
Reconfigurable Acceleration of Short Read Mapping with
Biological Consideration

Ho-Cheung Ng1, Izaak Coleman2, Shuanglong Liu3 and Wayne Luk1
1 Department of Computing, Imperial College London, UK {h.ng16, w.luk}@imperial.ac.uk
2 Department of Systems Biology, Columbia University, USA ic2465@cumc.columbia.edu

3 School of Physics and Electronics, Hunan Normal University, China liu.shuanglong@hunnu.edu.cn

ABSTRACT
Existing FPGA accelerators for short read mapping often fail to
utilize the complete biological information in sequencing data for
simple hardware design, leading to missed or incorrect alignment.
Furthermore, their performance may not be optimized across hard-
ware platforms. This paper proposes a novel alignment pipeline
that considers all information in sequencing data for biologically
accurate acceleration of short read mapping. To ensure the perfor-
mance of the proposed design optimized across different platforms,
we accelerate the memory-bound operations which have been a
bottleneck in short read mapping. Specifically, we partition the
FM-index into buckets. The length of each bucket is equal to an op-
timal multiple of the memory burst size and is determined through
data-driven exploration. A tool has been developed to obtain the
optimal parameters of the design for different hardware platforms
to enhance performance optimization. Experimental results indi-
cate that our design maximizes alignment accuracy compared to
the state-of-the-art software Bowtie, mapping reads 4.88× as fast.
Compared to the previous hardware aligner, our achieved accuracy
is 97.7 % which reports 4.48 M more valid alignments with a similar
speed.
ACM Reference Format:
Ho-Cheung Ng, Izaak Coleman, Shuanglong Liu and Wayne Luk. 2021.
Reconfigurable Acceleration of Short Read Mapping with Biological Con-
sideration. In Proceedings of the 2021 ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (FPGA ’21), February 28-March
2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3431920.3439280

1 INTRODUCTION
Technological innovation and the declining cost of next-generation
sequencing (NGS) have led to an explosion in the quantity of ge-
nomic data. A critical prior step of lots of downstream analysis of
genomic data is short read mapping, where millions of short DNA
fragments generated by an NGS machine are aligned to a reference
genome [16]. However, given that the throughput of NGS technol-
ogy is outstripping Moore’s Law, the time required for existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00
https://doi.org/10.1145/3431920.3439280

software aligners to map NGS data is becoming prohibitive [21, 28].
For example, in the identification of oncogenesis (cancer cells) for
cancer diagnosis, software aligners are unable to meet the demand
for large scale clinical adaption, where patient turnaround time
is critical. Therefore, their acceleration would bridge the gap be-
tween alignment research and practice, allowing these diagnosis
techniques to become part of routine clinical procedures [22].

FPGA technology is a promising candidate to accelerate short
read mapping [24, 27]. Its highly-parallel bit-oriented architecture
has been leveraged to accelerate different mapping algorithms. In
particular, suffix-trie based alignment, which often uses the FM-
index, has been accelerated in many previous efforts due to its
popularity in leading software aligners such as Bowtie [16] and
BWA [20].

However, FPGA-accelerated short readmapping is rarely adopted
by genomic and medical scientists due to two reasons:
• Most of them are platform-dependent, i.e. their design method-
ology and optimizations target a single platform. As a result,
when migrating across platforms, the speedup may not
hold. Because of the cost and privacy concerns, sometimes local
clusters are preferable [18]. The lack of performance portability
reduces the attraction of FPGA technology to genomic scientists,
allowing its expense and requirement of specialized knowledge
to outweigh its potential benefits. For example, Arram et al. [2]
propose an FM-index-based accelerator that is 18.1× faster than
software. However, the design targets Maxeler MaxWorkstation
and the performance analysis is unlikely to generalize across plat-
forms. Other accelerators for short read mapping such as [6, 9]
also suffer from this issue.

• Existing accelerators have failed to utilize the complete biological
information to simplify the hardware design. Thus far, only A, T,
C, G characters have been handled by accelerators. Ambiguous
characters (N characters) and quality metric are usually
not processed for hardware simplicity. Moreover, their imple-
mentations may not be strictly consistent with the algorithms in
popular software aligners. The under-utilization of the available
information and their inconsistent modeling of short read align-
ment limit the biological validity and reproducibility of the align-
ments they output. This in turn diminishes the confidence
of employing hardware aligners in real-life applications,
particularly in cancer diagnosis as an invalid alignment
result can be disastrous for the cancer patients.

To address the above issues, we propose a novel approach that
employs the complete biological information including quality met-
ric and ambiguous characters to accelerate suffix-trie based short
read alignment. We exploit a multi-configuration pipeline that

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

229

https://doi.org/10.1145/3431920.3439280
https://doi.org/10.1145/3431920.3439280
https://doi.org/10.1145/3431920.3439280

aligns reads with different edit-distance-based filters using run-
time reconfiguration. These filters, which include exact-match,
one-mismatch, two-mismatch, and three-mismatch filters, are ar-
ranged in ascending edit distance order. Unlike previous designs
targeting an individual platform, we accelerate the memory access
in computations to aid performance portability, by partitioning the
suffix-trie into buckets with the size equal to multiple of the mem-
ory burst size. This optimization approach covers FPGA platforms
in different generations since memory burst size is a property of
many memory-FPGA systems. Finally, we design a fully automated
tool that predicts the optimal bucket size - and other parameters -
to customize the proposed aligner for platforms beyond this work.
The main contributions of this work are the following:

• A novel optimization technique which employs the suffix-trie
data structure, particularly FM-index to improve alignment speed
across platforms (Section 4);

• A novel and customizable architecture that consists of a multi-
filter alignment pipeline to accelerate short read alignment. It uti-
lizes the complete biological information present in sequencing
data to maximize alignment accuracy (Section 3 and Section 5);

• An automatic tool that determines the optimal parameters for
aligner customization while maintaining maximum alignment
accuracy (Section 6).

2 BACKGROUND AND RELATEDWORK
This section provides an overview of short read mapping by demon-
strating the alignment process with an example read file and ref-
erence. We also elaborate suffix-trie based alignment, particularly
FM-index as it is chosen for acceleration. This information will help
clarify the reconfigurable architecture and algorithm optimizations
presented in the later section.

2.1 Alignment Overview
Short read mapping is the process of ordering the nucleotide bases
(A, T, C, G) of a DNA sequence within the query cells. When the
query cells are given to the NGS machine, the sequenced data
generated are comprised of millions of short DNA fragments. These
short fragments are known as short reads, where the position and
orientation of the reads with respect to the original, long DNA
strand are lost. Based on the assumption that DNA sequences within
species are highly similar, the sequenced DNA can be reconstructed
by identifying the location of reads in a known reference genome.
Figure 1 displays an example of aligning reads to a short reference.

ID: 5
C A T C G

T N C A T G AID: 1

ID: 2

A T G GID: 3

C C A T CID: 4

A T C G

T A C A T G G T G C C A T T G
Example Reference genome

Alignment

T A C A T G G T G C C A T T G

T N C A T G A
ID: 1

ID: 2

A T G G

ID: 3

C C A T C
ID: 4

A T C G

ID: 5

G T G CID: 6

Ex
am

p
le

 R
ea

d
s

C A T C G

G T G C

ID: 6
Sequencing
error

Genetic diversity
Ambiguous
Character

Figure 1: Example of aligning reads to a reference.

@SRR069520.20234374
AGATCTCATATCGTCGCTCGTCATGCGTGTATGCGTCTGCATACGGCGCATAGT
+
IHGBGFAHGGBGFAHIGIHIIII<GDGBGHHBHDEFGDIFHHFHDBD@@A?A?;

@SRR3947551.8282187

NNNNTATTTGATCATTATATATGAAACCAACTAGGCAAAGGAGTCTTGTATATA
+
@@KKiF=DDFDDDDFEGDFGGC?IHDAGCGGBGFAHGIE3?D?)A:0:?DF?FH

@ERR194147.697770571

TGAGTTAAAAAGGACTGTAAGGGGCCGGGCGCGGTGGCTCATGCCTGTAAT
+
@CCFFFFFHHHHGGA@@G@GJJKKKH@JJGGAAABHHEHHFFFFFEDEEE:

Seq. 1

Seq. 2

Seq. 3

Seq ID

Short Read

Quality
Metric

Figure 2: Snippet of an example FASTQ file.

The mapping process is intrinsically a pattern matching prob-
lem which can be accelerated using a well-established method like
indexing a reference genome. Although the time needed to create
an index for the human reference genome can be up to an hour, the
reference human genome version changes infrequently. This time
can be amortized over the abundant amount of alignment jobs.

The read data, on the other hand, is normally stored in FASTQ
format using ASCII encoding. Figure 2 shows a snippet of an ex-
ample FASTQ file which consists of several short reads. Basically,
a FASTQ file uses four lines per sequence. The first line is the se-
quence identifier while the second line is the DNA short read. The
third line begins with a ’+’ character and this line only stores op-
tional information. The fourth line carries important information
that encodes the quality metric for the short read. Each quality
value is associated with a nucleotide in the same position of line 2,
and each value has a range between 33 (‘!’ in ASCII) denoting the
lowest quality and 75 (‘K’) denoting the highest quality.

The quality metric is critical to producing correct alignment
results, as a lower quality value indicates a higher likelihood of a
sequencing error. The alignment policy should filter out or indicate
reads with sequencing errors by analyzing the quality metric. How-
ever, the quality metric is usually neglected by previous hardware
designs for performance consideration and hardware simplifica-
tion. Since each quality value requires 6 bits while each nucleotide
only needs 2 bits to represent, the consideration of quality met-
ric tremendously increases the amount of data to process per nu-
cleotide. Without this metric, previous FPGA designs can produce
biologically incorrect alignment results which are unacceptable in
real-life sequencing applications. Moreover, ambiguous characters
(N characters), which are illustrated in the short read of the second
sequence, are common in read data. Yet for the same reason, reads
consisting of N characters are generally discarded to improve the
alignment speed.

2.2 FM-index
FM-index [10] is a commonly used indexing algorithm in state-of-
the-art alignment software such as Bowtie. It combines the proper-
ties of suffix array with the Burrows-Wheeler transform (BWT) [4].
This data structure provides an efficient mechanism to perform
substring matching of a pattern 𝑃 in a long reference sequence 𝑅.

The generation of FM-index begins with the computation of
BWT of the reference genome 𝑅, i.e. 𝐵𝑊𝑇 (𝑅). First, 𝑅 is terminated
with a unique character: ‘$’, which is lexicographically the smallest

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

230

value. Then, all the rotations of the text are obtained and sorted
correspondingly (sorted rotations). The suffix array can be obtained
by considering the characters before ‘$’ in each entry of the rotation
list. 𝐵𝑊𝑇 (𝑅) can be formed by extracting and concatenating the last
characters of all the entries on the sorted list. Table 1a demonstrates
the derivation of BWT with an example reference genome 𝑅 =

GCTAT. The string preceding the ‘$’ sign in the sorted rotations
forms the suffix array (𝑆𝐴), which indicates the position of each
possible suffix in the original string.

Table 1: (a) Example of deriving the suffix array and BWT
of reference sequence 𝑅. (b) 𝑖 (𝑥) and 𝑐 (𝑛, 𝑥) functions for the
sequence 𝑅.

(a)

𝑅 = GCTAT$
Index 𝑛 SA Sorted Rotations

0 5 $GCTAT
1 3 AT$GCT
2 1 CTAT$G
3 0 GCTAT$
4 4 T$GCTA
5 2 TAT$GC

𝐵𝑊𝑇 (𝑅) = TTG$AC

(b)

𝑐 (𝑛, 𝑥)
Index 𝑛 A C G T

0 0 0 0 0
1 0 0 0 1
2 0 0 0 2
3 0 0 1 2
4 0 0 1 2
5 1 0 1 2
6 1 1 1 2

𝑖 (𝑥) {1, 2, 3, 4}

After having the suffix array, 𝑅 and 𝐵𝑊𝑇 (𝑅) are used to form
the 𝑖 and 𝑐 tables. For each element 𝑥 of the alphabet of 𝑅, 𝑖 (𝑥) is
defined as the index of its first occurrence in sorted 𝑅. For each
index 𝑛 in 𝐵𝑊𝑇 (𝑅) and for each character 𝑥 in the alphabet, 𝑐 (𝑛, 𝑥)
stores the number of occurrences of 𝑥 in 𝐵𝑊𝑇 (𝑅) in the range
[0, 𝑛 − 1]. Table 1b illustrates the 𝑖 (𝑥) and 𝑐 (𝑛, 𝑥) tables for the
sequence 𝑅.

Input: Pattern 𝑃 , 𝑐 () , 𝑖 () , 𝑆𝐴 of Reference 𝑅
Result: The starting locations 𝐿𝑜𝑐 of 𝑃 in 𝑅

1 𝑙 = |𝑃 | − 1
2 (𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚) = (0, 𝑐 (|𝑅 |, 𝑃 [𝑙]))
3 for 𝑗 = 𝑙 to 0 do
4 𝑡𝑜𝑝 = 𝑐 (𝑡𝑜𝑝, 𝑃 [𝑗]) + 𝑖 (𝑃 [𝑗])
5 𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑐 (𝑏𝑜𝑡𝑡𝑜𝑚, 𝑃 [𝑗]) + 𝑖 (𝑃 [𝑗])
6 end
7 if 𝑡𝑜𝑝 < 𝑏𝑜𝑡𝑡𝑜𝑚 then
8 for 𝑗 = 0 to 𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚 do
9 𝐿𝑜𝑐 [𝑗] = 𝑆𝐴 [𝑡𝑜𝑝 + 𝑗]

10 end
11 end

Algorithm 1: Exact substring matching using FM-index.

Algorithm 1 describes the procedure of searching a pattern 𝑃 in
the reference 𝑅. The pointers 𝑡𝑜𝑝 and 𝑏𝑜𝑡𝑡𝑜𝑚 are first initialized
with the first and last indices of the 𝑐 (𝑛, 𝑥) table respectively. The
search begins with processing a character at a time, starting with
the last character of 𝑃 . The final results of 𝑡𝑜𝑝 and 𝑏𝑜𝑡𝑡𝑜𝑚 are the
range of indices in 𝑆𝐴 that contains 𝑃 as the prefix, which can be
subsequently converted into the coordinates in 𝑅. If 𝑡𝑜𝑝 ≥ 𝑏𝑜𝑡𝑡𝑜𝑚,
𝑃 does not occur in 𝑅. Note that the time complexity of locating a
pattern in the reference genome is linear with respect to |𝑃 | instead
of |𝑅 |.

Finally, FM-index can be extended to support mismatch align-
ment with backtracking [16]. Essentially, a stack is maintained to
store the current search state when a mismatch happens. A different
character is then attempted to align with the reference genome.
The state is restored when the number of mismatches exceeds the
permitted value. Another untested character is used and attempted
to perform matching again.

2.3 Related Work
Previous efforts on FPGA acceleration of short read alignment are
elaborated comprehensively in surveys [24, 27]. Essentially, many
of the existing accelerators are partly or solely based on the suffix-
trie method. For example, Fernandez et al. [9] introduced the use of
FM-index to accelerate exact and approximate string matching on
Convey HC-1. Arram et al. [2] also proposed an FM-index-based
aligner on Maxeler MaxWorkstation to support alignment up to
two mismatches. Some FPGA designs which adopted the seed-and-
expansion technique such as [1, 26] employed FM-index to identify
the location of the seed. However, their underlying solutions to
resolve the memory bottleneck target a specific platform, and it is
unclear how their solutions benefit other platforms. Other accel-
erators for short read mapping such as [6, 7] also suffer from this
issue.

Existing accelerators also suffer from the problem of biological
validity and reproducibility, as the quality metric and ambiguous
characters in the read data are usually neglected. There are a few
accelerators that work around this problem by proposing a soft-
ware/hardware co-design to an existing software framework. Pico
Computing [7] developed a BWT accelerator that ties into existing
BWA software, which enables the processor to perform tasks that
it is optimized for. The authors in [6] introduced a similar approach
where the seeding stage of BWA-MEM [19] runs on the FPGA for
acceleration while retaining the expansion stage on CPU. A sim-
ilar approach is adopted by related efforts [13] and [14]. Despite
the speedup provided by these accelerators, the complete biologi-
cal information in the read data and biological significance of the
alignment results are not covered or discussed.

Our work differs from previous ones by providing a general
method that accelerates alignment with suffix-trie. A detailed in-
vestigation of memory throughput against bucket size and index
structure enables accelerator optimization from the memory access
perspective. Complete biological information is considered and
hence the alignment results are comparable to Bowtie to ensure
biological validity and reproducibility.

3 RECONFIGURABLE HARDWARE
ARCHITECTURE

We propose a general architecture for alignment acceleration that
exploits the reconfigurability of an FPGA. Distinct hardware im-
plementations are executed on the FPGA in a pipeline, where each
implementation is composed of a homogeneous array of compu-
tational modules. Each module is functionally equivalent to one
specific alignment algorithm. Runtime reconfiguration is used
to load individual implementation onto the FPGA in order, and data
from the previous configuration (or initial data from the host) are
processed concurrently by the module array.

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

231

3.1 Motivation for Reconfiguration
Previous efforts that accelerate alignment with FPGA usually rely
on a static architecture. Essentially, the target device is configured
with an implementation that is functionally equivalent tomultiple
alignment algorithms. For example, the FPGA implementation
in [9] is composed of different alignment modules to perform fil-
tered search with FM-index, where reads unaligned by one algo-
rithmic step (filter) are directed to the following one. Respective
modules are grouped to form an exact match, one-mismatch, and
two-mismatch filter and are connected to form one implementation.
Although a static configuration of these filters as a single implemen-
tation eliminates the time for reconfiguration, this approach has its
limitations which reduce the overall performance and subsequently
nullify the benefit of discarding reconfiguration.

Significant Amount of Data Hazards — A typical alignment work-
flow is composed of multiple algorithmic steps where data from the
current step rely on the results from the previous one. In software
such as Bowtie, a read is only handled by the mismatch subroutine
if an exact match is failed, i.e. a filtered search with exact match
then mismatches. This incurs numerous data hazards for a stati-
cally configured circuit. Since all the modules for different steps
are mapped onto FPGA, data hazards reduce the FPGA efficiency
because some modules are left idle occasionally.

Distinct Module Latency and Limited Resources — Different align-
ment modules require a distinct number of cycles to finish process-
ing a read. To maintain a balanced pipeline in a static configuration,
some modules are replicated to match the latency. For example,
when different filters in Bowtie are mapped onto FPGA with a static
configuration, the mismatch module must be duplicated more to
even out the throughput of the exact match modules. This can
be challenging and even impossible due to the limited resources
available on FPGA.

Flexibility of Reconfigurable Architecture — Alignment parameters
can be different depending on the experimental requirements. A
runtime reconfigurable architecture can provide users better control
over these parameters where filters can be re-arranged, removed, or
added straightforwardly. It also improves performance portability
in which the module counts within a single implementation of
a filter can increase/decrease subject to the availability of FPGA
resources.

3.2 Proposed Architecture
To guarantee the biological validity and reproducibility of the align-
ment results, the proposed architecture follows a similar workflow
compared to state-of-the-art software Bowtie. FM-index is used to
implement filtered search on FPGA with runtime reconfiguration.
As illustrated in Figure 3, the filters are arranged in a pipeline with
the order: exact match, one-mismatch, two-mismatch, and three-
mismatch where each filter is composed of a homogeneous array
of modules. The FM-index, which is of a few GB, is stored on the
external DDR memory attached to the FPGA. The number of times
a module can be replicated is given by

𝑀𝑗 = min
(
𝑅

𝑟 𝑗
, 𝑁𝐷𝐼𝑀𝑀

)
(1)

Off-chip Memory

Ex
ac

t
M

at
ch

 M
o

d
u

le

Data

Ex
ac

t
M

at
ch

 M
o

d
u

le

…

Index

Ex
ac

t
M

at
ch

 M
o

d
u

le

1
-M

is
m

at
ch

 M
o

d
u

le

…

1
-M

is
m

at
ch

 M
o

d
u

le

2
-M

is
m

at
ch

 M
o

d
u

le

Data

…

R
u

n
ti

m
e

R

ec
o

n
fi

gu
ra

ti
o

n

2
-M

is
m

at
ch

 M
o

d
u

le

3
-M

is
m

at
ch

 M
o

d
u

le

…

3
-M

is
m

at
ch

 M
o

d
u

le

Bitstream BitstreamBitstreamBitstream

Host Device

Data Data
FPGAFPGAFPGAFPGA

R
u

n
ti

m
e

R

ec
o

n
fi

gu
ra

ti
o

n

R
u

n
ti

m
e

R

ec
o

n
fi

gu
ra

ti
o

n

Time

Exact Match Filter 1-Mismatch Filter 2-Mismatch Filter 3-Mismatch Filter

Figure 3: Alignment pipeline of the proposed architecture
with runtime reconfiguration. Each filter is composed of ho-
mogeneous array of modules. The module counts within a
filter is given by Equation (1).

where𝑀𝑗 is the module counts for filter 𝑗 , 𝑅 is the total available
resources on the target FPGA, and 𝑟 𝑗 is the amount of resources
required by the module. 𝑁𝐷𝐼𝑀𝑀 represents the number of DIMMs
available in external memory. Since a memory channel is connected
to a module within the filter, the number of DIMMs can also restrict
the number of modules that can be replicated on FPGA. Therefore,
in the next section, we introduce novel techniques such as bucketing
to optimize memory access and maximize alignment performance.

The overall performance of this architecture can be modeled by
(2), where𝑇 is the alignment time for all filters, 𝑁 𝑗 is the number of
reads to process and 𝑡 𝑗 is the time to process a read by a particular
filter. The overhead of this architecture is the reconfiguration time
𝑡𝑟𝑒 and the data communication overhead 𝑡𝑐 between the host.
For a typical alignment process with more than a million reads
to align, these two numbers are negligible as the alignment time
is the dominant factor. Note that the alignment can start as soon
as the first read arrives from the host, so 𝑡𝑐 can be hidden by the
alignment latency.

𝑇 =
∑
𝑗

(
𝑡𝑟𝑒 +max

(
𝑡𝑐 ,

𝑁 𝑗 𝑡 𝑗

𝑀𝑗

))
(2)

4 FM-INDEX OPTIMIZATION FOR FPGA
According to Algorithm 1, the bottleneck of FM-index based align-
ment is memory access where a character search involves access
to a random memory location. Therefore, in this section, we detail
the techniques that utilize the complete memory bandwidth and
improve the performance of FM-index.

4.1 Bucketing
Index Restructuring — Although FM-index is a space-efficient data
structure that permits fast substring matching, when indexed, the
human reference genome is around 51GB. This is often far larger
than the capacity of off-chip memory. To reduce the memory foot-
print, we store a subset of 𝑐 (𝑛, 𝑥) of FM-index, while substituting
the remaining entries with a portion of the original BWT. Specifi-
cally, we sample every 𝑑 entry of 𝑐 () and pack the BWT in the range
of every 𝑑 and 𝑑 − 1 alongside, forming a bucket. During a charac-
ter search, the missing entries in 𝑐 () can be recalculated on-the-fly

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

232

using the BWT 𝐵. Figure 4 shows the final restructured FM-index
𝐹 and Algorithm 2 demonstrates the corresponding procedure for
substring matching.

n A C G T

0

1

2

.

.

.

c(n, x)

d

d

. . .

BWT. . .
BWT [0] BWT [d] BWT [2d]

Restructured
FM-index F

|Θ|

d

|Θ|

d

. . .

Bucket 0 Bucket 1

cs(x) cs(x)

B B

Figure 4: The proposed restructured FM-index.

Input: Pattern 𝑃 , Restructured FM-index 𝐹 , 𝑆𝐴 of Reference 𝑅
Result: The starting locations 𝐿𝑜𝑐 of 𝑃 in 𝑅

1 𝑙 = |𝑃 | − 1
2 (𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚) = (0, 𝑐 (|𝑅 |, 𝑃 [𝑙])) //Assume we always store 𝑐 (|𝑅 |, 𝑥)
3 for 𝑗 = 𝑙 to 0 do
4 𝑡𝑜𝑝 = 𝐹 [𝑡𝑜𝑝/𝑑] .𝑐𝑠 (𝑃 [𝑗])+
5 𝐶𝑜𝑢𝑛𝑡 (𝑃 [𝑗], 𝐹 [𝑡𝑜𝑝/𝑑] .𝐵, 𝑡𝑜𝑝%𝑑) + 𝑖 (𝑃 [𝑗])
6 𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐹 [𝑏𝑜𝑡𝑡𝑜𝑚/𝑑] .𝑐𝑠 (𝑃 [𝑗])+
7 𝐶𝑜𝑢𝑛𝑡 (𝑃 [𝑗], 𝐹 [𝑏𝑜𝑡𝑡𝑜𝑚/𝑑] .𝐵 ,𝑏𝑜𝑡𝑡𝑜𝑚%𝑑) + 𝑖 (𝑃 [𝑗])
8 end
9 if 𝑡𝑜𝑝 < 𝑏𝑜𝑡𝑡𝑜𝑚 then
10 for 𝑗 = 0 to 𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚 do
11 𝐿𝑜𝑐 [𝑗] = 𝑆𝐴 [𝑡𝑜𝑝 + 𝑗]
12 end
13 end

14 Function Count(𝑐ℎ𝑎𝑟 , 𝐵, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛):
15 𝑐𝑛𝑡 = 0
16 for 𝑗 = 0 to 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 do
17 if 𝑐ℎ𝑎𝑟 == 𝐵 [𝑗] then
18 𝑐𝑛𝑡 + +
19 end
20 end
21 return 𝑐𝑛𝑡

Algorithm 2: Algorithm for exact substring matching
using restructured FM-index. Note some notations are
specified in Figure 4.

Given that the human reference genome 𝑅ℎ𝑢𝑚𝑎𝑛 consists of 3
billion characters, the storage of each 𝑐 () entry requires 32 bits.
Hence, subset storage of 𝑐 () table can significantly decrease the
index size, especially when each BWT character only requires 2 bits
for alphabet Θ = {A, T, C, G}. The memory usage required by the
customized FM-index is reduced to:

Sampled 𝑐 (𝑛, 𝑥) Size + Sampled 𝐵𝑊𝑇 Size

=
|𝑅ℎ𝑢𝑚𝑎𝑛 | × (32𝑏𝑖𝑡)

𝑑
× |Θ | + |𝑅ℎ𝑢𝑚𝑎𝑛 | × (log2 (|Θ |)𝑏𝑖𝑡)

=
3.2𝐺𝐵 × 4

𝑑
× 4 + 3.2𝐺𝐵 × 2

8 = (51.2
𝑑

+ 0.8)𝐺𝐵

(3)

Sampling Distance 𝑑 — The value of 𝑑 plays an important role in
the memory access efficiency. First, it affects the final size of the
restructured index. More importantly, it changes the bucket size
and influences alignment performance. According to Algorithm 2,
every character search of 𝑃 requires streaming of a bucket from
the external memory. To enable better utilization of the memory

bandwidth, 𝑑 should be set based on Equation (3) such that the
final bucket size is a multiple of the memory burst size. For typical
DDR4 memory with a burst size 64 B, 𝑑 = 192. The final index size
becomes 1.06GB.

4.2 n-step FM-index
Based on Algorithm 1, the search of a pattern 𝑃 takes |𝑃 | steps
to obtain the final interval in the 𝑆𝐴. Chacón et al. [5] introduce
an alternative arrangement of FM-index that reduces the steps,
hence improving the execution time. Essentially, this arrangement
alters the index structure such that 𝑛 symbols in 𝑃 are matched
per step during the backward search. Subsequently, the number of
steps required to obtain the final interval between 𝑡𝑜𝑝 and 𝑏𝑜𝑡𝑡𝑜𝑚
become |𝑃 |

𝑛 . For more information about n-step FM-index, please
refer to [5].

This reduction of search steps, however, comes at the expense
of larger bucket and index size, as well as increased computational
complexity per step. The index is now adjusted to store information
about 𝑛 concatenated symbols each time instead of 1 symbol. For
example, if 𝑛 == 2, each row in 𝑖 () and 𝑐 () table contains the
occurrence values for alphabets Θ = {AA, AC, ..., GC, GG}. This
increases the entries count and consequently the index and bucket
size, and also 𝑑 .

In spite of the larger bucket size where more data are read per
memory access, reading more bursts generally increases the effec-
tiveness of memory transfer. In Section 6.1, we provide an explo-
ration of the step 𝑛 and bucket size versus the memory bandwidth
to understand their implications on alignment performance.

5 DESIGN OF THE ALIGNMENT
ACCELERATOR

This section presents the FPGA accelerated aligner where details
and collaboration between modules are described. In particular, the
modules for handling the quality metric and ambiguous charac-
ters are elaborated. The techniques used to further improve the
alignment performance are also discussed.

Host Device

Onboard
DRAMF

Reads Aligned Result

FPGA

Memory
Command

Top

Bottom
Compute for

Top & Bottom

BRAMReads

cs(a) cs(c)
cs(g)cs(t)

cs(x) B

+

sy
m

Bucket

Exact-match module

New
Pointer

i(x)

i(t)i(g)i(c)

i(x)

i(a)

BWT char
Counter

Figure 5: Simplified top-level diagram for exact-match mod-
ule. The diagram on the left shows the details of the com-
pute block for𝑇𝑜𝑝 & 𝐵𝑜𝑡𝑡𝑜𝑚. Note that for readability it only
displays the logic for one pointer calculation.

5.1 Module Designs and Optimization
As mentioned, our work is inspired by Bowtie where a read is
handled by the mismatch subroutine if exact matching is failed, i.e. a
filtered searchwith the exactmatch thenmismatches. Therefore, the

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

233

hardware filters are arranged in an alignment pipeline with runtime
reconfiguration. Given by Equation 1, modules are replicated on
FPGA to increase parallelism. Each module within the filter is also
fully pipelined to maximize the matching throughput.

All filters utilize our restructured FM-index to perform the align-
ment. Figure 5 shows a simplified top-level diagram that implements
Algorithm 2 for exact-match filter. The process of alignment within
all the filters begins with streaming the reads from the host to FPGA
while the restructured FM-index 𝐹 is preloaded onto the onboard
memory. The new pointers for 𝑡𝑜𝑝 and 𝑏𝑜𝑡𝑡𝑜𝑚 are then calculated
based on the symbol and the correlated buckets from the onboard
memory. A command block is responsible for sending memory
requests according to the new pointer values. Results are streamed
back to the host once the reads are matched, or when the reads are
unaligned and needed to redirect to the subsequent filter.

To support approximate matching, additional logic is included in
the exact-match filter for one and two mismatch filters to support
backtracking. Since FM-index suffers from exponential scaling with
the number of permitted mismatches, bi-directional FM-index is
used in the one-mismatch and two-mismatch filter to reduce the
search space. Details about bi-directional FM-index can be found
in [16]. In addition, our three-mismatch filter employs a seed-and-
compare strategy. Seeds are exactly matched with the FM-index
and the mismatch locations are identified in a subsequent direct
comparison stage.

Bi-directional FM-index — In the one-mismatch filter, we use two
different indices of the reference. The first one contains the standard
restructured FM-index of 𝑅, while the second one contains the index
of the reversed of 𝑅, which is called the mirror index. This enables a
character search from both the start or the end of a read. Figure 6a
illustrates the mechanism of alignment using bi-directional FM-
index. During the search, the mismatch character can either fall
onto the left or right half of the read. Therefore, our one-mismatch
filter proceeds in two phases to handle these two cases: Phase 1 uses
our restructured FM-index 𝐹 to begin the search from the end of the
read, with the constraint that one mismatch occurs only in the left
half of the read. Phase 2 uses the mirror index to begin the search
from the start of the read, with the constraint that one mismatch
occurs only in the right half. By constraining the mismatch position,
a long segment of the read can be exactly matched to the reference
initially. This can largely reduce the search space size without
sacrificing any sensitivity.

The two-mismatch filter also utilizes the standard and mirror
index to perform the search. To reduce the search space, the short
read is partitioned into three parts (Left Λ, Middle𝑀 , Right 𝑃) with
the same length. A reportable alignment falls into one of the three
cases as illustrated in Figure 6b: (case I) 2mismatches inΛ𝑀 ; (case II)
≤ 1 mismatch in𝑀 and ≥ 1 mismatch in 𝑃 ; (case III) 1 mismatch in
Λ and 1mismatch in 𝑃 . Therefore, the two-mismatch filter proceeds
in three phases corresponding to these three cases: Phase 1 begins
with exact matching from the end of 𝑃 , and attempts two-mismatch
alignment once it reaches𝑀 , using the standard index. Phase 2 uses
the mirror index to perform a similar search on the short reads,
with the constraint of having at most one mismatch character in𝑀 .
Phase 3 corporates the first 2 phases and find partial alignment with
one mismatch in Λ using the standard index. Then it extends the

Short read

Phase 1
Λ P

Λ P

Standard index

Phase 2
Λ P

Mirror index

Search Direction

Search Direction

Bucket

(a) One mismatch
Phase 3

Short read

Phase 1

Standard index

Phase 2

Mirror index

Search Direction

Search Direction

Λ PM

P

Λ PM

MΛ

Standard index

Search Direction

Λ PM

Search Direction

Mirror index

(b) Two mismatches

Figure 6: One and two-mismatch alignment using bi-
directional FM-index. The segments shaded in grey are re-
gions for testing one mismatch, while segments shaded in
red are regions for testing twomismatches. The non-shaded
areas are exact-match regions.

partial alignment with the mirror index to perform one mismatch
alignment in 𝑃 .

Seed-and-compare — In the three-mismatch filter, it first splits each
read into four seeds - equal length non-overlapping substrings.
Then, the position of each seed is computed using the exact-match
logic and the positions are directed to the compare step on the
processor. Consequently, this filter avoids using a backtracking al-
gorithm and is instead able to exploit the efficient exact-match logic.
The compare step is performed on the processor for two reasons.
First, it involves a direct and consecutive comparison of nucleotides
which exhibit spatial locality. Second, this step is a constant time
operation, and is not computationally intensive enough to justify
running on FPGA when accounting for reconfiguration overhead.

Concurrent Processing for Multiple Reads — Although bucketing
improves the utilization of memory throughput, the alignment per-
formance still suffers from the latency of memory access. According
to Algorithm 2, the new pointers for 𝑡𝑜𝑝 and 𝑏𝑜𝑡𝑡𝑜𝑚 are calculated
based on the values from 𝐹 , which in turn depends on 𝑡𝑜𝑝 and
𝑏𝑜𝑡𝑡𝑜𝑚 from existing iteration. This incurs a vast amount of stall.

We tackle this problem by proposing an interleaving scheme
to process multiple reads concurrently. Displayed on the left of
Figure 5, a block memory (BRAM) is used to store a few short reads
during the mapping process. In each clock cycle, a read is selected
from BRAM and the next symbol is processed. This enables full
utilization of the FPGA as almost one nucleotide can be processed
and a memory request can be sent every clock cycle. Note that we
apply this technique to all the filters.

5.2 Consideration for Complete Biological
Information

Another major component of this work is the capability of recogniz-
ing the complete biological information in the alignment process.
One important information is the quality value, also known as
Phred quality [8], a metric that is usually neglected in previous

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

234

@SRR3947551.8282187 8282187/1
AAGGTATTTGATCATTATATATGAAACCAACTAGGCAAAGGAG
+
@@@F=DDFDDDDFEGDFGGC?IHDAGCGGBGFAHGIE3?D?):

Reads character

Phred Quality

Phred Quality of G
= ASCII of ‘:’ – 33
= 58 – 33 = 25

Figure 7: Explanation on Phred quality using an example.

works. Its values are ranged from 0 to 42 and are presented in ASCII
character (with addition of 33). Figure 7 displays an example snippet
of a read file in which the second line is the read and the fourth
line is Phred quality. Each character in the read is associated with
a quality score in the same position and a larger value represents a
better quality.

Phred quality is a critical factor for producing biologically cor-
rect alignment whenmismatches are encountered. Essentially, the
quality sum for an alignment is defined by the sum of Phred qual-
ity values at all mismatch positions. Since errors can happen when
cell samples are collected, or when sequenced by NGS machine, it
is necessary to rank and filter low-quality alignment for biological
validity.

Challenges — Previous accelerators usually neglect Phred qual-
ity because of design challenges and performance issues. To start,
Phred quality requires 6 bits per value, which not only increases the
communication overhead between the host and FPGA but also the
resource usage. This results in prolonged placement & routing time,
more immense fan-out, and lower clock frequency. Furthermore,
a read can have various combinations of mismatch locations that
contribute to several aligned results per read. For example, given
reference 𝑅 = ACACGT and read pattern 𝑃 = ACC in Figure 8, the
last character of 𝑃 can be replaced with A or G, forming the results
ACA or ACG, for successful alignment with one mismatch. The
consideration of Phred quality complicates the design logic and
lengthens the alignment time, as we need to sort and rank these
results based on the quality sum of each alignment.

Mismatch characterAligned at position 0

A C CRead P A C A C G T Reference R

Aligned at position 2

Figure 8: Example of one-mismatch alignment with two
aligned results.

Separated Computation & Minimal Ports — In our proposed accel-
erator, the compute block for the quality sum is separated so that
the original alignment throughput and latency are not affected.
A 7-bit register is used to buffer the quality sum for one aligned
result. Multiple of these registers form a cascade of shift registers
which contain the quality sums for all aligned results of a sin-
gle read. To minimize the number of ports at the interface, only
the necessary information is directed to this block such as read ID
and mismatch locations so that fan-out is reduced.

By default, 32 registers where each of them is 7-bit are cascaded
to form the required shift register so as to cache the quality sums
for a read. From our observation with the use of Bowtie, successful
alignment with mismatches exhibits less than 32 possible outcomes,
given that the reads are 50 to 150 base pairs (𝑏𝑝).

Host Device

Onboard
DRAMF

Reads Aligned Result

FPGA
Memory

Command

Top

Bottom
Compute for

Top &
Bottom

1-mismatch module

i(x)

Compute for
Quality Sums

Reads ID, Aligned
ID, Quality Sum (QS)

D

Q
En

D

Q
En

D

Q
En

Sorted_QS
[0][6:0]

Sorted_QS
[0][6:0]

Sorted QS

Quality Sum
(QS[6:0])

Sorted_QS
[31:0] [6:0]

Figure 9: Simplified top-level diagram for one-mismatch
module which contains the compute block for sorting qual-
ity sums of a read. For readability, some data and control
paths are omitted.

On-the-fly Sorting — As shown in Figure 9, a set of comparators
is used so that results with the highest quality values are always
preserved. When a new alignment is found for particular mismatch
location(s), these comparators match the quality sum of this aligned
result with the existing ones from the shift registers. Accordingly,
an insertion point can be obtained and the quality sums smaller than
the current one are shifted in the shift register. Note the underlying
logic is fully pipeline so that it can receive the aligned result from the
compute block for 𝑡𝑜𝑝 &𝑏𝑜𝑡𝑡𝑜𝑚 every cycle, despite the comparison
and the shifting operations can take a few cycles.

Three-mismatch Filter & Reads containing Ambiguous Characters —
Finally, Phred quality values are also considered in the alignment
with the three-mismatch filter. The quality sum for each alignment
is calculated during the compare step on the processor, and only
the ones with the highest values are reported. Additionally, reads
containing the ambiguous characters (N characters) are handled by
the processor as soon as the exact-match hardware starts process-
ing. According to Bowtie, only alignments involving ambiguous
characters in the read are legal, and ambiguous characters in the
read mismatch all other characters. When an ambiguous character
is seen in the input, the reads are processed directly on the pro-
cessor to obtain the possible alignments with no more than three
mismatches. Given that only a small portion of reads contains N
characters, this step can be completely overlapped by the alignment
on FPGA.

6 EXPLORATION FOR AUTOMATIC TOOL
As mentioned, n-step FM-index can align more efficiently if the
memory bandwidth improves as the bucket size increases. In this
section, we explore the relationship between step 𝑛 and bucket
size versus the alignment speed. Based on this information, we can
optimize the FPGA from memory access perspective and provide
an insight into the automatic tool.

6.1 Exploration of step 𝑛 versus Alignment
Speed

The memory bandwidth plays a major role in alignment perfor-
mance, especially when the increase in 𝑛 contributes to a larger
bucket size. Table 2 shows the final bucket and index size for 𝑛 == 1
to 3.

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

235

Table 2: The bucket and index size for different step 𝑛.

Step 𝑛 1 2 3
Bucket / Index Size 64 B / 1.06GB 128B / 3.2GB 320B / 12.15GB

In this experiment, we use Maxeler’s MAX5C DFE which is
equipped with Xilinx Virtex UltraScale+ VU9P and three DIMMs of
16GB onboard memory. The FPGA runs at 250MHz while the host
runs with Intel Xeon CPU E5-2643 at 3.4GHz and 64GBDDR4-2400
memory. Centos 7.0 is installed on the host. MaxCompiler 2018.2
and Vivado 2017.4 are used for synthesis and implementation. PCI-e
2.0 is used to transfer the data between the host and FPGA. As the
computation is bottleneck by the onboard memory on the FPGA,
PCIe 2.0 is already sufficient for the data transfer.

GRCh38 [11] is used as the reference and single-end reads from
human_100_300M in [17] are used as the input. This dataset contains
300 × 106 reads with 101𝑏𝑝 , and was originally used to evaluate
Bowtie on a multi-core system to investigate the alignment perfor-
mance. It is composed of reads generated by the Illumina HiSeq2000
instrument from various genome projects.

Figure 10 shows the alignment speed against different 𝑛 for the
exact-match, one-mismatch, and two-mismatch filters. For each
filter, the corresponding computational module is populated on
the FPGA by one and three times to investigate the performance
difference. Also displayed in the graph is the measured throughput
of accessing onboard memory from FPGA for different 𝑛, resulting
in different number of bursts transfer. The graph on the right elab-
orates on the corresponding resource consumption in percentage
required by each filter. The resource usage for DSP is not shown in
the figures as less than 1 % is used by all the filters.

On the target platform, the alignment speed is optimal when
𝑛 is 2 where the bucket size is 128 B (two bursts). Since the mem-
ory bandwidth increases by 2.2× when two bursts are transferred,
the alignment speed can slightly improve when 2 characters are
matched using 2-step FM-index. However, when 𝑛 equals to 3, five
memory bursts are needed to transfer a bucket, while the memory
bandwidth only increases by 4× compared to one-burst transfer.
Thus, 3-step FM-index doesn’t provide any performance advantages
on VU9P. Moreover, when the number of modules is tripled, the
alignment performance is improved by 3×. This showcases the
scalability where the performance scales linearly with the mod-
ule counts. Finally, the critical resource for each module is BRAM
(∼ 20 − 50% usage) because of the circular buffer for concurrent
processing. There remains an adequate amount of space for module
replications should more memory DIMMs are given.

6.2 Automatic Tool
From the exploration, we notice that the alignment performance
can be affected by factors such as memory throughput, step, etc.
Therefore, the automatic tool, written in Python, consists of three
major stages: Memory Performance Measurement, Hardware Cus-
tomization, and Hardware Compilation.

Memory Performance Measurement — Since FM-index based align-
ment is bottleneck by the memory, the first stage accepts the in-
formation about the FPGA, and generates hardware that measures

0

200

400

600

800

0

1

2

3

4

n
==

1
,

1
 B

u
rs

t

n
==

2
,

2
 B

u
rs

ts

n
==

3
,

5
 B

u
rs

ts

A
lig

n
 T

im
e

(s
)

G
b

it
/s

Mem throughput
1 Module
3 Modules

0

10

20

30

40

50

n
==

1

n
==

2

n
==

3

n
==

1

n
==

2

n
==

3

1 Module 3 Modules

R
es

o
u

rc
e

U
sa

ge
 (

%
)

LUT Reg BRAM

(a) Exact-match filter

0

200

400

600

800

0

1

2

3

4

n
==

1
,

1
 B

u
rs

t

n
==

2
,

2
 B

u
rs

ts

n
==

3
,

5
 B

u
rs

ts

A
lig

n
 T

im
e

(s
)

G
b

it
/s

Mem throughput
1 Module
3 Modules

0

10

20

30

40

50

n
==

1

n
==

2

n
==

3

n
==

1

n
==

2

n
==

3

1 Module 3 Modules

R
es

o
u

rc
e

U
sa

ge
 (

%
)

LUT Reg BRAM

(b) One-mismatch filter

0

200

400

600

800

0

1

2

3

4

n
==

1
,

1
 B

u
rs

t

n
==

2
,

2
 B

u
rs

ts

n
==

3
,

5
 B

u
rs

ts

A
lig

n
 T

im
e

(s
)

G
b

it
/s

Mem throughput
1 Module
3 Modules

0

10

20

30

40

50

n
==

1

n
==

2

n
==

3

n
==

1

n
==

2

n
==

3

1 Module 3 Modules

R
es

o
u

rc
e

U
sa

ge
 (

%
)

LUT Reg

BRAM

(c) Two-mismatch filter

Figure 10: The alignment speed against 𝑛 for the exact-
match, one-mismatch, and two-mismatch filters (Left). The
corresponding resource consumption with respect to the
available resources is represented in percentage (Right).

the throughput and latency of the onboard memory. This stage
relies on the Memory and PCI-e IP core from Vivado. A pre-written
hardware template that utilizes these IP cores is used to access the
onboard memory. When the hardware is run on the target FPGA,
the memory access latency 𝐿 and throughput 𝑇𝑛 with respect to
different number of bursts are obtained accordingly. We set the
frequency as 250MHz when speed grade ≤ −2 and 150MHz when
speed grade = −1. Optionally, the user can provide the memory
performance information and skip this stage.

Hardware Customization— Based on the exploration, we understand
that an increasing 𝑛 does not necessarily improve the alignment
speed, unless the memory throughput is improved by more than
its own burst counts. We also observe that the BRAM usage often
dominates the resource consumption. With these properties, the
hardware aligner can be optimized based on the following analysis
and different equations. First, given a step 𝑛, we calculate the num-
ber of bursts𝐶𝑛𝑡𝑏𝑢𝑟𝑠𝑡_𝑛 needed for a bucket. Then we can calculate
which 𝑛 provides the optimal alignment performance with:

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

236

𝑇1 <
𝑇𝑛

𝐶𝑛𝑡𝑏𝑢𝑟𝑠𝑡_𝑛
, for 𝑛 = {2, 3} (4)

If there exist one or more 𝑛 satisfying Equation (4), we select the
𝑛 which contributes to max (𝑇𝑛

𝐶𝑛𝑡𝑏𝑢𝑟𝑠𝑡_𝑛
). We also need to consider

two more equations that restrict the design space smaller than the
available BRAM:

Usage of BRAM for Exact-match Filter

=
𝑆𝑖𝑧𝑒𝑣𝑎𝑟 × 𝑁𝑖𝑟𝑒𝑎𝑑 ×𝑀𝑗 + 𝑆𝑖𝑧𝑒𝑏𝑢𝑐𝑘𝑒𝑡 ×𝑀𝑗 × 2

𝐵𝑅𝐴𝑀𝑠𝑖𝑧𝑒

< 𝐶𝑛𝑡𝐵𝑅𝐴𝑀 , (5)

Usage of Block Memory for Filter with Mismatches

=
(𝑆𝑖𝑧𝑒𝑣𝑎𝑟 + 𝑆𝑖𝑧𝑒𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘) × 𝑁𝑖𝑟𝑒𝑎𝑑 ×𝑀𝑗 + 𝑆𝑖𝑧𝑒𝑏𝑢𝑐𝑘𝑒𝑡 ×𝑀𝑗 × 2

𝐵𝑅𝐴𝑀𝑠𝑖𝑧𝑒

< 𝐶𝑛𝑡𝐵𝑅𝐴𝑀 ,

(6)

where 𝑆𝑖𝑧𝑒𝑣𝑎𝑟 and 𝑆𝑖𝑧𝑒𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 are defined as the bit-width re-
quired by the variables and backtracking variables respectively
within the module. 𝑁𝑖𝑟𝑒𝑎𝑑 is the number of interleaved reads based
on 𝐿. Additionally, since a FIFO buffer is used to temporarily cache
the bucket from the onboard memory, 𝑆𝑖𝑧𝑒𝑏𝑢𝑐𝑘𝑒𝑡 is included in the
equations which stands for the bucket size.𝐶𝑛𝑡𝐵𝑅𝐴𝑀 is the memory
resources available on the chip. Moreover, as the number of mod-
ules𝑀𝑗 is limited by the number of DIMMs based on Equation (1),
we also need to satisfy the following:

𝑀𝑗 ≤ 𝑁𝐷𝐼𝑀𝑀 ,where 𝑗 is the filter (7)

Lastly, we use scipy in Python to solve Equations (5)/(6) and
(7) with the objective of maximizing𝑀𝑗 for different filters 𝑗 . If no
solution is found, we select a smaller 𝑛 and solve the above linear
equations again until we exhaust all possible 𝑛.

6.3 Hardware Compilation
When the hardware customization is finished, we direct the hard-
ware to Vivado for synthesis and implementation. For𝑀𝑗 ≥ 3, other
issues such as congestion or large fan-out might arise during com-
pilation, particularly on a small FPGA. This is because the aligner
now requires more than 50 % of BRAM on-chip for moderate size
FPGA such as Xilinx VU9P. Therefore, the automatic tool provides
an option to concurrently compile the hardware with a smaller
amount of𝑀𝑗 .

7 EXPERIMENTAL RESULTS AND
DISCUSSION

To evaluate the performance and limitations of our proposed design,
we initialize the hardware with the maximum number of modules,
𝑀𝑗 = 3, using 2-step FM-index (bucket size = 128 B) based on the
results in Section 6.1. All other settings for our accelerator are
identical to the previous section.

7.1 Alignment Accuracy
As our proposed hardware design is modeled upon the algorithms
implemented in Bowtie, this subsection evaluates the alignment
accuracy, with results from Bowtie acting as the ground truth. Fur-
thermore, we compare the performance difference between our
aligner and software. We also select the accelerator proposed by

Arram et al. [2] for comparison as it is based on a similar method-
ology to perform runtime alignment. We manage to download [12]
and re-implement their design on our experimental device with a
frequency of 250MHz.

Given the relatively small workload (∼7 % of a full alignment
workload), the reconfiguration time (9-12 s per configuration) for
VU9P does not have a large impact on the overall alignment time.
Moreover, different datasets and alignment parameters are used
in different previous works, and some accelerators use more than
one FPGA to perform the alignment. To allow a fair comparison,
we define a normalized metric, base pairs aligned per second per
device (𝑏𝑝𝑠−1), which is given by:

𝑏𝑝𝑠−1 =
𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 × 𝑛𝑜. 𝑜 𝑓 𝑑𝑒𝑣𝑖𝑐𝑒
(8)

Table 3: A comparison between set-up and alignment results
of Arram et al., the proposed design and Bowtie.

Arram et al. Proposed Aligner Bowtie

Device Xilinx Virtex UltraScale+ VU9P Intel Silver 4110
(16 threads)

Frequency 250MHz 2.1GHz
Lithography TSMC 16 nm Intel 14 nm

Align time 638 s 683 s 3330 s
𝑏𝑝𝑠−1 (million) 47.5 44.4 9.10

Accuracy 96.3 % 97.7 % –

Table 3 displays the comparison between the set-up and align-
ment results of the hardware and software. Accuracy is defined
as the fraction of correct alignment and un-alignment from the
proposed aligner among all of the reads. Correct alignment refers
to reads matched to the same locations as Bowtie. Correct un-
alignment means that if the reads are not aligned by Bowtie, they
should not be aligned by the proposed aligner also.

The 2.3 % discrepancy in accuracy, between our accelerator and
Bowtie (100 % accuracy for the ground truth), is due to two reasons.
First, some of the reads are successfully aligned to the reference
using FPGA but fail to map using Bowtie. Bowtie imposes a back-
tracking restriction to limit effort spent finding valid alignments.
This causes Bowtie to miss some legal mismatch alignments. This
clearly demonstrates the biological validity of the proposed aligner,
since our design can exhaust all the possible mismatch locations
without putting a backtracking limit. This is important for align-
ment accuracy because statically around 20 % of reads from the NGS
machine can be aligned with one and two-mismatch filters. Second,
Bowtie employs a heuristic to determine the mapping locations,
especially when the reads have multiple aligned results. Some of
the reads that can be successfully aligned by Bowtie are mapped
to a different location in our proposed aligner. The accelerator pro-
posed by Arram et al., on the other hand, is unable to reflect a
comparable accuracy. Despite the performance, the accuracy drops
to 96.3 % because of the overlooking of the quality metric, as well
as the missing stage of the three-mismatch filter. Compared to Ar-
ram et al., our proposed aligner can report 4.48 M more correct
alignments. The better performance of Arram et al. is also due to

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

237

Table 4: Performance comparison with previous hardware accelerators that are based on similar algorithms.

Year Work Algorithm & Method Platform Device Read Count
(Million)

Read Length
(Base Pair)

Align
Time M𝑏𝑝𝑠−1

2012 [9] FM-index Convey HC-1 Virtex-5 LX330×4 18 101 73.3 s 6.20

2013 [1] FM-index + Smith-Waterman Maxeler MAX3 Virtex-6 SX475T 82 90 49.0 s 151

2013 [2] FM-index Maxeler MAX3 Virtex-6 SX475T 18 75 13.8 s 97.8

2015 [3] FM-index Maxeler
MPC-X1000 Stratix-V×8 10 75 11.3 s 8.30

2019 [15] Bowtie2 + Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 60 100 5830 s 1.03

2020 This work FM-index Maxeler MAX5C Virtex Ultrascale+ VU9P 300 100 683 s 44.4

the missing three-mismatch filter, where short reads unaligned by
the two-mismatch filter are left unprocessed and redirected to the
host straight away. If the three-mismatch filter is omitted in our
proposed aligner, our implementation needs around 562 s to finish
processing all the reads which is similar to Arram’s work.

Finally, the proposed aligner can achieve a reasonable speedup
of 4.88× where the alignment time is decreased from 56 minutes
in software to around 12minutes. With the assurance of biological
validity and reproducibility of the alignment results, the proposed
aligner provides an opportunity to bridge the gap between align-
ment research and practice, allowing applications such as cancer
diagnosis to become part of routine clinical procedures.

7.2 Performance Comparison with Existing
Accelerators

Table 4 demonstrates the performance comparison of the proposed
aligner with different accelerators. Since different designs conduct
their evaluations using different datasets, we do not compare the
alignment accuracy in this evaluation. Note that we only select
the hardware aligners that are based on Bowtie, Bowtie2, or FM-
index, as they are relatively similar to ours. Accelerators built upon
other algorithms such as Minimap2 are not considered as they use
different techniques or target long reads alignment.

The million 𝑏𝑝𝑠−1 values in Table 4 indicate that our aligner out-
performs most of the existing designs apart from [1] and [2]. This
showcases the benefits of our design where the addition of compu-
tation logic for quality sums does not affect alignment time. On the
other hand, our aligner is slower than [1] and [2] mainly because
of the availability of DIMMs on the respective devices. Their plat-
forms are based on Maxeler MAX3 where there exist seven memory
DIMMs onboard. With the number of memory channels more than
double compared to Xilinx VU9P, the alignment speed is therefore
more significant in their work. It is also important to note that their
evaluation methods are based on the theoretical upper bound esti-
mation on each respective device. Hence, the actual performance of
their implemented designs might be less significant, as the routing
congestion and fan-outs are not taken into consideration. Finally,
[1] only consists of two stages in the alignment pipeline, where
the approximate matching is performed with the Smith-Waterman
algorithm. Therefore, the alignment speed can be faster than the
proposed aligner as we exhaust all possible mismatch locations
using backtracking FM-index.

Table 5: Area cost of the final design on VU9P. Percentage
values are relative to the available resources on target FPGA.

LUT Register BRAM DSP

Exact Match 151272(13%) 229014(10%) 973(18%) 9(1%)

1-Mismatch 152111(13%) 311544(13%) 2385(45%) 9(1%)

2-Mismatch 163464(14%) 348755(15%) 2590(49%) 9(1%)

7.3 Resource Consumption
Based on the proposed reconfigurable architecture using 2-step
FM-index and𝑀𝑗 = 3, Table 5 indicates the corresponding resource
consumption for the implementation of each filter on VU9P, with
the inclusion of the PCI-e and memory controller. With an adequate
area remaining on the FPGA, more modules can be populated on
the FPGA if the number of DIMMs increases. Note these numbers
can only serve as a reference, as many factors can affect the final
resource computation when migrated onto other platforms.

8 CONCLUSION
In this work, we propose a novel, general reconfigurable architec-
ture to address the memory bottleneck of suffix-trie based align-
ment. Our architecture is based on FM-index where we use differ-
ent optimization techniques, such as bucketing, n-step FM-index,
bi-directional FM-index, and concurrent processing of reads to im-
prove alignment performance. Complete biological information is
also considered in the alignment pipeline to maximize accuracy.
With a guarantee of biological validity and reproducibility, we an-
ticipate the proposed hardware aligner can promote the adoption of
FPGA in short readmapping among biological and clinical scientists.
Further research includes decreasing the area cost by leveraging
an automatic design analyzer and merger [25], investigating alter-
native memory access scheme [23], supporting paired-end reads
and handling indels.

ACKNOWLEDGMENT
The support of the Lee Family Scholarship, the Great Britain-China Edu-
cational Trust, the Hong Kong Scholarship For Excellence Scheme, the UK
EPSRC (EP/L016796/1, EP/N031768/1, EP/P010040/1 and EP/L00058X/1), the
National Natural Science Foundation of China (62001165), Maxeler, Intel
and Xilinx is gratefully acknowledged.

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

238

REFERENCES
[1] J. Arram et al. 2013. Reconfigurable Acceleration of Short Read Mapping. In

2013 IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines. 210–217.

[2] J. Arram et al. 2013. Reconfigurable filtered acceleration of short read alignment.
In 2013 International Conference on Field-Programmable Technology (FPT). 438–
441.

[3] J. Arram et al. 2015. Ramethy: Reconfigurable Acceleration of Bisulfite Sequence
Alignment. In 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 250–259.

[4] M. Burrows and D. Wheeler. 1994. A Block-sorting Lossless Data Compression
Algorithm. Technical Report. Digital Equipment Corporation.

[5] A. Chacón et al. 2013. n-step FM-Index for Faster Pattern Matching. Procedia
Computer Science 18 (2013), 70 – 79.

[6] M. C. F. Chang et al. 2016. The SMEM Seeding Acceleration for DNA Se-
quence Alignment. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 32–39.

[7] P. Draghicescu et al. 2012. Inexact Search Acceleration on FPGAs Using the Burrows-
Wheeler Transform. Technical Report.

[8] B. Ewing et al. 1998. Base-Calling of Automated Sequencer Traces Using Phred.
I. Accuracy Assessment. Genome Research 8, 3 (1998), 175–185.

[9] E. Fernandez et al. 2012. Multithreaded FPGA acceleration of DNA Sequence
Mapping. In 2012 IEEE Conference on High Performance Extreme Computing. 1–6.

[10] P. Ferragina and G. Manzini. 2001. An Experimental Study of an Opportunistic
Index. In 12th Annual ACM-SIAM Symposium on Discrete Algorithms. 269–278.

[11] National Center for Biotechnology Information. 2020. Genome Reference Consor-
tium Human Build 38. https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.
26/

[12] P. Grigoras et al. 2017. dfesnippets:An Open-Source Library for Dataflow Accel-
eration on FPGAs. In 13th International Symposium on Applied Reconfigurable
Computing. 299–310.

[13] E. J. Houtgast et al. 2015. An FPGA-based Systolic Array to Accelerate the
BWA-MEM Genomic Mapping Algorithm. In 2015 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).
221–227.

[14] E. J. Houtgast et al. 2016. Power-Efficiency Analysis of Accelerated BWA-MEM
Implementations on Heterogeneous Computing Platforms. In 2016 International

Conference on ReConFigurable Computing and FPGAs (ReConFig). 1–8.
[15] K. Koliogeorgi et al. 2019. Dataflow Acceleration of Smith-Waterman with Trace-

back for High Throughput Next Generation Sequencing. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). 74–80.

[16] B. Langmead et al. 2009. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biology 10, R25 (2009).

[17] B. Langmead et al. 2019. Scaling read aligners to hundreds of threads on general-
purpose processors. Bioinformatics 35, 3 (2019), 421–432.

[18] B. Langmead and A. Nellore. 2018. Cloud computing for genomic data analysis
and collaboration. Nature Reviews Genetics 19 (2018), 208–219.

[19] H. Li. 2013. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997v2 (2013).

[20] H. Li and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 14 (2009), 1754–1760.

[21] G. Lightbody et al. 2019. Review of applications of high-throughput sequencing
in personalized medicine: barriers and facilitators of future progress in research
and clinical application. Briefings in Bioinformatics 20, 5 (2019), 1795–1811.

[22] N. A. Miller et al. 2015. A 26-hour system of highly sensitive whole genome
sequencing for emergency management of genetic diseases. Genome Medicine 7,
100 (2015), 16 pages.

[23] H. Ng et al. 2013. Direct Virtual Memory Access from FPGA for High-
productivity Heterogeneous Computing. In 2013 International Conference on
Field-Programmable Technology (FPT). 458–461.

[24] H.-C. Ng et al. 2017. Reconfigurable Acceleration of Genetic Sequence Alignment:
A Survey of Two Decades of Efforts. In 27th International Conference on Field
Programmable Logic and Applications (FPL). 1–8.

[25] H.-C. Ng et al. 2018. ADAM: Automated Design Analysis and Merging for
Speeding up FPGA Development. In 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 189–198.

[26] H.-C. Ng et al. 2020. Acceleration of Short Read Alignment with Runtime Recon-
figuration. In 2020 International Conference on Field-Programmable Technology
(FPT). 7 pages.

[27] S. Salamat and T. Rosing. 2020. FPGA Acceleration of Sequence Alignment: A
Survey. arXiv preprint arXiv:2002.02394v2 (2020).

[28] B. Schmidt and A. Hildebrandt. 2017. Next-generation sequencing: big data meets
high performance computing. Drug Discovery Today 22, 4 (2017), 712–717.

Session 4: Applications FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

239

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Alignment Overview
	2.2 FM-index
	2.3 Related Work

	3 Reconfigurable Hardware Architecture
	3.1 Motivation for Reconfiguration
	3.2 Proposed Architecture

	4 FM-index Optimization for FPGA
	4.1 Bucketing
	4.2 n-step FM-index

	5 Design of the Alignment Accelerator
	5.1 Module Designs and Optimization
	5.2 Consideration for Complete Biological Information

	6 Exploration for automatic tool
	6.1 Exploration of step n versus Alignment Speed
	6.2 Automatic Tool
	6.3 Hardware Compilation

	7 Experimental Results and Discussion
	7.1 Alignment Accuracy
	7.2 Performance Comparison with Existing Accelerators
	7.3 Resource Consumption

	8 Conclusion
	References

