make

an initial hypothesis of the problem.

Other machine learning software debug work focuses on

analysing deep learning models during training. In [25], re-

searchers from Microsoft proposed TensorWatch, which pro-

vides a way to perform interactive queries on live processes

instead of constantly interrupting the system for queries.

TensorWatch also focuses on extensibility, by allowing the user

to visualize the logged data in custom ways. and temporarily

displaying them to the user without logging.

The main limitation of software debug work is the speed

in which data can be gathered at low granularity, making it

impractical to diagnose some types of training problems in

large models. We believe that if a hardware accelerator is

required to make training timely and economically viable,

problems that only become apparent after long run-times

should be diagnosed on-chip.

B. Machine Learning Hardware Debug

Recent work on on-chip machine learning debug focused on

adding instrumentation into the machine learning accelerator

to increase visibility into the design by recording selected

signals over time.

Unlike traditional on-chip debug [26]–[28], which is

domain-agnostic, the authors in [20] explored the creation of

an on-chip debug infrastructure specifically tailored to machine

learning circuits. The key idea behind this contribution is that

it is not necessary to record the raw history of how signals

change over time to gain insight on the internal behaviour of a

given circuit. Instead, data is compressed in a domain-specific

way, allowing the user to decide which kind of information

should be recorded on-chip. As a result, the trace buffer

memory resources can be utilized to observe the circuit for a

substantially longer period, accelerating the diagnosis of more

complex problems.

This work was later expanded in [21], which addresses the

need for lower debug turns-around times. This need comes

from the iterative nature of debug, which requires the user

to observe different things as the user refines his or her

understanding of the circuit. In this scenario, previous instru-

mentations were not enough, due to the need to recompile the

entire circuit every time the user wanted to observe something

different, or observe the same thing in a different way. This

problem was addressed by a configurable instrumentation that

can select between a few pre-determined data compression

circuits at debug time. In addition, the instrumentation in [21]

allows for the signals/matrices being traced and the organiza-

tion of the trace buffer to be adjusted at debug time.

C. Baseline

In this work we adopt the infrastructure proposed in [21] as

our baseline. A key limitation of the baseline is the lack of flex-

ibility in how data can be observed. In the instrumentation in

Figure 2. Baseline instrumentation
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Figure 2, three data compression schemes have been included

in the instrumentation, and the user can switch between these

schemes at debug time. However, if a different compression

scheme is needed, then new instrumentation must be created

and the circuit recompiled. In this paper, we overcome this

limitation by proposing a programmable debug infrastructure

that can be programmed at the firmware level at run time. Note

that although our instrumentation has been optimized to allow

for computing statistics that are useful during training, it also

allows for the computation of the simpler statistics proposed

in [21].

Another important difference from this previous work in-

cludes the ability for live monitoring and debugging the circuit,

which is essential for debugging training circuits as further

discussed in Section IV.

III. MACHINE LEARNING TRAINING BUGS

A. Machine Learning Hardware Bug Taxonomy

In this work we adapt the taxonomies presented in [29],

[30]. For each description of the accelerator (software baseline,

firmware and hardware) we classify bugs into to five types:

Inherited Bugs: This group consists of bugs that predate the

beginning of the current development cycle. These include

bugs in tools and bugs that were already present in higher-

level descriptions of the accelerator.

Data Bugs: These are bugs related to an unexpected behaviour

of the input data. This includes problems such as incorrectly

labeled samples, values out of range and malformed or missing

data samples.

Syntax Bugs: These are bugs related to any failure to comply

with the set of rules of the language being used, such as case-

sensitivity and the enforced order of operands.

Structural Bugs: These are bugs related to problems in the

general logic and semantics of the accelerator, causing the

implementation to differ from its original description. Struc-

tural bugs range from simple problems, such as a trivial error

when converting between units, to complex errors such as a

combination of multiple elusive logic mistakes.

Conceptual Bugs: These are bugs related to false assumptions

about the suitability of the machine learning model itself and

its interactions with the hardware. Conceptual bugs include

problems such as assuming that a given data type would be

enough to allow for the proper training of a given model,

or assuming that a certain model would not overfit given its

topology and hyperparameters. Conceptual bugs may result

in problems such as lower than expected accuracy, failure to

converge or suboptimal convergence speed.

Different from previous work in machine learning hardware

debug, which focused on structural bugs during inference, we
focus on conceptual bugs that only become apparent during

training. We consider those bugs especially challenging, since

they may be prohibitively long to expose using simulation and

may require observing the system in multiple different points

of the training process before their overall behaviour can be

understood.

B. Motivational Example

To demonstrate an example conceptual bug, we modeled a

DNN with multiple dense layers and ReLu activations in all

hidden layers to perform a simple classification task. Note

that this network is intentionally small in order to allow

for rapidly extracting statistics about the training process.

Although this bug is illustrated using a small network modeled

in software, we anticipate that similar problems may happen

with significantly larger networks trained in hardware.

As shown in Figure 3(a), the DNN being trained behaves

well during the first few epochs, but the accuracy significantly

drops after Epoch 33 and recovers after Epoch 44. This prob-

lem would not be visible in an initial RTL-level simulation,

since only the first few training steps would be simulated.

When running such a network in a hardware accelerator with-

out any instrumentation, the machine learning expert would

only be able to observe the drop in accuracy as shown in Figure

3(a), but would have no more information to help diagnose

the problem. Moreover, a software-only simulation could also

be slow and behave differently from the circuit that has been

implemented with limited precision.

In this scenario, there are multiple statistics that could

be used to help diagnose this problem as shown in Figure

3(b,c,d,e). Figure 3(b) shows the gradients of different layer

over time, which shows that most gradients become zero as

soon as the accuracy starts to drop. The cause of this drop is

shown in Figure 3(e), which shows that the sparsity of Layer

9 becomes nearly 100% around the same time that the drop in

accuracy occurs. This is known as the ‘dead ReLu problem’,

in which layers with most of its ReLus dead will always output

approximately the same value for any given input. Once most

of the layer ends up in this state, the layer is unlikely to

recover, as the function gradient of a ReLu at zero is also

zero.

A possible way of addressing this problem is to use Leaky

ReLus instead of traditional ReLus, which have a small

positive gradient for negative inputs. However, this will cause

the sparsity of all layers to be nearly zero, negating some of

the benefits of accelerators that profit from sparsity. Moreover,

the machine learning expert debugging this system might be

interested in understanding the cause of the ReLus dying, since

this might be only a symptom of a larger underlying problem.

Note in Figure 3(e) that the sparsity of the network progres-

sively moved towards 100%, which means that no particular

batch of inputs was solely the reason for the problem. More

interestingly, Figure 3(d) shows that the mean value of activa-

tions started to significantly vary between batches after Epoch

60, indicating that the network is possibly overdimensioned or

that the training step is too high for the given loss landscape.

Note that this behaviour in activations would be averaged out

and become less evident if the circuit was only observed every

few epochs, showing the need for observations to be performed

frequently. Moreover, deciding to observe the training circuit

using RTL-level simulation after Epoch 60 would be both slow

and not an obvious place to start.
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Figure 3. Motivational example showing a debug challenge that can benefit from on-chip instrumentation. Data obtained using a software model.

IV. ENHANCED DEBUG FLOW

A. Overall Approach

Similar to previous flows, we insert instrumentation that

performs on-chip domain-specific compression to gather ag-

gregated information about the behaviour of the machine

learning model, rather than recording raw values over time.

Different from previous flows, instead of restricting the user

to select among a few predefined ways of observing the circuit

during inference, we create an architecture that is optimized

for observing training models, while also being flexible enough

to allow for a large variety of custom ways to observe the

model. Although, as we will show, our architecture requires

more chip area than previous techniques; we argue that this

may be less critical in training applications which are often

performed on large data-centre FPGAs, compared to inference

applications which are sometimes implemented in smaller

edge-oriented FPGAs.

Our instrumentation also differs from previous work in

the way it handles its gathered data. Rather than storing

this information using precious on-chip memory resources,

we stream this compressed data opportunistically off-chip,

allowing for live monitoring and debugging of the machine

learning model being trained. As discussed in Section V,

this may enable early detection of a variety of problems,

significantly saving time and reducing training costs.

We anticipate the typical use of our instrumentation to

unfold as follows. First, at compile time, the designer selects

which parts of the model could be observed by the instru-

mentation and adds the instrumentation to the design. The

designer then programs the instrumentation by either selecting

or creating custom firmware (see Section IV-D) and starts the

training process, while live-monitoring different aspects of the

learning model. At run time, the designer may reprogram the

instrumentation to change how the model is observed. If a

certain aspect of the training process is found to be unsuitable,

the designer will then perform ad hoc adjustments. At this

point, the designer may choose to either quit the possibly

failing training process to reduce costs and debug offline, or

perform live modifications to the network given that the right

amount of controllability is built into the design.

B. Architecture Overview

As illustrated in Figure 4, the user circuit is connected to

a single programmable instrumentation unit through a signal

selection mechanism. Rather than allowing only a single vector

input to reach the programmable instrumentation, the signal

selection mechanism allows multiple input vectors to reach

the instrumentation via time-multiplexing. As a result, instan-

tiating multiple programmable instrumentation units may be

avoided in many scenarios. We believe that time-multiplexing

different vectors into the instrumentation is often a good

solution, as signals may not be valid at all cycles, and sampling

instead of recording all valid signals might also be acceptable

when live monitoring the model and searching for the root

cause of conceptual bugs.

Note that the programmable instrumentation has no trace

buffer to store processed data. Instead, all data is sent off-

chip, significantly reducing on-chip memory overhead. This is

possible due to the compressing nature of gathering aggregated

model information. In scenarios in which the interface to

off-chip memory is unable to handle the instrumentation’s

throughput, back pressure may be applied to the instrumenta-

tion to ensure that a somewhat periodic sampling is achieved.

C. Programmable Instrumentation

Figure 5 shows the overall architecture of our programmable

instrumentation. We refer to each block that composes our

architecture as a building block. Building blocks are chained

together, allowing data to only follow a predetermined data
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Figure 4. Overall Architecture Image

path. The order in which blocks are connected has been chosen

to minimize the number of times data has to traverse the entire

instrumentation in order to compute the statistics described in

Section V. This order, however, is easily changeable at compile

time and might be customized for power users that are not

satisfied with the family of programmable infrastructures we

provide.

The Filter Unit (FU) and the Matrix-Vector Reduce Unit
(MVRU) are the building blocks responsible for handling data

that needs to be within a specific range. The FU handles a vec-

tor of N elements and checks whether each of those elements

is within M ranges, resulting in a binary N×M output matrix.

A single FU can be used to check multiple different ranges,

since those ranges are stored into a programmable memory in

the FU. The MVRU then sums this data along the N or M
axis and performs zero padding as appropriate. Those blocks

may be used, for example, to create a histogram M bins per

cycle or to check whether each element of the input array is

valid or invalid by simultaneously checking for values out of

range, NaNs and subnormals.

The Vector ALU (VALU) performs simple element-wise

operations, such as addition, subtraction, and multiplication.

This building block also has direct access to a scratchpad that

can be used to store intermediate computations when multiple

loops though the chained instrumentation are needed. The

Vector-Scalar Reduce Unit (VSRU) may be used to reduce all

inputs to a single element by either summing or multiplying

them.

The Data Packer (DP) is responsible for packing elements

into blocks of N elements. Although the DP will always

receive N elements as an input, not necessarily all of those

inputs are valid. Elements that have been processed by the

VSRU, for example, will only have one valid element in its

array of N elements. Similarly, the MVRU may also output

only M valid elements depending on the operation performed.

The DP is crucial to compress the data, minimizing the amount

of information that needs to be sent off-chip.

D. Describing the instrument functionality

Different from previous work, which allows the designer

to select among a handful ways of observing the model, our

architecture enables the designer to create a large variety

Figure 5. Programmable Instrumentation Architecture

of ways to observe the model at run time. The behaviour

of the instrumentation at a given run is described by the

firmware. Note that changing the firmware does not require

resynthesizing the circuit, unless the new firmware requires a

specific building block that has not been added to the design

at compile time.

A firmware specification is composed of a sequence of

instructions that describe the operations that will be performed

for each input vector. A firmware specification may contain

one or more chains, which are sequences of instructions that

describe a single pass through the entire architecture. A new

chain is initiated each cycle, given the heavily pipelined nature

of our instrumentation. The order in which the building blocks

are placed in the instrumentation dictates the possible ways

in which data may flow and, consequently, the allowed order

of operations in a given chain. Complex operations may be

achieved by splitting the computations into multiple chains.

1 # Get multiple stats for each set of input vectors
2 def summaryStats(cp):
3

4 # Sum of all values
5 cp.begin_chain()
6 cp.vv_add(0,’notfirst’)
7 cp.v_cache(0)
8 cp.v_reduce()
9 cp.v_commit(1,’last’)

10 cp.end_chain()
11

12 # Number of sparse elements
13 cp.begin_chain()
14 cp.vv_filter(0)
15 cp.m_reduce(’N’)
16 cp.vv_add(1,’notfirst’)
17 cp.v_cache(1)
18 cp.v_reduce()
19 cp.v_commit(1,’last’)
20 cp.end_chain()
21

22 return cp.compile()

Listing 1. Sample firmware for simple summary statistics
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A sample firmware specification that computes simple sum-

mary statistics is shown in Listing 1. This firmware specifica-

tion is composed of two chains, which means that each input

vector only needs two clock cycles to be consumed by the

instrumentation.

To increase the flexibility of our infrastructure without

requiring a costly processor-like control structure, individual

instructions may be predicated only by a few key conditions.

We found that the existence of these conditions combined with

the use of the scratchpad allows us to compute a large variety

of statistics that are useful for monitoring and debugging a

training model as discussed in Sections V and VI.

V. TRAINING-SPECIFIC DATA AGGREGATION

In this section, we show how our architecture can be used

to increase the observability of a training circuit running on an

FPGA. As described in Section IV-D, our instrumentation can

be configured at run-time, using firmware, to aggregate data

in ways that may be useful to help the designer reason about

the model under evaluation. To make our discussion concrete,

we focus on six examples that we believe are well positioned

to aid in the understanding of training-specific problems. The

first three, which we will refer to as our Baseline Aggregations,

were also used in [21] and were originally intended to help

diagnose inference problems. The remaining three, which we

will refer to as our Training Aggregations, are new to this

paper, and were specifically designed with training in mind.

In Section VI, we use these six examples as benchmarks to

evaluate the effectiveness of our technique.

1. Distribution: This data gathering technique bins the fre-

quency count of the observed values over a user-defined pe-

riod, resulting in data that can be visualized using histograms.

2. Spatial Sparsity: The Spatial Sparsity gathers whether each

specific element is zero or non-zero, allowing the designer to

have a low-resolution visualization of activations and weights.

3. Summary Statistics: The summary statistics compresses all

data received within a user-defined period of time to a single

value, such as the mean or the number of sparse elements.

4. NormCheck: NormCheck is a data aggregation technique

inspired by the effect of the Batch Normalization (BatchNorm)

layer [31] in a training circuit. Although BatchNorm was

originally believed to accelerate training by reducing the

Internal Covariate Shift (ICS) [31], it was later shown that the

actual reason for its success is its impact on the smoothness

of the loss landscape [32]. BatchNorm, however, may offer

another advantage for hardware accelerators: it increases the

initial stability of the distribution of network activations, which

may be critical in systems that operate with limited precision.

A designer considering including BatchNorm in a model

may wish to understand the distribution of activations in a

network as it is being trained. Our instrumentation can be

used to gather this information as the circuit is running.

Specifically, our NormCheck implementation measures the

15th, 50th, and 85th percentiles of a set of inputs (typically

Figure 6. (a) The test accuracy of a network trained with and without Batch
Normalization (BN), vs. the number of training steps. (b, c, d) The change
in the activation distribution without BN, with BN and with BN in a selected
layer, respectively, over time shown as {15, 50, 85}th percentiles. Results
obtained using a software model.

the activations) over a period of time. To demonstrate this, we

created a software model and gathered the results in Figure 6.

Figure 6 (a) shows the accuracy over time demonstrating the

impact of BatchNorm. Figures 6 (b-d) shows the frequency

distribution for a typical hidden layer of those networks, which

corresponds to the 15th, 50th, and 85th percentiles of the

network activations, over a period of time. We propose that

we use our instrumentation to compute this later data. The

NormCheck shown in Figures 6 (b), shows that the distribution

of the activations in the network without batch normalization

quickly grow overtime, which, if implemented in hardware,

may cause overflows in architectures with lower precision.

Conversely, Figure 6 (c) suggests that the use of BatchNorm

in all layers is able to make those values stable over time,

avoiding numerical problems. Interestingly, Figure 6 (d) show

that by the same effect can be achieved, even if only a single

layer has BatchNorm.

The percentiles that compose NormCheck are computed

by our instrumentation using an approximation technique.

First, a 64-bin distribution of the activations is computed.

Those values are then sent off-chip, where the percentiles are

approximated and new uneven ranges for the distribution are

defined. Those ranges are then opportunistically updated on-

chip at run-time, ensuring that a good approximation of the

percentiles can be constantly obtained.

5. Activation Predictiveness: We can also use the instrumenta-

tion to allow the designer to check whether the activations of

a certain layer are somehow correlated with the test accuracy,

which would indicate that a numerical problem is manifesting

at that specific layer. Figure 7 (a) shows the test accuracy

over time of a simple network performing classification, while

Figure 7 (b) shows the activation predictiveness of one of

its layers (again, computed using a software model). The

activation predictiveness is given by:

APt =
1

M

t∑

m=t−M

max(ān,m)
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Figure 7. (a) Test accuracy of a sample network over a large number of
epochs. (b) Activation Predictiveness of penultimate layer, showing that drops
in the predictiveness are correlated with drops in the network’s accuracy. Data
obtained using a software model.

where ān,m is the average node activation of node n at time

step m, and M is the number of time steps used for a simple

moving average.
Note that the computation of the activation predictiveness

does not take any labels into consideration. The similarity

between Figures 7(a) and (b) suggests that the sudden drops of

accuracy experienced by the network is due to some numerical

instability in the network.
The ‘Baseline + Decay’ plot on Figures 7 (a) and (b) show

what would happen if the designer decided halfway through

the training process to minimize the effects of this numerical

instability by significantly accelerating the network’s learning

rate decay. As a result, the accuracy slowly increases over

time, which is the desired behaviour.
Note that this kind of observation is better performed on-

chip, as streaming the activations off-chip to do this analysis

would be costly and this is something that must be continu-

ously observed throughout training.
The activation predictiveness is computed by our instru-

mentation by first calculating the mean of the activations

of all nodes, followed by checking the maximum values

between those nodes. The moving average is computed offline,

as calculating it on-chip would not reduce the amount of

information that needs to be sent off-chip.

6. Total Invalidity: During training, weights, activations and

gradient values might suffer from different numerical anoma-

lies. Although those anomalies in a small scale may not cause

major harm, tracking the total number of invalid elements

over time might help better understanding when a numerical

problem started to manifest. Total Invalidity simultaneously

checks whether each specific element is a subnormal, +inf,

-inf or NaN and accumulates this value over time for each

training step.

VI. EVALUATION

Our programmable debug instrumentation offers run-time

programmable data gathering capabilities, and is characterized

by a number of parameters that allows the designer to trade-

off those capabilities with area overhead. In this section, we

Figure 8. Initiation Interval (II) of different workloads with N=32 (a) and
N=128 (b). Some workloads are not possible to compute in previous work.

will first show how the area, and speed of different variants

of our instrumentation compare to the baseline, which only

allows data to be gathered in a limited number of ways defined

at compile-time. We will then perform an architectural study

to investigate the overhead of those variants when different

numerical precisions and arithmetical representations are used.

A. Capabilities and overhead compared to baseline

To compare with previous work, we use four different

variants of our debug instrumentation (Variants A-D), each of

which is parameterized in four different ways. Those variants

differ both in terms of the input vector width (N) connected

to the user circuit, as well as in terms of the range parameter

M, which dictates many of the instrumentation’s capabilities

as discussed in Section IV. All of the experiments were

performed using Quartus Prime Pro 20.3 and targeting a Stratix

10 1SG280LN2F43E1VG.

In order to allow for a fair comparison, previous work

has been adapted to target vectorized circuits. Also note that

the different variants of our instrumentation are all able to

gather the same kinds of aggregated information. However,

different variants may take a different number of clock cycles

to perform the same task. Variant A represents the most

capable of our instruments, while Variant D corresponds to

the least capable of our variants.

Figure 8 shows the Initiation Interval (II) of our instrumen-

tation when compared to previous work under the different

workloads presented in Section V. As shown in this figure,

the initiation interval of the previous work is always 1, which

is ideal for observing short periods of the circuit’s execution,

but unnecessary for long-term monitoring. In contrast, our

instrumentation often needs multiple cycles to perform the

computations required in many data gathering techniques, but

the more time we allow for the processing of this information,

the lower is our area overhead. Importantly, previous work

only has the flexibility of computing the baseline aggregations,

while ours is capable of being programmed to gather data in

a large variety of ways.

Table I shows the area overhead and reported impact on

Fmax of the proposed instrumentation when compared to

previous work.

As shown in Table I, both previous work and Variant A

may consume an unreasonable amount of area, especially
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Table I
OVERHEAD OF DEBUG INSTRUMENTATION COMPARED TO BASELINE

Configuration Vector FMax Area Normalized
Width (N) (MHz) (ALMs) Area

(1) Previous
Work† [21]

1 300 0.9k (0.1%) -
16 242 14.1k (1.5%) 1x
32 231 27.7k (2.9%) 1x
64 216 53.3k (5.7%) 1x

128 200 106.5k (11.4%) 1x

(2) Variant A
(M=N)

16 191 9.8k (1.10%) 0.69x
32 160 28.7k (3.0%) 1.03x
64 145 95.3k (10.2%) 1.78x

128 129 342.6k (36.7%) 3.21x

(3) Variant B
(M=N/4)

16 177 6.2k (0.7%) 0.43x
32 177 14.4k (1.5%) 0.51x
64 169 38.1k (4.0%) 0.71x

128 129 114.0k (12.2%) 1.07x

(4) Variant C
(M=N/16)

16 178 5.1k (0.5%) 0.35x
32 173 10.9k (1.1%) 0.39x
64 185 23.8k (2.5%) 0.44x

128 165 57.0k (6.1%) 0.53x

(5) Variant D
(M=1)

16 178 5.1k (0.5%) 0.35x
32 184 10.3k (1.1%) 0.37x
64 177 20.3k (2.1%) 0.38x

128 168 40.3k (4.3%) 0.37x
† Assuming distribution engine with 128 bins.

when observing wide vectors. This high overhead is caused by

the design choice of prioritizing the frequency in which new

information can be tapped, instead of allowing for more reuse

of the instrumentation. In contrast, Variants B, C, and D show

progressively lower area overhead at the cost of additional

cycles to gather data. The reported impact on Fmax of our

instrumentation is slightly higher than previous work, and

we anticipate that this impact could be further reduced by

pipelining the instrumentation.

Note that different from [21], our results don’t focus on

the overhead in terms of memory, since our instrumentation

continuously streams this data off-chip instead of recording

data on-chip until the end of the execution. However, if we

were to store data on-chip, our compression ratio for the

data gathering techniques presented in [21] would be very

similar, since we use an analogous data packing mechanism

as discussed in Section IV.

B. Study on numerical precision and representation

This architectural study aims to evaluate the overhead of dif-

ferent variants of our architecture when using different numer-

ical precisions and representations. Note that the arithmetical

representation being used by the debug instrumentation does

not necessarily need to match the arithmetical representation

of the user circuit. However, if the user circuit operates in

low precision, our instrumentation is in a better position to

also use reduced precision, resulting in significantly lower area

overhead.

Figure 9 shows the area overhead of multiple variants of

our instrumentation when different numerical precisions are

used. For this experiment, we fixed the vector width N to

64 elements, as we believe this represents a typical use case

scenario. As shown in Figure 9, the area overhead of variant

A is significantly larger than the overhead of all other variants,

Figure 9. Overhead of instrumentation under different fixed-point bit widths.

even when a lower precision is used. For all widths, the

overhead of Variant C is only slightly larger than the overhead

of Variant D, although it is significantly more capable.

We also performed initial studies on the possible use of

Block Floating Point (BFP) as a way to decrease the area over-

head of our debug instrumentation. BFP has been identified

as a promising alternative representation for machine learning

workloads for both inference and training due to its efficiency

when performing multiply-accumulate operations [33]–[35].

However, our experiments have shown that BFP is not a

good alternative for debug instrumentations like ours, since

a significant part of our area overhead lies in the extensive

use of comparators. The need of matching the exponents of

the BFP operands before performing those operations requires

the use of multiple cycles for an efficient implementation,

which causes a significant increase of our initiation interval,

outweighing the benefits of the lower overhead.

VII. CONCLUSION

In this paper, we presented a flexible debug instrumentation

for live on-chip debug of machine learning training on FP-

GAs. Different from traditional general-purpose on-chip debug

work, our instrumentation generates aggregated data, which

compresses information in a domain-specific way, allowing

for the live transmission of debug data off-chip. Different from

previous work on domain-specific on-chip debug, our infras-

tructure is firmware programmable, allowing the designer to

gather debug information on a large variety of ways, instead

of being constrained by a few options defined at compile-

time. We showed that this added flexibility allows us to gather

information that can be used to more quickly understand effi-

ciency and accuracy problems on training models, significantly

reducing training costs of large models. Although the area

overhead of such instrumentation can be significant, we show

that this overhead can be drastically reduced by trading off area

and the time between subsequent circuit observations. Overall,

we believe that the inconvenience of the higher overhead is

outweighed by the benefits of the flexibility provided by our

instrumentation.

DOWNLOAD

The source code for the proposed instrumentation (includ-

ing examples and documentation) can be downloaded from

github.com/danielholanda/LeBug.
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