
Simodense: a RISC-V softcore optimised for
exploring custom SIMD instructions

Philippos Papaphilippou , Paul H. J. Kelly, Wayne Luk
Department of Computing, Imperial College London, UK

{pp616, p.kelly, w.luk}@imperial.ac.uk

Abstract—Simodense is a high-performance open-source RISC-
V (RV32IM) softcore, optimised for exploring custom SIMD
instructions. In order to maximise SIMD instruction perfor-
mance, the design’s memory system is optimised for streaming
bandwidth, such as very wide blocks for the last-level cache.
The approach is demonstrated on example memory-intensive
applications with custom instructions. This paper also provides
insights on the effectiveness of adding FPGA resources in
general purpose processors in the form of reconfigurable SIMD
instructions.

Index Terms—FPGA, RISC-V, softcore, SIMD, cache hierar-
chy, custom instructions, streaming, big data, sorting, prefix scan

I. INTRODUCTION

Modern general purpose processors (CPUs) support a wide
range of single-instruction-multiple data (SIMD) instructions
[1] as a way to accelerate applications that exhibit data-level
parallelism. While there can be notable performance gains in
certain applications [2], the instruction set extensions become
bloated with overspecialised instructions [3], and sometimes
it is difficult to express efficiently a parallel task using a fixed
set of SIMD extensions [4].

As an alternative means to acceleration, FPGAs achieve
unparalleled processing capabilities in specialised tasks [5],
[6]. They have been getting attention for datacenter use,
with numerous academic and industrial solutions focusing
on processing big data [7]–[9]. However, the combination of
specialisation and their placement in highly heterogeneous sys-
tems has high development and deployment costs. FPGAs are
often left behind in terms of main memory bandwidth, leading
to a bandwidth bottleneck for big data accelerators [7], [10],
[11]. Also, high-end FPGAs are usually based on non-uniform
memory access (NUMA) systems, and the communication
techniques are mostly inconvenient and expensive. Examples
include the high access latency of PCIe [12], HLS tools
enforcing certain programming models, such as offloading
before processing [13], and the need to reimplement cache
hierarchies on FPGAs for improving the memory latency [11].

In combination with the openness of the RISC-V instruction
set, and its support for custom instructions [14], this is a great
time to start considering custom SIMD instructions on general
purpose CPUs. Small FPGAs can be integrated, to implement
custom instructions [3] and are demonstrated to improve the
performance over existing extensions significantly [15], [16].
In the literature, the exploration of custom instructions on
CPUs, and specifically SIMD, is rather limited.

In this paper, we present an open-source RISC-V softcore
[17] that is optimised for exploring custom SIMD instructions.
In order to achieve high throughput for streaming applications,
the focus was given on the cache hierarchy and commu-
nication. The framework allows easy integration of custom
vector instructions and evaluation in simulation and hardware.
Finally, we evaluate examples of custom instructions and
provide insights on introducing small FPGAs as execution
units in CPUs. Our contributions are as follows:

• An open-source softcore framework to evaluate novel
SIMD custom instructions, and design choices to max-
imise streaming performance (sections III,V-A).

• A set of non-standard instruction types to enable optional
access to a high number of registers (section IV).

• A demonstration of the approach with novel SIMD in-
structions for sorting and prefix sum (section V-C).

II. RELATED WORK

Nguyen Dao et al. presented FlexBex [3], an open-source
framework for embedding small FPGAs in a modified Ibex
RISC-V core [18]. Although it provides a form of SIMD
functionality, it is for embedded solutions and without a cache,
and the operation is done on multiple 32-bit registers. This
makes it limiting for benefiting memory-intensive applications.
On a similar note, Ordaz et al. [16] developed a closed-source
128-bit wide SIMD engine shared between RISC-V cores [19].
Unlike our solution, the memory interface was much narrower
than the SIMD engine, and both of these works mostly focus
on the fabrication aspect.and streaming performance.

There is a plethora of open-source softcores implementing
the RV32IM or similar instruction set [20], from both industry
and academia. Many have special features, such as out-of-
order execution [21], [22], running Linux [23] and optimised
arithmetic-logic units [24], [25]. Though, fundamental limita-
tions, such as a 32-bit datapath, are usually hard-coded.

There are softcores that may have the potential to be adopted
for exploring custom SIMD instructions [26], [27], but one
major consideration is their use of higher-level languages and
generators, which is known to be a problem for adoption [24].

There are also numerous FPGA-based vector processors and
overlays, but are not suitable for exploring modular SIMD
instructions for CPUs. Example limitations include the need to
pass exclusive control to dedicated accelerator logic [28], fixed
vector instruction sets [29]–[33], absence of base instruction
set [34] or complete absence of instructions [35].

https://orcid.org/0000-0002-7452-7150


III. SOFTCORE MICROARCHITECTURE

The proposed softcore supports the RISCV 32-bit base
integer instruction set (RV32I v. 2.1), plus the “M” extension
for integer multiplication and division [14]. The novel features
of our approach include a series of design choices to: (1)
enable high-performance for custom vector instructions and
streaming applications; (2) allow efficient implementation on
recent FPGAs by enhancing the block RAM (BRAM) organ-
isation and the behaviour of the inter-chip communication.

A. Cache hierarchy optimisations

On the first level, there is an instruction cache (IL1) and a
data cache (DL1), and on the second level there is a unified
last-level cache (LLC). LLC responds to requests from both
IL1 and DL1, and accesses the entire address range. It
communicates in bursts to DRAM through an interconnect
such as AXI. Figure 1 provides a high-level view of the data
communication throughout the cache hierarchy.

32-bit/ cycle256-bit/ cycle

256-bit/ cycle 256-bit/ cycle

128-bit/ cycle 

IL1 cacheDL1 cache

RISC-V core

Last-Level Cache Interconnect
(AXI)
2x frequency

256-bit/ cycle 

Fig. 1. Data movement in an example cache configuration

All caches use the writeback policy, with the exception
of the IL1 cache, where writing is not needed. While DL1
and LLC are set-associative caches, the IL1 is direct-mapped
for fast lookup of the next instruction, to avoid a stall on
instruction hits, or contributing to the critical path.

The LLC is implemented in block memory (BRAM), to
accommodate the high capacity of the last level. The IL1 is
implemented in registers for a reduced latency, in order to be
able to provide the successor instruction immediately on the
next cycle, if it is a hit. The DL1 is implemented in BRAM
by default, although changing the implementation directive to
registers yields similar performance and utilisation results, due
to its relatively low size.

At the set-associative caches (DL1 and LLC), each block
can be allocated into multiple possible ways, represented by
different parallel block RAM sections. The block replacement
policy for these caches is not-recently-used (NRU). It uses one
bit of meta-information per block [36], but closely resembles
the Least-Recently-Used (LRU) eviction policy. The choice
of a replacement policy can be crucial to the performance of
streaming applications, due to the wide data blocks and the
reduced cache space on the FPGA.

A series of design choices are presented for optimising the
performance and applicability for our purposes.

1) Level-1 block size: One optimisation is to set the block
size of the DL1 to be equal to the vector register width, such
as 256 bits. This is because a wider block size would require
an additional read on each write, from the cache of the higher
level, so that the entire block becomes valid. When the data
are from vector registers and are properly aligned, there is no
need to wait for fetching that block on a write miss, because
the whole block will contain new information.

The IL1 uses the same block size for easier arbitration
between DL1 blocks, at the cache of the higher-level (LLC).
Additionally, since IL1 is direct-mapped, using a wider-block
than 32-bits is also beneficial to performance, as it can also
be seen as a natural way of prefetching.

2) LLC block size: An important feature for increased
streaming performance is very wide blocks for LLC, such
as 8192-bit wide. This is in contrary to today’s CPUs with a
512-bit (64-byte) block size. The idea is that on write-back to/
fetch from main memory, it achieves a higher speed because
of longer bursts. Longer bursts are shown to have significant
impact on the overall throughput, such as in heterogeneous
systems with AXI [37], and this is especially useful for
streaming. Associating entire LLC blocks with bursts was
a convenient and practical organisation choice, because of
interconnect protocol limitations, such as for not crossing the
4KB address boundary in AXI [38].

3) LLC strobe functionality: A naive implementation of the
LLC in BRAM, would be to read the (wide) blocks in their
entirety in a single cycle, as in the DL1 case. However, BRAM
is organised in chunks of certain width and length, such as 36-
bit wide. With a LLC of just a single wide-enough block, the
BRAM capacity of the FPGA can be exceeded, or stagnate
timing performance. For this reason, the proposed LLC stores
blocks in consecutive BRAM locations of narrower size.
The tag array only stores the tags of entire blocks. Figure
2 visualises the indexing and strobe action of the LLC cache,
where M is the number of ways, N is the number of sub-
blocks in a way, and B is the number of sub-blocks per block.

Set index BRAM index

0 0
1

B-1
... ... ...

1 B
B+1

… … …
2B-1

… … …
N/B-1 N-B 

N-B +1
… … …

… N-1

Way 0 Way 1 Way M

(BRAM 0) (BRAM 1) (BRAM M)

Hit on tag of set 0, way, 0, 
BRAM index 1, part-select DL1 blockLLC block

Strobe write
from DRAM

Fig. 2. Last-level cache organisation

There is no overhead in access latency by using sub-blocks,
as it still takes a single cycle to read an I/DL1-sized block



from LLC. Another advantage of this technique is that, on
fetch, the requested I/DL1 block can be provided before a
read burst from DRAM finishes, since the LLC blocks are
stored progressively.

4) Flushing writes: One consideration is that we need to be
able to observe all memory modifications this softcore makes,
at least when used as a co-processor. Thus, it also features a
recursive flush-writes command. This essentially “cleans” all
blocks upon request, one-by-one without erasing the caches,
and all writes propagate to DRAM.

5) Doubling the frequency of the interconnect: In contrast
to the timing characteristics of this softcore, as well with
other well-known softcores [20], the operating frequency of
the interconnect on FPGAs can be relatively much higher [39].
Given that the port data widths are rather narrow (e.g. 128
bits/ cycle), this directly impacts the throughput for streaming
applications. This optional (platform-specific) optimisation
involves setting double rate for the interconnect, to emulate
double data width by fetching or writing twice per cycle, and
saturate [37] the bandwidth more easily (see Figure 1).

B. Main core

The core has a single pipeline stage, even though more
advanced instructions such as pipelined vector instructions
have their own pipeline. Almost all instructions in RV32I
consume 1 cycle and the result is available on the immediately
next cycle. In practice, this has a similar effect to operand
forwarding in pipelined processors, as consecutive dependent
instructions are executed sequentially without stalls.

Having a single pipeline stage, so that most instructions
complete in a single cycle, is useful for simplifying the
dependency checks. The output of simple instructions such as
add, addi, etc. is not tracked for dependencies. Of course, there
are alternative approaches, but the current implementation
mapped well in our evaluation platform and facilitated the
SIMD functionality rather efficiently.

The load and store instructions are handled by the cache sys-
tem independently in their own pipeline resulting in different
amounts of latency. In order to monitor the data dependencies
in multi-cycle instructions such as the “M” extension, SIMD
tasks and loads, there is a ready bit per register that influences
the stall decisions.

The implementation of the SIMD instructions follow a
template that allows a variable pipeline length, abstracted
through a ready signal for when the result is available.

IV. CUSTOM SIMD INSTRUCTIONS

In order to support adding and using SIMD instructions
on Simodense, we propose new instruction types that refer
to the vector registers and corresponding HDL (Verilog) code
templates for implementing the instructions in hardware.

In addition to the RV32IM standards we include two ex-
perimental instruction types for supporting the custom SIMD
instructions. The proposed instruction types I’ and S’ are
variations of the types I and S respectively.

Type I’ provides access to the register operands of the I-
type, that is one source and one destination 32-bit register.
It also provides access to two source (vrs1 and vrs2) and
two destination (vrd1 and vrd2) vector registers. Type S’
exchanges the space used by vrs2 and vrd2 for access to an
additional 32-bit source register rs2. The proposed variations
are summarised in Figure 3.

I’-type

vrs1 vrd1 vrs2 vrd2 rs1 func3 rd opcode

S’-type

vrs1 vrd1 imm rs2 rs1 func3 rd opcode

31 29 28 26 25 24 23 22 20 19 15 14 12 11 7 6 0

Fig. 3. Two variations of the I and S instruction types

As shown in Figure 3, the fields for the vector registers are 3
bits wide, which sets the maximum number of vector registers
to 8. Vector register 0 corresponds to 0, as in the base set.
It is useful for the proposed many-register instruction types,
because not all register operands may need to be accessed
at once. In software, this can be achieved with aliasing the
unused operands with register 0, and was not supported in
“V”, as vector 0 originally represents a register.

The official draft RISC-V ”V” vector extension has not
been followed, as it targets high-end/ hardened processors.
Moreover, supporting hundreds of intrinsics and more vector
registers would also be contrary to the idea of having small
reconfigurable regions as instructions. An interesting feature in
the “V” specification is the ability to chain vector instructions,
hence the need for a high number of registers. Since our solu-
tion enables custom instruction pipelines of arbitrary length,
a lower number of registers was considered satisfactory.

Custom instruction templates are provided inside the soft-
core codebase for adding low-level user code for SIMD
instruction implementations in Verilog [17].

V. EVALUATION

The exploration is divided in three parts according to the
outcomes of each set of experiments: (V-A) justifies important
design choices related to streaming performance, (V-B) shows
that the performance is still acceptable when no SIMD instruc-
tion is used and (V-C) explores the behaviour and efficiency
of example novel custom SIMD instructions.

The evaluation platform is Ultra96, which features the
Xilinx UltraScale+ ZU3EG device. The FPGA on the device
shares the same 2GB DDR4 main memory with the 4 ARM
cores. The ARM cores run Linux, but the kernel address
space is manually configured to end at the 1GB mark, so that
the other 1GB is dedicated to the FPGA, that includes the
softcore1.

A. Design Space Exploration

The target application is memory copying (memcpy()),
as its performance is (indirectly) detrimental to big data
processing and related evaluations have a long history in HPC
applications [40]. memcpy() here is manually implemented

1Source available: https://github.com/pphilippos/simodense

https://github.com/pphilippos/simodense


with the custom instructions for load vector and store vector,
instead of a library implementation using base registers. The
data length is 256 MiB, in order to surpass the cache sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32 64 128 256 512 1024

0

2

4

6

8

10

S
peedup over 32-bit registers

Vector register width (bits)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2048 8192 32768

m
em

cp
y(

) 
R

at
e 

(G
B

/s
)

LLC block size (bits)

Fig. 4. Memcpy() read and write (bidirectional) throughput for different last-
level cache block sizes (left) and vector register widths (right)

Figure 4 (right) illustrates the impact of the vector register
size on memcpy(). The 1024-bit softcore achieved a mem-
cpy() rate of 1.37 GB/s. Though, we opt for 256-bit (VLEN)
registers, with a rate of 0.69 GB/s, as 512-bit and beyond
seemed more challenging to route efficiently when incorpo-
rating more complex custom instructions. These designs used
a 16384-bit-wide LLC block.

One other experiment (Figure 4 left) measures the impact
of the block size in last-level cache (LLC). Wider LLC blocks
seem to be a considerable contributor to memory performance,
as they relate to the burst size. All implementations reached
timing closure for a frequency 150 MHz, except the 1024-
bit configuration that was clocked at 125 MHz. Table I sum-
marises the selected baseline configuration for the remainder
of the evaluation.

TABLE I
SELECTED CONFIGURATION

IL1 DL1 LLC
sets block sets ways block sets ways block sub-blocks VLEN fmax

(bits) (bits) (bits) (bits) (MHz)

64 256 32 4 256 32 4 16384 32 256 150
(=2KiB) (=4KiB) (=256KiB)

B. Performance as a RV32IM core

In order to show that there is no significant bottleneck when
compared with other non-SIMD cores, we overview some
other works with a similar specification. Table II presents
common benchmark metrics alongside previously reported
numbers using FPGAs. Note that this is not for direct com-
parison, as each work used a different FPGA architecture,
core/cache configuration and compilation environment.

Additionally, the performance of Simodense is measured
for memory-intensive situations, without the use of SIMD.
STREAM [40] is an established benchmark suite for measur-
ing memory performance, especially in HPC. Figure 5 shows
the obtained throughput in MB/s for each of the 4 kernels.

On the same FPGA, we place PicoRV32 [41], as a drop-in
replacement that supports AXI (Lite). Although it was not de-
signed for performance, it achieves high operating frequencies

TABLE II
INDICATIVE COMPARISON IGNORING SIMD

DMIPS/MHz Coremark/MHz fmax FPGA architecture

RVCoreP/radix-4 [24] 1.25 1.69 169 Xilinx Artix-7
RVCoreP/DSP [24] 1.4 2.33 169 Xilinx Artix-7
RSD/hdiv [21] 2.04 N/A 95 Zynq
BOOM/hdiv [21], [22] 1.06 N/A 76 Zynq
Taiga [19], [20] >1 2.53 ∼200 Xilinx Virtex-7
Simodense 1.47 2.26 150 Zynq UltraScale+

120

140

160

180

200

220

240

2-10 2-8 2-6 2-4 2-2 20 22 24 26

B
es

t R
at

e 
(M

B
/s

)

Array size (MiB)

Copy

Scale

Add

Triad

Fig. 5. Adapted STREAM benchmark results, no SIMD

(300 MHz in our platform), partly mitigating for its low IPC
[20]. It does not have a cache, although this does not directly
impact memory bandwidth, as the data reuse is practically
zero. (The steps in Figure 5 are from reusing data from the
initialisation). The results of PicoRV32 were 4.8, 3.6, 4.4 and
4 MB/s for Copy, Scale, Add and Triad consistently across
the array size range. This makes our approach 38x faster for
Copy at 183.4 MB/s, or 144x faster if we consider the 256-bit
memcpy() performance. This also highlights the importance
of optimising communication for streaming applications.

C. Custom SIMD instruction use cases

1) Sorting (32-bit integers): Sorting is a widely applicable
big data application. Existing SIMD intrinsic solutions are
based on algorithms such as sorting networks [42], radix sort
[43], mergesort [4], quicksort [2] and combinations.

The algorithm of our solution is merge sort, with the help of
sorting networks [42] for introducing parallelism. The sorting
networks are parallel and pipelinable algorithms for sorting
a list of N values. In each parallel step there is a number
of compare-and-swap (CAS) units, that collectively sort the
entire input list, as the input moves along the network. Sorting
networks were adapted for both software [2], [4] and hardware
[44]–[47] solutions for sorting arbitrarily long input.

Figure 6 introduces the new custom instructions for sorting.
In order to accelerate sorting in the softcore for arbitrary-sized
input, a sorting network is used first to sort the entire list first in
small chunks (function c2 sort()), as in [2]. Then, a traditional
recursive merge sort approach is performed, but instead of
merging each two sublists by comparing one element by one, it
uses a parallel merge block (function c1 merge()). The merge
block (the last log2(N) layers of odd-even mergesort) is to
merge two already-sorted lists together, as demonstrated in a
numerical example of Figure 6. In our implementation, we
add one more stage in the beginning of c1 merge() to enable



in0
in1
in2
in3
in4
in5
in6
in7
in8
in9
in10
in11
in12
in13
in14
in15

0 1 2 3 4 5 6 7 8 9 10

cycles

c2_sort()
5

3

9

10

2

0

1

4

6

6

0

11

3

8

2

12

0

1

2

3

4

5

9

10

0

2

3

6

6

8

11

12

0

0

1

2

2

3

3

5

6

6

8

9

10

11

12

4

c1_merge()

Fig. 6. Two new custom instructions based on odd-even mergesort

merging arbitrarily long lists progressively, and the algorithm
is inline with the intrinsics merge algorithm [4].

The performance of the resulting mergesort is compared
against non-vectorised code on the softcore, running at 150
MHz, as well as on the ARM A53 core, running at 1.2 GHz.
The baseline is qsort() from C’s standard library. The obtained
speedup is 12.1x and 1.8 times over the qsort() on the softcore
and ARM respectively, for 64 MiB random input. Comparison
with more optimised code such as multi-threaded NEON-
based for ARM, as well as other SIMD algorithms [2], [48]
would be appropriate as future work.

2) Prefix sum: Another fundamental operator is prefix sum,
and has numerous applications in databases, including in radix
hash joins and parallel filtering [49]. The prefix sum for
a series of values is the cumulative sum up to each value
inclusive, (i.e. outk =

∑k
i=0 ini for k ∈ {0, 1, ..., N − 1}),

where N in the number of inputs. Its serial implementation is
trivial and easy for compiling efficient code.

in0

in1

in2

in3

in4

in5

in6

in7
0 1 2 3

cycles

> > >

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
4

out0

out1

out2

out3

out4

out5

out6

out7

+

+

+

+

+

+

+ >

+

Fig. 7. New SIMD instruction for prefix sum

Figure 7 presents our custom instruction for the task. A
widely-used algorithm for parallelising prefix sum is from
Hillis and Steele [50], and is used in recent SIMD-based
software [49]. The first log2 N steps contain a pipelined
version of this algorithm, plus one additional stage that adds
the cumulative sum of the previous batch, that also happens
to be the cumulative sum of the entire input up to that batch.

In this way, it can calculate the prefix sum of an arbitrarily
long input in a pipelined and non-blocking way. For 64 MiB
input, vectorising prefix sum yielded a speedup of 4.1x over
the serial version, though it had 0.4x the speed of ARM A53.

VI. DISCUSSION

One of the most useful insights from such exploration is
about the reduction in the number of instructions and cycles
required for a task. For instance, if we look at the c2 sort in-
struction, it is able to sort a list of 8 32-bit elements in 6 cycles.
In contrast, a sorting network implementation of only 4 32-bit
inputs in older Intel processors required 13 SIMD instructions
and 26 cycles [4]. This 13x and 4.3x reduction of instructions
and cycles respectively, while solving a bigger problem, is due
to the unavailability of such specialised instructions. Even with
the latest AVX-512 intrinsics [1], for each layer of compare-
and-swap (CAS) units, a pair of separate instructions min and
max are required, as well as a few calls of shuffle that permute
the inputs for correct alignment [4].

Simodense aims at exploration. It is shown to perform
well on real hardware, and does not assume 1-cycle-latency
memories for instructions or data, a convention often found
in other works [20]. However, sometimes dedicated FPGA
accelerators are faster, such as with a sorter that achieves
up to 49x speedup on the same platform [47]. This gap is
expected and relates to the presence of instructions, in general.
Many accelerators try to “internalise” processing, but this is
not easily achievable on CPUs. Non-memory-intensive tasks
can still achieve higher speedups, depending more exclusively
on the FPGA’s capabilities.

CPUs operate at higher frequencies than FPGAs, and this is
the reason why NEON-based memcpy() implementations can
achieve high bandwidth on ARM [51]. Given that isolated
or out-of-context FPGA designs can run much faster than
when integrated in bigger systems [24], hardening of all
communication could further close this gap.

VII. CONCLUSION

This softcore, in combination with the proposed optimisa-
tions and instruction types can be used to explore novel high-
performance SIMD instructions. The provided methodology
provides the ability to develop advanced SIMD instructions
with a few lines of code, and minimise the instruction count for
increased performance. It is demonstrated that custom SIMD
instructions can provide an order of magnitude of speedup over
serial implementations for memory-intensive applications. The
availability of small reconfigurable regions as instructions in
future generations of CPUs would be a more efficient use of
silicon and processing cycles, and also simplify designs and
solve the main memory bottleneck found in today’s FPGA-
based datacenter accelerators.

ACKNOWLEDGMENT
This research was sponsored by dunnhumby. The support of Microsoft

and the United Kingdom EPSRC (grant number EP/L016796/1, EP/I012036/1,
EP/L00058X/1, EP/N031768/1 and EP/K034448/1), European Union Horizon
2020 Research and Innovation Programme (grant number 671653) is gratefully
acknowledged.



REFERENCES

[1] Intel (R), “Intel intrinsics guide.” [Online]. Available: https://software.
intel.com/sites/landingpage/IntrinsicsGuide/

[2] B. Bramas, “A novel hybrid quicksort algorithm vectorized using AVX-
512 on Intel Skylake,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 8, no. 10, pp. 337–344, 2017.

[3] N. Dao, A. Attwood, B. Healy, and D. Koch, “Flexbex: A risc-v with a
reconfigurable instruction extension,” in 2020 International Conference
on Field-Programmable Technology (ICFPT). IEEE, 2020, pp. 190–
195.

[4] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.
Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient implementation of
sorting on multi-core simd cpu architecture,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1313–1324, 2008.

[5] H. Nakahara, Z. Que, and W. Luk, “High-Throughput Convolutional
Neural Network on an FPGA by Customized JPEG Compression,” in
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 1–9.

[6] K. Tatsumura, A. Dixon, and H. Goto, “FPGA-Based Simulated Bifurca-
tion Machine,” in 29th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2019, pp. 59–66.

[7] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid CPU-FPGA databases,” in 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2017, pp. 211–218.

[8] K. Kara, Z. Wang, C. Zhang, and A. Gustavo, “doppioDB 2.0: hardware
techniques for improved integration of machine learning into databases,”
Proceedings of the VLDB Endowment, vol. 12, no. 12, pp. 1818–1821,
2019.

[9] P. Papaphilippou and W. Luk, “Accelerating database systems using
FPGAs: A survey,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2018, pp. 125–
130.

[10] J. Casper and K. Olukotun, “Hardware acceleration of database opera-
tions,” in Proceedings of the 2014 ACM/SIGDA international symposium
on Field-programmable gate arrays, 2014, pp. 151–160.

[11] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-
based Multithreading for In-Memory Hash Joins.” in CIDR, 2015.

[12] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner,
C. Wollbrink, and B. Allison, “IBM POWER9 opens up a new era
of acceleration enablement: OpenCAPI,” IBM Journal of Research and
Development, vol. 62, no. 4/5, pp. 8–1, 2018.

[13] V. Kathail, “Xilinx vitis unified software platform,” in The 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2020, pp. 173–174.

[14] A. Waterman and K. Asanovic, “The RISC-V instruction set manual,
volume I: Unprivileged ISA document, version 20191214-draft,” RISC-
V Foundation, Tech. Rep, 2020.

[15] J. R. G. Ordaz and D. Koch, “soft-NEON: A study on replacing the
NEON engine of an ARM SoC with a reconfigurable fabric,” in 27th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 2016, pp. 229–230.

[16] Ordaz, Jose Raul Garcia and Koch, Dirk, “A Soft Dual-Processor System
with a Partially Run-Time Reconfigurable Shared 128-Bit SIMD En-
gine,” in 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2018, pp. 1–8.

[17] P. Papaphilippou, P. H. Kelly, and W. Luk, “Extending the RISC-V
ISA for exploring advanced reconfigurable SIMD instructions,” arXiv
preprint arXiv:2106.07456, 2021.

[18] www.lowrisc.org, “Ibex RISC-V.” [Online]. Available: https://github.
com/lowRISC/ibex

[19] E. Matthews and L. Shannon, “Taiga: A new risc-v soft-processor
framework enabling high performance cpu architectural features,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2017, pp. 1–4.

[20] C. Heinz, Y. Lavan, J. Hofmann, and A. Koch, “A catalog and in-
hardware evaluation of open-source drop-in compatible risc-v softcore
processors,” in 2019 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig). IEEE, 2019, pp. 1–8.

[21] S. Mashimo, A. Fujita, R. Matsuo, S. Akaki, A. Fukuda, T. Koizumi,
J. Kadomoto, H. Irie, M. Goshima, K. Inoue et al., “An Open Source
FPGA-Optimized Out-of-Order RISC-V Soft Processor,” in 2019 In-

ternational Conference on Field-Programmable Technology (ICFPT).
IEEE, 2019, pp. 63–71.

[22] K. Asanovic, D. A. Patterson, and C. Celio, “The berkeley out-of-order
machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” University of California at Berkeley Berkeley United
States, Tech. Rep., 2015.

[23] J. Miura, H. Miyazaki, and K. Kise, “A portable and linux capable risc-
v computer system in verilog hdl,” arXiv preprint arXiv:2002.03576,
2020.

[24] M. A. Islam, H. Miyazaki, and K. Kise, “RVCoreP-32IM: An effective
architecture to implement mul/div instructions for five stage RISC-V
soft processors,” arXiv preprint arXiv:2010.16171, 2020.

[25] E. Matthews, A. Lu, Z. Fang, and L. Shannon, “Rethinking integer di-
vider design for fpga-based soft-processors,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2019, pp. 289–297.

[26] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, 2020.

[27] F. Kermarrec, S. Bourdeauducq, H. Badier, and J.-C. Le Lann, “LiteX:
an open-source SoC builder and library based on Migen Python DSL,”
in OSDA 2019, colocated with DATE 2019 Design Automation and Test
in Europe, 2019.

[28] H.-C. Ng, C. Liu, and H. K.-H. So, “A soft processor overlay with
tightly-coupled fpga accelerator,” 2016.

[29] P. Yiannacouras, J. G. Steffan, and J. Rose, “Vespa: portable, scalable,
and flexible fpga-based vector processors,” in Proceedings of the 2008
international conference on Compilers, architectures and synthesis for
embedded systems, 2008, pp. 61–70.

[30] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core
cpu accelerator,” in Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays, 2008, pp. 222–232.

[31] A. Severance and G. Lemieux, “Venice: A compact vector processor
for fpga applications,” in 2012 International Conference on Field-
Programmable Technology. IEEE, 2012, pp. 261–268.

[32] M. Johns and T. J. Kazmierski, “A minimal risc-v vector processor
for embedded systems,” in 2020 Forum for Specification and Design
Languages (FDL). IEEE, 2020, pp. 1–4.

[33] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao,
J. Luo, Z. Chen et al., “Xuantie-910: A commercial multi-core 12-
stage pipeline out-of-order 64-bit high performance risc-v processor with
vector extension: Industrial product,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 52–64.

[34] A. Severance and G. G. Lemieux, “Embedded supercomputing in
fpgas with the vectorblox mxp matrix processor,” in 2013 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 2013, pp. 1–10.

[35] M. A. Sarkisla and A. Yurdakul, “Simdify: Framework for simd-
processing with risc-v scalar instruction set,” in 2021 Australasian
Computer Science Week Multiconference, 2021, pp. 1–10.

[36] T. UltraSPARC, “Supplement to the ultrasparc architecture 2007,” 2006.
[37] K. Manev, A. Vaishnav, and D. Koch, “Unexpected Diversity: Quantita-

tive Memory Analysis for Zynq UltraScale+ Systems,” in International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2019,
pp. 179–187.

[38] A. Holdings, “Amba axi and ace protocol specification,” Tech. rep. 2011.
[39] A. Interconnect, “v2. 1 logicore ip product guide,” PG059, Xilinx,

December, vol. 20, 2017.
[40] J. D. McCalpin, “Stream benchmark,” Link: www. cs. virginia.

edu/stream/ref. html# what, vol. 22, 1995.
[41] C. Wolf, “Picorv32-a size-optimized risc-v cpu,” 2019.
[42] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the April 30–May 2, 1968, spring joint computer conference. ACM,
1968, pp. 307–314.

[43] Intel (R), “Intel(r) integrated performance primitives:
Developer reference, volume 1: Signal processing.
(accessed on 11/01/2021).” [Online]. Available:
https://software.intel.com/content/www/us/en/develop/documentation/
ipp-dev-reference/top/volume-1-signal-and-data-processing.html

[44] W. Song, D. Koch, M. Luján, and J. Garside, “Parallel hardware merge
sorter,” in Field-Programmable Custom Computing Machines (FCCM),
24th Annual International Symposium on. IEEE, 2016, pp. 95–102.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://software.intel.com/content/www/us/en/develop/documentation/ipp-dev-reference/top/volume-1-signal-and-data-processing.html
https://software.intel.com/content/www/us/en/develop/documentation/ipp-dev-reference/top/volume-1-signal-and-data-processing.html


[45] R. Kobayashi and K. Kise, “Face: Fast and customizable sorting
accelerator for heterogeneous many-core systems,” in 2015 IEEE 9th
International Symposium on Embedded Multicore/Many-core Systems-
on-Chip. IEEE, 2015, pp. 49–56.

[46] E. A. Elsayed and K. Kise, “High-performance and hardware-efficient
odd-even based merge sorter,” IEICE Transactions on Information and
Systems, vol. 103, no. 12, pp. 2504–2517, 2020.

[47] P. Papaphilippou, C. Brooks, and W. Luk, “An Adaptable High-
Throughput FPGA Merge Sorter for Accelerating Database Analytics,”
in 2020 30th International Conference on Field Programmable Logic
and Applications (FPL). IEEE, 2020, pp. 65–72.

[48] P. Papaphilippou, C. Brooks, and W. Luk, “FLiMS: Fast Lightweight
Merge Sorter,” in 2018 International Conference on Field-
Programmable Technology (FPT). IEEE, 2018, pp. 78–85.

[49] W. Zhang, Y. Wang, and K. A. Ross, “Parallel Prefix Sum with SIMD,”
Algorithms, vol. 5, p. 31.

[50] W. D. Hillis and G. L. Steele Jr, “Data parallel algorithms,” Communi-
cations of the ACM, vol. 29, no. 12, pp. 1170–1183, 1986.

[51] “A.3.2. cortex-a8 data memory access,” in NEON Programmer’s Guide.
arm, 2013, pp. 5–7. [Online]. Available: https://developer.arm.com/
documentation/den0018/a

https://developer.arm.com/documentation/den0018/a
https://developer.arm.com/documentation/den0018/a

	Introduction
	Related work
	Softcore microarchitecture
	Cache hierarchy optimisations
	Level-1 block size
	LLC block size
	LLC strobe functionality
	Flushing writes
	Doubling the frequency of the interconnect

	Main core

	Custom SIMD instructions
	Evaluation
	Design Space Exploration
	Performance as a RV32IM core
	Custom SIMD instruction use cases
	Sorting (32-bit integers)
	Prefix sum


	Discussion
	Conclusion
	References

