
Systematically migrating an operational
microphysics parameterisation to FPGA technology

James Stanley Targett
and Wayne Luk

Department of Computing

Imperial College London

{jst10,w.luk}@imperial.ac.uk

Michael Lange
and Olivier Marsden

European Centre for Medium-Range

Weather Forecasts (ECMWF)

{Michael.Lange,Olivier.Marsden}@ecmwf.int

Abstract—Efficient utilisation of computational resources is
one of the critical challenges in Numerical Weather Prediction
(NWP) due to tight time constraints and the complexity of the
numerical models. Enabling hardware acceleration is therefore of
vital interest to the weather and climate modelling community. In
this paper, we describe a systematic process to migrate physical
parameterisations from sequential code for CPU execution into
FPGA designs; a set of conditions that the code must be able
to satisfy for the process to be suitable (Single Pass Exclusive
Mutability of Current Cell); and describe the steps required to
automate the process. We showcase the migration of a cloud
microphysics parameterisation which forms a significant portion
of the runtime in operational weather models, and show that the
design produces results using an order of magnitude less energy
than CPU and GPU implementations while achieving significantly
higher throughput. We show that when incorporated inside a
larger NWP system, a further throughput increase by a factor
of five is possible.

I. Introduction

Numerical weather and climate prediction poses one of the

grand challenges for the upcoming era of exascale computing.

Forecast accuracy is limited by model resolution, which in

turn is perpetually limited by available computing resources

and energy budgets. To achieve a step-change in predictive

capabilities for operational weather forecasts, a significant

reduction in time-to-solution and energy-to-solution for high-

resolution computational models is of vital importance. Ef-

ficient utilisation of high-performance computing (HPC) re-

sources is, therefore, a key prerequisite for significant improve-

ments to forecasting skill [1][2]. The low energy footprint of

dataflow computing architectures, such as Field Programmable

Gate Arrays (FPGA), and their potential for highly scalable

throughput-driven HPC systems are therefore of great interest

to the weather and climate modelling community.

Dataflow architectures, however, represent a very fundamen-

tal change in programming model to traditional von Neumann

architectures, such as CPUs or GPUs, with key elements

not directly expressible in traditional programming languages

used in HPC today [3]. Operational numerical weather pre-

diction (NWP) systems, on the other hand, often contain large

amounts of C/C++ or Fortran code that have been hand-

optimised for a single architecture and HPC system, and often

include a wide variety of coding patterns. It is therefore of

crucial importance to analyse the applicability of the dataflow

computing paradigm for a variety of model components,

including components that often contain highly bespoke code,

to evaluate the feasibility and potential gains offered by FPGA

and dataflow architectures. Where dataflow architectures show

gains over competing architectures, incorporating them into an

operational system will require tools to convert source code

produced by scientists into optimised FPGA designs.

Operational weather and climate codes commonly consist of

multiple complex components that have often been optimised

for individual HPC architectures over a long period of time.

In the case of the Integrated Forecasting System (IFS), the

operational model at the European Centre for Medium-Range

Weather Forecasts (ECMWF), no clear hotspots emerge in

performance profiles. This causes the performance engineering

focus to shift to individual components of the model.

One class of components is the set of physical parame-

terisations. These are expected to contribute upwards of a

third of IFS’s operational cost in future configurations with

increased resolution [4]. As currently employed in the IFS,

these follow a common computational pattern. One of these

physical parameterisations is the cloud microphysics scheme,

CLOUDSC. This has been extracted as a standalone dwarf

(mini-application) as part of the ESCAPE project [4];

Our contributions in this paper are:

• the first FPGA design implementing CLOUDSC;

• the systematic process used to migrate CLOUDSC to

FPGA, a set of conditions the code must be able to satisfy

for the process to be suitable (SPEMCC), and we show

that process which is automatable and applicable to other

physical parameterisations;

• and performance comparisons between our FPGA imple-

mentation of CLOUDSC and reference CPU and GPU

implementations.

We show an increase in energy efficiency compared to GPU of

3.9× and 7.5× for double and single precision, respectively,

while achieving an increase in throughput of 2× and 2.8×
respectively. In single precision, we show that, given more

bandwidth, the FPGA could increase its throughput to 12.5×
that of the GPU while further increasing energy efficiency.

This is achieved despite eschewing floating point optimisations

so that correctness can be shown through bit-identical results.

69

2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/21/$31.00 ©2021 IEEE
DOI 10.1109/FCCM51124.2021.00016

II. Background

A. IFS and Physical Parameterisations

Global numerical weather models are limited to grid resolu-

tions and time steps that preclude the explicit resolution of all

of the physical processes affecting meteorological atmospheric

quantities. Accordingly, the effect of these processes must be

modelled or parameterised.

As currently employed in the IFS, these follow a common

computational pattern, where large amounts of data parallelism

are available between individual columns of vertically aligned

grid points. Within a column, large amounts of computational

work are required for each grid point, often including point-

wise solutions of small non-linear systems. In addition, a non-

linear control flow with a high branching factor, as well as

a large number of local stack variables per routine, result

in high register pressure and sensitivities to memory latency

on CPU, and low occupancy on GPU accelerators. This is

similar to the challenges for atmospheric chemistry models

described in [5]. As a result, both CPU and GPU architectures

are primarily limited by poor register and cache utilisation.

These are drawbacks that dataflow FPGA designs intrinsically

avoid.

B. The cloud micro-physics parameterisation

Cloud formation and precipitation are among the processes

that happen at small spatial and time scales. As well as

allowing precipitation to be estimated, the cloud scheme is an

essential component in the correct representation of radiative

and latent heating in the atmosphere. A brief description of

the cloud scheme in the IFS follows.

The IFS cloud scheme was originally written by Tiedtke [6],

and significantly extended by Forbes et al. [7]. It provides

equations for five prognostic variables, water vapour, cloud

liquid water, cloud ice, rain and snow. The prognostic equation

for each of the variables includes source and sink terms

resulting from the physical processes which affect them.

It is of the form:

∂qi
∂t

= si +
1

ρ

∂ρViqi
∂z

where qi is the specific water content for category i (i = 1 for

cloud liquid droplets, i = 2 for rain, and so on), si is the net

source or sink of qi through microphysical processes, and the

last term represents the sedimentation of qi with fall speed Vi.

The coupled Partial Differential Equations are integrated

implicitly in time, source and sink terms are separated into

fast and slow terms relative to the model time step size, with

fast terms treated implicitly, and the vertical advection term is

treated implicitly.

With these choices, the equations can be written as:

qn+1
α − qnα

Δt
= Ai +

m∑

β=1

Bαβqβ −
m∑

β=1

Bβαqα

+
ρk−1Vαq

n+1
α,k−1 − ρVαq

n+1
α

ρΔz

where the superscript n refers to the current time step, m =
5 is the number of prognostic equations, and the k−1 subscript

refers to a term taken at the model level above the current level

k, k being implicitly present for all terms of the equation.

This scheme is run at every time step for all the columns in

the atmospheric grid. The grid is distributed across MPI [8]

tasks, with one task typically receiving on the order of 103 −
104 columns with current grid and job sizes.

C. CLOUDSC Dwarf implementation

The cloud microphysics dwarf was chosen as a represen-

tative of physical subgrid-scale parameterisations in the IFS

since it exhibits a complex set of coding patterns found across

a range of routines in the IFS physics. It also exhibits a set

of performance characteristics, commonly found in physical

parameterisations across different NWP models, that often

define the porting and parallelisation strategy [9][10]:

• Large amount of data parallelism across horizontal di-

mensions, with data dependencies along vertical columns

due to the vertical advection term.

• High operational and arithmetic intensity with multiple

coupled physical processes modelled per grid point.

While in the current operational configuration, CLOUDSC

contributes over 7% of the operational cost of IFS [9].

The original code consists of approximately 3500 lines of

Fortran2003 code. It contains a driver routine that invokes a

kernel over sets of columns in a thread-parallel fashion, with

each thread processing a user-defined number of columns at a

time. The code has been optimised for CPU architectures by

allocating all variables with a common, user-defined block-

stride (memory blocking) to allow manual tuning of the

working set for different cache sizes.

Despite a variation in the number of floating point opera-

tions (Flops) for each column due to value-driven conditional

statements, a nominal average number of Flops-per-column

has been established via performance counters during the

original creation of the dwarf. Based on this, CLOUDSC has

an average operational intensity of 3.35 Flops/byte (single

precision) and 1.67 Flops/byte (double precision).

III. Migrating CLOUDSC to FPGA

A. Iteration Space

One of the fundamental changes when converting code

from a traditional instruction-based architecture to a dataflow

processor that implements the numerical computations directly

in hardware is that the flow of data into the chip and between

individually synthesised kernels needs to be well defined as a

set of data streams [11], [12].

For an application programmer, this means that the largest

iteration space over which a traditional subroutine executes

needs to be expressed as a single conceptual loop to which

a hardware-synthesised kernel can be mapped. All array ar-

guments to that routine that share a common set of dimen-

sions then define the input and output data streams. In our

example, CLOUDSC operates on a variably large number

of independent columns, each containing 137 vertical levels.

70

The presence of vertical derivative variables, however, means

that we are processing array variables with an extent of 138

computational cells in each column.

Within the CLOUDSC kernel, two classes of loops can be

identified:

• Short loops used for operations on vectors and matrices,

such as solving a system of fluxes between the five

prognostic variables in each vertical layer. These loops

will be unrolled in hardware.

• Long loops over groups of columns, or over vertical

layers within columns, that map to the data dimensions

of input and output arrays. These grid dimensions can be

collapsed to define a combined iteration space over all

cells in the grid that spans all argument dimensions.

The latter loops define the overall iteration space for porting,

which implies that the CLOUDSC kernel will initially be

expressed as a single kernel. As a result, all computations to

process a single grid cell will be performed in a fully pipelined

datapath, resulting in the outputs for a single cell being

generated at every clock cycle once the hardware pipeline is

filled. In order to create this single dataflow kernel, loop fusion

is applied to the original kernel code to ensure a single loop

body exists that encompasses all computations for a single cell

and defines the correct offsets along the stream dimensions.

After determining the bounds of the iteration space, the

order in which this space is to be streamed into the FPGA

must be decided. The data dependency between cells is due

to the vertical advection term. This term is produced near the

end of a cells pipeline and is required near the start of the

pipeline for the next cell in the same column. This entails that

the majority of the instruction pipeline for processing a single

cell needs to complete before iterating to the next cell in a

column.

The longest chain of computation within a column from a

value computed in one cell to the same value in the next cell

is around 100 floating point operations. With our compilers

default rate of inserting registers into the pipeline, this results

in a minimum of around 2500 cycles between the computation

of adjacent cells in a column. This rules out iterating through

one column before moving to the next.

On the other hand, between calculation and reuse, each cell

receives 39 floating point values (2.5 kb for double precision)

from the previous cell in its column. Storing these values off-

chip would be prohibitively expensive as we expect the design

to be bandwidth limited. If we were to iterate through all cells

on a vertical level before moving to the next, our design would

be limited to a maximum number of columns due to limited

on-chip memory.

Therefore, we adopt an iteration order created by parti-

tioning the space into blocks of columns. Within each block,

we iterate through level-by-level before moving onto the next

block. A lower bound on block size is the number of pipeline

stages along the dependency path. A larger block size would

lead to wasting buffer space, so we keep the block size close

to this bound.

B. Single Pass Exclusive Mutability of Current Cell

Before porting, we reorganise the code to simplify the

process. We require:

• that all variables are either read-only or associated with

a single cell (1),

• that only one cell can have its variables modified at a

time (2, Exclusive Mutability),

• that each cell’s variables can only be modified together,

and only once (3, Single Pass),

• and that cells can only access variables from another cell

if the other cell has already been modified (4).

Single Pass (3) implies that there is an iteration structure

covering all columns and cells, within which all modifications

to cell’s variables are made. More strongly, we will require

that this is in the form of two layers of outer loop over the

cells and columns, with a counter for each. To enforce (1), we

will require that all variables that are written to must either

be enclosed within the scope of both of the outer loops, or be

an element of an array that is indexed by both the cell and

column indexes. To enforce (4), we will require that arrays

indexed by cell can only be accessed using the cell counter

from the outer loop plus a non-positive integer.

These properties make the code susceptible to porting to a

streaming design since the contents of the outer loops defines a

pipeline that calculates the results for any single cell. We refer

to this code meeting these conditions as being “Single Pass

Exclusive Mutability of Current Cell" (SPEMCC) compliant.

CLOUDSC was made SPEMCC compliant though loop fusion

and loop reordering of the long loops, modifying the scope of

variables, promoting column indexed arrays to also be cell

indexed, and shifting the positions in which values are stored

within arrays.

C. Conditional Execution

Within CPU code, conditional blocks are used. When the

condition is false, the statements inside are not executed.

Within a dataflow design, the potentially required calculation

must be performed regardless of the value of the condition. If

the condition is true, the result can then be applied; otherwise

it is simply discarded. Where nested conditionals exist, the

problem of wasted computation is compounded. This means

that special cases can be very expensive on an FPGA.

Within CLOUDSC, some conditionals are within short

loops and only depend on that loop’s counter and a compile-

time constant value. Since we will unroll these loops, the con-

dition is tested at compile time and we can avoid unnecessary

computation on the FPGA.

Another pattern is for two mutually exclusive blocks to

compute similar calculations and apply the result to different

variables. In this case, we can share resources between the two

blocks and avoid unnecessary computation.

Excluding these two types of conditional block, CLOUDSC

conditionals are nested up to four deep.

A notable top-level conditional block covers almost all of

the computation and causes almost no work to be done for

71

the first 14 cells in each column. On a CPU, these cells,

corresponding to around 10% of the total cell count, can be

quickly skipped over, whereas in this design the FPGA must

compute all the results regardless.

Only 2.5% of floating point operations occur nested within

three conditionals, and only 0.2% within four conditionals.

D. Porting to a Dataflow Description Language

The next step is to convert the SPEMCC compliant code

into a dataflow description language. In our implementation,

we use MaxJ [12]. The steps to do this are as follows: the

shell must be set up with boilerplate code; I/O streams must

be created, along with counters to keep track of the iteration

order; variable definitions must be modified to express streams

of the correct type; index accesses to variables are removed

where they refer to the current cell and replaced with stream

offsets where they refer to a previous cell; where dependencies

exist, a stream must be set up for use and later referenced from

its final use; finally, conditional statements must be replaced

with variables capturing the result of their evaluation, and

assignments within the conditional block must be modified

to use the ternary operator so as not to affect the results when

the condition is false.

E. Breaking up the Kernel

The FPGA we target is a Xilinx Virtex UltraScale+ VU9P

FPGA (16 nm). The VU9P chip consists of three Super

Logic Regions (SLRs) stacked on top of each other. Some

attention to the crossing points between the SLRs is required

since the number of crossings is limited, additional resources

are required to manage the crossing, and timing is more

challenging to meet for crossing signals. The double precision

version of our design uses more than 90% of some resources

and so must be spread out over all three SLRs. As a single

kernel, this requires signals to pass to all three SLRs to keep

the stream in lockstep. This makes it difficult for the compiler

to build the design and meet timing.

Therefore, we split the kernel into three pieces to spread

between the SLRs, using buffers between them to ease timing

requirements. To reduce the number of crossings, we split the

kernel where communication can be minimised. Unfortunately,

the majority of the kernel operates on three five-by-five matri-

ces to perform the LU solve for the five prognostic quantities.

Passing any of these matrices between kernels would be too

costly. Therefore the design is split into the following three

kernels: setup, solve, and diagnostics. The solve kernel is by

far the largest and uses the majority of resources.

F. I/O

In the generated set of kernels, each cell is only processed

once, with additional scalar values used and generated for

individual columns. The overall kernel I/O is as follows: Each

cell takes in 46 floating point (FP) inputs and produces 23 FP

outputs. Each column takes two FP inputs and two boolean

inputs and produces one FP output. Each cell also reuses seven

of the FP input values from the previous cell in its column and

produces 32 FP values to be used in the next cell in its column.

To efficiently move data on to and off of the FPGA,

variables are grouped into vectors of 8 or 16 elements. As there

are 46 per-cell inputs, our choice of vector sizes causes us to

have to input 48 elements per cell. This leaves two unused

elements for per-cell input.

The two per-column floating point inputs are always posi-

tive. This allows their sign bit to be repurposed to transfer the

two per-column boolean inputs. In order to avoid implement-

ing extra I/O channels, the two unused per-cell input elements

are used for the per-column data.

As there are 23 per-cell outputs, this gets rounded up to

24, leaving one unused element. This is used for the single

per-column output. The use of only 8- and 16-wide vectors

causes a 4.8% overhead in I/O bandwidth usage due to unused

elements.

Our design targets a Maxeler MAX5 card. In addition to

the VU9P FPGA, this contains 48 GB of DDR4 RAM, split

across three DIMMs, and a PCIe port for connection to its

host machine. The PCIe connection is a Gen3 x16 connection

that can theoretically reach a throughput of 15.75 GB/s in each

direction. In practice, however, less than a quarter of this is

typically achievable.

In order to be less constrained by bandwidth, we will use

a setup that makes use of the on-card DRAM to illustrate the

potential performance of the FPGA. Data will be considered

to be resident on the DRAM, thereby avoiding the PCIe as a

bottleneck. The on-card DRAM consists of three DIMMs that

can each deliver a bandwidth of 15 GB/s. Each of the SLRs

contains a memory controller that controls one of the DIMMs.

As the design is expected to be bandwidth limited, access to

each of the three DIMMs should be as balanced as possible.

The total off-chip I/O is 72 floats per cycle, so a target of

24 floats per cycle transferred to or from each DIMM should

be aimed for. The setup kernel takes 24 floating point inputs

and produces no output. The solve kernel takes 8 floating point

inputs and produces 10 floating point outputs. The diagnostics
kernel takes 16 floating point inputs and produces 14 outputs.

Load balancing and vector grouping is achieved by moving

the I/O for 8 inputs from the diagnostics kernel to the solve
kernel, and then simply passing them along in the connection

between kernels. The I/O for two of the outputs are moved

from the solve kernel to the diagnostics kernel. This leads to

each kernel having a total of 24 floating point inputs/outputs

per cycle grouped into vectors of 8 or 16.

G. Validation: Bit identity of results

The accuracy of the CLOUDSC kernel is validated by

comparing the results of a reference run on the host CPU to

the offloaded FPGA output. For full validation, bit identity is

desirable, particularly in the context of offloading components

of large and complex meteorological codes.

To maintain bit identity, we deliberately eschewed the use

of any floating point optimisations for FPGA. Despite this, we

do not produce bit identical results to the reference run due

72

to the different implementations of exp and log functions

between the system libm and Maxeler’s KernelMath library.

To show that these differences are the only causes of non-

bit-identical results between the port and the reference, the

KernelMath implementations of exp and log are ported to

C. After applying these modifications to the reference C kernel

the two implementations produce bit-identical results.

H. Performance Model

The expected performance can be estimated by computing

both I/O-limited and compute-limited performance numbers

and taking the minimum of the two.

The I/O performance can be found by identifying the path

which is most limited by bandwidth and then calculating

according to Eq. 1, in which bw is the limiting bandwidth,

x is the number of floats to be transferred, p is the number

of bytes per floating point value (4 in single precision or 8 in

double precision), and nio gives the performance in numbers

of columns executed per second.

bw / (138× x× p) = nio

bytes/s cells/column floats/cell bytes/float columns/s

(1)

For our design, the three connections to the DIMMs are

expected to be equally limiting. For each of these, the expected

bandwidth is 15 GB/s and 24 floats are transferred per cell.

For compute, the limiting factor is design feasibility and

achievable frequency on the platform. A clock rate of C MHz

limits performance to:

C × 1 / 138 = ncompute

cycles/s cell/cycle cells/column columns/s

(2)

By setting these two formulas equal to each other, we can

obtain the value of C that gives the minimum clock rate

required to make use of all the available bandwidth. In the

model, increasing the clock rate above this will not improve

performance since the design will be I/O limited and the

kernels will stall, waiting for input. However, in reality, it is

likely that to achieve maximum performance the clock rate will

need to be higher than predicted due to a variety of factors.

Given this model, we can predict that the double precision

design can compute 566 thousand columns per second if a

clock rate of 78.2 MHz is reached, while the single precision

design can compute 1132 thousand columns per second if a

clock rate of 156 MHz is reached.

I. Building the Designs

We build the designs using MaxCompiler version 2019.1

and Vivado version 2018.3. The design was successfully

built in single precision, but in double precision, hardware

congestion was a problem. This problem was overcome by

noting that the achievable frequency of these designs is far

below the MAX5 maximum frequency, allowing the pipeline

to be coarsened through the use of MaxCompiler’s Pipelin-
ing Factor, thereby reducing hardware requirements of the

designs. With this modification, the double precision build was

successful.

Based on design characteristics, additional optimisations for

throughput can be carried out. The single precision designs use

less than a third of the chip, allowing three copies of the design

to be implemented simultaneously on the chip. However, since

performance is already bandwidth-limited, adding more copies

of the design will not improve performance. The hypothetical

performance that could be achieved if sufficient bandwidth

were available can be examined by connecting the same inputs

to all three copies and discarding the outputs of two of them.

This optimised single-precision design was successfully built.

For both the single and double precision designs, the

designs can be built at clock frequencies higher than those

predicted by the performance model. However, due to band-

width limitations, this increased frequency should not increase

performance. A hypothetical situation where more bandwidth

was available can again be examined by reusing the inputs.

Where the design did accept a new input on all cycles, it is

modified to accept new inputs only on odd cycles. The design

thus uses each input twice. If the previous input values are

reused as is, an unrealistic power saving will result since flip-

flop updates would not be needed [13]. In order to prevent this,

the reused inputs are taken from three cycles prior. To achieve

double the throughput of the designs with the input reuse,

clock frequency must be doubled. This design is successfully

built in both single and double precision with twice the clock

frequency.

In single precision, the three kernel copies design can

be combined with the inputs reuse optimisation. However,

hardware contention precludes doubling the clock frequency.

The maximum achieved clock for this design is 220 MHz. This

should allow an approximately 40% increase in computational

work over the three copy design.

The resource usage of these designs is shown in Table I.

Pre
ci

si
on

C
lo

ck
Fre

qu
en

cy
(M

H
z)

U
se

s
In

pu
ts

Tw
ic

e

Thr
ee

C
op

ie
s

Pip
el

in
in

g
Fac

to
r

Log
ic

U
til

is
at

io
n

(%
)

D
SP

B
lo

ck
s

(%
)

B
R
A

M
18

U
sa

ge
(%

)

U
R
A

M
U

sa
ge

(%
)

Double 80 0.3 48.32 90.80 45.56 21.15

Double 160 0.3 48.34 90.80 45.56 21.15

Double 160 � 0.3 48.60 90.80 50.05 26.98

Single 160 0.3 20.46 31.93 26.76 10.42

Single 160 1 28.27 31.93 29.21 13.44

Single 315 � 1 28.62 31.93 31.92 16.77

Single 160 � 0.3 49.60 95.53 50.74 33.54

Single 220 � � 0.4 53.83 95.53 59.42 44.79

TABLE I: Resource Usage

IV. Systematic Method and Automation

While an FPGA implementation of CLOUDSC may be able

to achieve higher performance than the Fortran or C version,

it could not become used in a production system while it

is manually converted from another language as this process

is far too time consuming and prone to error. As models

are continually improved by weather and climate scientists,

73

Algorithm 1 Overall process of generating hardware from

fortran
1: Enforce of Exclusive Mutability of Current Cell

2: Determine block size

3: Port to Dataflow Description Language

4: Break kernel into smaller chunks

5: Determine I/O groupings

6: Build bitstream and generate host executable

the codebase must be in a language appropriate for those

scientists. MaxJ and other hardware languages cannot be this

language as they require specialist knowledge and obscure the

code with unnecessary details that the scientists should not be

concerned with. This necessitates some form of automation

that allows the automatic conversion of the code to MaxJ or

a similar language if FPGAs are ever to be used to accelerate

a production system.

The systematic process we followed is described in Algo-

rithm 1. In following the process, we found no steps that could

not be automated. Therefore we expect to be able to automate

the whole process. This would allow other physical parame-

terisations within IFS and future versions of CLOUDSC to be

easily accelerated on FPGAs without expert input.

The first step is to modify the code to make it SPEMCC

compliant (Section III-B). While enforcing SPEMCC on any

given code may be a difficult task, CLOUDSC is representative

of the physical parameterisations within IFS. The transforma-

tions that were required for CLOUDSC could be detected by

pattern matching and high-level data dependency analysis, and

so we believe that these types of transformations could be

automatically applied to other physical parameterisations to

make them SPEMCC compliant.

The second step is to determine the size of each block of

columns. In MaxJ, we can use the AutoLoopOffset feature to

automatically find and use the lowest possible value.

The third step is to convert the code to a dataflow description

language. Once the code is SPEMCC compliant, this task can

be automated. For MaxJ, this can be done by following the

steps in Section III-D.

The fourth step is to break up the kernel into smaller chunks

(Section III-E). This is a graph partitioning problem and can

use the tools associated with that problem [14]. After the

original kernel is split, the method for determining the block

size through AutoLoopOffset will no longer work correctly.

Therefore the block size must be extracted before this step

and stated explicitly instead.

The fifth step is to determine the I/O groupings and where

the data is coming from or sent to (Section III-F). If per-

column inputs/outputs are small in number, we can consider

them as per-cell inputs/outputs. If floating point inputs/outputs

are labelled as non-negative, they can be used to transfer

boolean inputs/outputs to/from the same kernel. Remaining

boolean inputs can be grouped together. Each kernel can be

associated with an SLR, and each kernel’s inputs and outputs

can each be considered a separate group. To balance the

required bandwidth from each SLR according to the available

bandwidth, inputs can be moved to preceding kernels and

outputs can be moved to succeeding kernels.

The final step is to build the bitstream and generate the host

executable file. This requires setting a clock rate and running

the compilation toolchain. We can start with the clock rate sug-

gested by the performance model. If the build is unsuccessful

we can reduce the clock rate and/or modify parameters, such as

pipelining factor, in a trial-and-error process until the build is

successful. It is possible that the build will not be successfully

if, for example, the design is too large to fit on the chip.

V. Performance evaluation

The MAX5 accelerator card (16 nm) was hosted on a

machine with two Intel Xeon CPU E5-2643 v4 (14 nm)

running at 3.40 GHz, each with 6 cores (12 threads), and 128

GB of DDR4 RAM running at 2400 MHz. The host runs on

CentOS Linux release 7.4.1708 and uses MaxelerOS 2019.1

to communicate with the MAX5 card. The host code was

compiled with gcc version 4.8.5.

The CPU reference runs were performed on a single socket

of a Cray XC40 node with an Intel Xeon EP E5-2695 V4

(14 nm) “Broadwell" with 18 cores clocked at 2.1 GHz. The

original Fortran code was compiled with Cray CCE 8.7.7

with compiler flags identical to operational ECMWF software

builds. The code is parallelised via OpenMP and run with two

pinned hyperthreads per physical core.

The GPU reference runs were performed on a single NVidia

Quadro GV100 Volta (12 nm) with 32 GB on-card memory

using the PGI 19.5 compiler. The GPU-enabled code was

ported using OpenACC offload directives and optimised for

GPU execution [9].

On the MAX5 FPGA and NVidia GPU systems, data trans-

fers to the accelerator cards were excluded from performance

timings since the CLOUDSC kernel is known to be limited

by data transfers to and from accelerator devices connected

via PCIe 3.0. The rationale for this is that CLOUDSC is

originally part of a large set of physical parameterisations

that are optimised within a single parallel region for CPU

execution. As a result, several of the required input fields

are temporary values that would be device-resident in any

operational setting, where the combined work-to-data-transfer

ratio would be more favourable to accelerator execution.

A. Power measurements

An approximate power usage comparison is undertaken

between the three architectures for the CLOUDSC code. It

was not possible to install power monitoring hardware on the

Cray and the GPU systems, and there is no single software-

based power-monitoring solution that covers all three systems,

so the comparison does not aspire to be definitive.

Measurements of the MAX5 were made with the host’s

cooling set to maximum and both PSUs of the host supplied

from an ATEN PE810G power monitor. For each test, we ran

the application continuously for over one minute to warm up

and then took throughput and power readings over at least

five minutes. Readings were taken every two seconds and

74

D
ev

ic
e

D
at

a
Loc

at
io

n

C
lo

ck
Fre

qu
en

cy

(M
H

z)

U
se

s
In

pu
ts

Tw
ic

e

Pip
el

in
in

g
Fac

to
r

Tho
us

an
d

C
ol

um
ns

Per
Sec

on
d

Pro
po

rti
on

of

pe
rf.

m
od

el

D
yn

am
ic

Pow
er

U
sa

ge
(W

)

Ene
rg

y
U

sa
ge

Per

C
ol

um
n
(μ
J
)

XC40 Host 2100 - 205.1 - 118 575.3

V100 GPU 1627 - 264.4 - 85 321

FPGA DFE 80 0.3 289 51.2% 28.6 98.8

FPGA DFE 160 0.3 531 93.8% 43.8 82.4

FPGA DFE 160 � 0.3 1070 94.5% 77.2† 72.2†

TABLE II: Double Precision Performance Results.
† indicates the addition of predicted bandwidth power/energy cost.

averaged over the whole period. The system’s static power was

measured over a ten minute period with the idle bitstream on

the MAX5 card. The initial five minute period was discarded.

For the designs that simulate additional physical memory

bandwidth, we acknowledge that the additional bandwidth

would lead to increased power requirements. To approximately

quantify these, we build a hardware design with all the I/O

to/from DRAM but with none of its compute synthesised.

Power usage of this design is compared to the idle system

power usage. The difference between these values provides an

estimate of the power usage increase for the extra bandwidth.

We use this estimate to extrapolate the power and energy

for the designs with simulated extra bandwidth reported in

Tables II and III.

For the GPU and the Cray XC40 runs, the power measure-

ments are full-board and full-node power, respectively. These

readings are supplied by vendor-specific diagnostics tools.

Power consumption was measured while the systems were

idle and under load. The difference is reported. On the Cray,

performance counters were sampled before the benchmark

execution and coarsely sampled during the parallel loops [15].

On the NVidia GPU, power consumption was read using

nvidia-smi [16].

B. Double precision results

Performance results for double precision runs are shown

in Table II. An initial build with a clock frequency of 80

MHz, just above the performance model target of 78.2 MHz,

achieves a throughput higher than the CPU and GPU while

using significantly lower power, despite falling short of the

predictions of our performance model. Doubling the frequency

to 160 MHz allows us to achieve significantly improved

throughput, which is approximately 2× faster than the GPU

and more than 2.5× faster than the CPU.

Importantly, the throughput of the ported FPGA kernel is

memory-bandwidth limited and therefore, higher performance

should be achievable with higher bandwidth. This is confirmed

by reusing the inputs to simulate higher available bandwidth,

which leads to a doubling in throughput: 4× faster than the

GPU and more than 5× faster than the CPU.

The dynamic power consumption of the FPGA chip itself

is significantly lower than either CPU or GPU architecture.

Considering the energy consumption per computed column

for the bandwidth-mimicking benchmark, including estimated

D
ev

ic
e

D
at

a
Loc

at
io

n

C
lo

ck
Fre

qu
en

cy

(M
H

z)

U
se

s
In

pu
ts

Tw
ic

e

Thr
ee

C
op

ie
s

Pip
el

in
in

g
Fac

to
r

Tho
us

an
d

C
ol

um
ns

Per
Sec

on
d

Pro
po

rti
on

of

pe
rf.

m
od

el

D
yn

am
ic

Pow
er

U
sa

ge
(W

)

Ene
rg

y
U

sa
ge

Per

C
ol

um
n
(μ
J
)

XC40 Host 2100 - 326 - 120 368

V100 GPU 1627 - 383 - 76 198

FPGA DFE 160 0.3 1070 94.5% 27.6 25.7

FPGA DFE 160 1 1062 93.8% 28.1 26.5

FPGA DFE 315 � 1 2140 94.5% 48.2† 22.5†

FPGA DFE 160 � 0.3 3228 92.8% 70.8† 21.9†

FPGA DFE 220 � � 0.4 4778 99.9% 94.3† 19.7†

TABLE III: Single Precision Performance Results.
† indicates the addition of predicted bandwidth power/energy cost.

memory power consumption, an energy efficiency improve-

ment of 4.4× over GPU and 8× over CPU can be achieved.

C. Single precision results

The single precision results shown in Table III further

demonstrate the memory bandwidth performance limitation.

Using the same 160 MHz clock frequency, a throughput simi-

lar to that of the dual-input double precision runs is obtained,

resulting in a speed-up of 2.8× over GPU and 3.3× over the

single-socket CPU. As before, the FPGA kernel performance

is still bound by the available memory bandwidth since reusing

input data indeed doubles the achievable throughput. The

energy usage per column of the FPGA chip is more than 7×
lower than the GPU for all the implementations and is over

an order of magnitude lower compared to the CPU.

Moreover, due to the low resource usage of the single

precision kernel design on the chip, an additional performance

improvement can be achieved by supplementing the pipeline

parallelism inherent to FPGAs with data parallelism by syn-

thesising three copies of the datapath design on the chip.

Assuming that bandwidth is sufficient to keep the three copies

busy, this can increase performance by an additional factor of

three since each kernel copy can process data independently.

The combined configuration of input reuse and design repli-

cation satisfies our performance model to 99.9%. By scaling

the performance prediction for DRAM runs from 156 Hz

to 220 Hz, we expect a single datapath design to achieve

a throughput of 1596 columns per second, corresponding to

4788 columns per second for the three-copy design. The close

match between prediction and benchmark runs underlines the

memory bandwidth limitation of the FPGA kernel.

D. Xilinx U280 Accelerator Card

The VU9P FPGA we have used in this study is not the

most powerful FPGA available. A Xilinx U280 accelerator

card contains an XCU280 (16 nm) with 32% more DSP slices

than a VU9P, and also has high bandwidth memory with a

total available bandwidth of 460 GB/s. Given the number

of copies of our design that we can fit on the VU9P was

strongly limited by available DSP, it is reasonable to project

that four copies of the single precision datapath could be

instantiated on the device. As our designs were also strongly

limited by available bandwidth, the more than ten times

75

increase in off-chip bandwidth available on the U280 would

increase performance greatly. From our performance model,

this bandwidth would enable 12.5 million columns to be

computed per second, but would require an unrealistic 428

MHz to achieve this. If a modest clock rate of 200 MHz

was achieved, 5797 thousand columns per second could be

computed, 17.8× and 15.1× better than the CPU and GPU

used in our performance evaluation, respectively.

VI. Evaluation and discussion

The performance and power efficiency metrics presented

in the previous section clearly demonstrate significant ad-

vantages achieved through optimised FPGA execution for

the CLOUDSC kernel. In this section, we aim to provide

some context to the achieved performance results, evaluate

the potential of FPGAs and dataflow computing as HPC

accelerators and a programming model for weather and climate

codes, and discuss the systematic method and its automation.

A. FPGA acceleration for physical parameterisations
The parallelism afforded in atmospheric physics kernels

due to the lack of inter column dependencies, along with a

single direction of the dependencies within each column, make

the code suitable for pipelined implementation on FPGAs

by exploiting a similar data streaming and iteration scheme

as described in section III-A. Despite the complex nature

of the computations and the high branching factor in the

original code, the data path of the converted source remained

manageable once the kernel was split into individual sub-

sections. The redundant computation introduced by evaluating

both branches of any elementary conditional in the kernel

increases the resource usage of the chip, but it has no direct

impact on throughput since the data streaming frequency can

be retained. As such, our design demonstrates that complex

physical parameterisations can be accelerated using FPGA.
As demonstrated in Section V-C, the performance of the

resulting FPGA kernel is limited by the available memory

bandwidth on the accelerator card. Moreover, since the val-

idation of the ported kernel was based on bit-identity with

CPU results, further optimisations that might affect exact bit-

wise replication have been avoided. If this strict validation

requirement was lifted, it is conceivable that additional FPGA-

specific optimisation strategies could improve the achievable

throughput of the chip further while maintaining scientific

accuracy of the results. Such optimisations could include: 1)

Optimisations such as the use of Tri-Adders to reduce the

data path complexity. 2) Removal of divisions where possible

as these are expensive to perform on FPGA. 3) Reduction of

precision for computation down to the precision required for

results with the required accuracy. 4) Reduction of precision in

I/O could allow reduction of bandwidth usage. Computations

inside kernels could be maintained in higher precision. 5)

Computation and/or I/O performed in fixed point.

B. Bandwidth limitations
Maximum achievable performance for the CLOUDSC ker-

nel on the MAX5 system has been shown to be strongly lim-

ited by available memory bandwidth. Optimisations described

here, and tested as far as possible with ersatz bandwidth

equivalents, suggest that performance would scale up to a

factor of four, with increasing memory bandwidth. Dataflow

computing has effectively allowed a problem which is register-

and core-bound on traditional architectures to be transformed

into a situation limited by memory bandwidth.
For the particular case of CLOUDSC, and more gener-

ally for meteorological physical parameterisations, kernel IO

would not necessarily be to RAM but could instead be to

another parameterisation. This would, in practice, reduce the

memory bandwidth required to fully utilise the FPGA chip.

Chaining of parameterisations could be on-chip if hardware

resources are sufficient, or between chips in systems where

FPGAs are connected with very high bandwidth.

C. Systematic Porting Process
We have shown the process used to migrate CLOUDSC

to FPGA and described the steps towards its automation.

CLOUDSC is only one of the physical parameterisations that

together are expected to make up 38% of IFS’s operational

cost under CPU and GPU architectures. Due to the common

computational patterns within the physical parameterisations,

we expect that an automated version of the process we describe

will allow these parameterisations to be migrated to FPGA

with competitive performance. This would allow scientists to

continue to develop the models in the original source code

while benefiting from FPGA acceleration.

VII. Conclusion

In this paper we described a systematic method for mi-

grating microphysical parameterisations from sequential CPU

code to high performance FPGA designs. The method is

suitable for paramaterisations that follow the common compu-

tation pattern found within IFS. More broadly, we described

the specific set of conditions, SPEMCC, that the code must be

able to comply with for it to be migrated. We described the

potential for automating this method.
We showcased the method through migrating CLOUDSC

to run on a Maxeler MAX5 card and achieved speed-ups

of up to 2.8× over a GPU (NVidia Volta) and up to 3.3×
over a CPU (Intel Broadwell) for single precision runs, as

well as speed-ups of 2× over GPU and 2.5× over the CPU

in double precision. Coupled with a significant increase in

energy efficiency (4.4× over GPU and 8× over CPU in double

precision).

Acknowledgements

This work was carried out with support from the Eu-

roExa project (grant agreement no. 754337), funded by the

European Union’s Horizon 2020 Research and Innovation

Programme. The support of the EPSRC Centre for Doctoral

Training in High Performance Embedded and Distributed

Systems (HiPEDS, Grant Reference EP/L016796/1) and the

Maxeler University Programme is gratefully acknowledged.

Many thanks also to B. Reuter for help with preparation of

the manuscript.

76

References

[1] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler, and C. Schär,
“Reflecting on the goal and baseline for exascale computing: A roadmap
based on weather and climate simulations,” Computing in Science
Engineering, vol. 21, no. 1, pp. 30–41, Jan 2019.

[2] P. Bauer, T. Quintino, N. Wedi, A. Bonanni, M. Chrust, W. Deconinck,
M. Diamantakis, P. Düben, S. English, J. Flemming, P. Gillies,
I. Hadade, J. Hawkes, M. Hawkins, O. Iffrig, C. Kühnlein, M. Lange,
P. Lean, O. Marsden, A. Müller, S. Saarinen, D. Sarmany, M. Sleigh,
S. Smart, P. Smolarkiewicz, D. Thiemert, G. Tumolo, C. Weihrauch, and
C. Zanna, “The ecmwf scalability programme: Progress and plans,” no.
857, 02 2020. [Online]. Available: https://www.ecmwf.int/node/19380

[3] O. Pell and O. Mencer, “Surviving the end of frequency scaling
with reconfigurable dataflow computing,” SIGARCH Comput. Archit.
News, vol. 39, no. 4, pp. 60–65, Dec. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2082156.2082172

[4] A. Müller, W. Deconinck, C. Kühnlein, G. Mengaldo, M. Lange,
N. Wedi, P. Bauer, P. K. Smolarkiewicz, M. Diamantakis, S.-J. Lock,
M. Hamrud, S. Saarinen, G. Mozdzynski, D. Thiemert, M. Glinton,
P. Bénard, F. Voitus, C. Colavolpe, P. Marguinaud, Y. Zheng,
J. Van Bever, D. Degrauwe, G. Smet, P. Termonia, K. P. Nielsen,
B. H. Sass, J. W. Poulsen, P. Berg, C. Osuna, O. Fuhrer, V. Clement,
M. Baldauf, M. Gillard, J. Szmelter, E. O’Brien, A. McKinstry,
O. Robinson, P. Shukla, M. Lysaght, M. Kulczewski, M. Ciznicki,
W. Piątek, S. Ciesielski, M. Błażewicz, K. Kurowski, M. Procyk,
P. Spychala, B. Bosak, Z. P. Piotrowski, A. Wyszogrodzki, E. Raffin,
C. Mazauric, D. Guibert, L. Douriez, X. Vigouroux, A. Gray,
P. Messmer, A. J. Macfaden, and N. New, “The escape project:
Energy-efficient scalable algorithms for weather prediction at exascale,”
Geoscientific Model Development, vol. 12, no. 10, pp. 4425–4441, 2019.
[Online]. Available: https://www.geosci-model-dev.net/12/4425/2019/

[5] M. Alvanos and T. Christoudias, “GPU-accelerated atmospheric
chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model
(version 2.52),” Geoscientific Model Development, vol. 10, no. 10,
pp. 3679–3693, 2017. [Online]. Available: https://www.geosci-model-
dev.net/10/3679/2017/

[6] M. Tiedtke, “Representation of clouds in large-scale models,”
Monthly Weather Review, vol. 121, no. 11, pp. 3040–
3061, 1993. [Online]. Available: https://doi.org/10.1175/1520-
0493(1993)121<3040:ROCILS>2.0.CO;2

[7] R. Forbes, A. Tompkins, and A. Untch, “A new prognostic bulk
microphysics scheme for the ifs,” no. 649, p. 22, 09 2011. [Online].
Available: https://www.ecmwf.int/node/9441

[8] W. Gropp, MPI (Message Passing Interface). Boston, MA: Springer US,
2011, pp. 1184–1190. [Online]. Available: https://doi.org/10.1007/978-
0-387-09766-4_222

[9] H. Xiao, M. Diamantakis, and S. Saarinen, “An openacc gpu adaptation
of the ifs cloud microphysics scheme,” no. 805, 2017. [Online].
Available: https://www.ecmwf.int/node/17320

[10] V. Clement, S. Ferrachat, O. Fuhrer, X. Lapillonne, C. E. Osuna,
R. Pincus, J. Rood, and W. Sawyer, “The claw dsl: Abstractions for
performance portable weather and climate models,” in Proceedings
of the Platform for Advanced Scientific Computing Conference, ser.
PASC ’18. New York, NY, USA: ACM, 2018, pp. 2:1–2:10. [Online].
Available: http://doi.acm.org/10.1145/3218176.3218226

[11] R. Duncan, “A survey of parallel computer architectures,” Computer,
vol. 23, no. 2, pp. 5–16, Feb 1990.

[12] Maxeler, “Programming mpc systems,” Tech. Rep., 2013. [Online].
Available: https://www.maxeler.com/media/documents/
MaxelerWhitePaperProgramming.pdf

[13] H. M. Vo, “Optimizating power consumption using multi-bit flip-
flop technique in tetris game on fpga,” in Proceedings of the
International Conference on System Science and Engineering (ICSSE),
ser. ICSSE 17. IEEE, 2017, pp. 530–533. [Online]. Available:
https://doi.org/10.1109/ICSSE.2017.8030930

[14] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful dataflow multigraphs: A data-centric model for performance
portability on heterogeneous architectures,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–14.

[15] S. J. Martin and M. Kappel, “Cray xc30 power monitoring and man-
agement,” in Cray User Group Conference Proceedings, 2014.

[16] NVIDIA, “Nvidia system management interface,” Tech.
Rep. [Online]. Available: https://developer.nvidia.com/nvidia-system-
management-interface

77

