
Optimizing Bayesian Recurrent Neural Networks
on an FPGA-based Accelerator

Martin Ferianc‡∗, Zhiqiang Que‡†, Hongxiang Fan§†, Wayne Luk†, and Miguel Rodrigues∗
∗Department of Electronic and Electrical Engineering, University College London, London UK,

{martin.ferianc.19, m.rodrigues}@ucl.ac.uk
†Department of Computing, Imperial College London, London UK, {z.que, h.fan17, w.luk}@imperial.ac.uk

Abstract—Neural networks have demonstrated their outstand-
ing performance in a wide range of tasks. Specifically recurrent
architectures based on long-short term memory (LSTM) cells
have manifested excellent capability to model time dependencies
in real-world data. However, standard recurrent architectures
cannot estimate their uncertainty which is essential for safety-
critical applications such as in medicine. In contrast, Bayesian re-
current neural networks (RNNs) are able to provide uncertainty
estimation with improved accuracy. Nonetheless, Bayesian RNNs
are computationally and memory demanding, which limits their
practicality despite their advantages. To address this issue, we
propose an FPGA-based hardware design to accelerate Bayesian
LSTM-based RNNs. To further improve the overall algorithmic-
hardware performance, a co-design framework is proposed to
explore the most fitting algorithmic-hardware configurations for
Bayesian RNNs. We conduct extensive experiments on healthcare
applications to demonstrate the improvement of our design
and the effectiveness of our framework. Compared with GPU
implementation, our FPGA-based design can achieve up to 10
times speedup with nearly 106 times higher energy efficiency.
To the best of our knowledge, this is the first work targeting
acceleration of Bayesian RNNs on FPGAs.

Index Terms—Recurrent neural networks, Bayesian inference,
Field-programmable gate array, Hardware acceleration

I. INTRODUCTION

Recurrent neural networks (RNNs) have demonstrated their
successes in various sequencing modelling tasks [1]. Among
RNN variants [2], [3], Long Short-Term Memory (LSTM) has
become the most wide-spread cell due to its ability in utilizing
and remembering the past knowledge [3]. Although the regular
LSTM-based RNNs show excellent capability in time-series
modelling, they are not able to express their model-epistemic
uncertainty and they may overfit on small datapools [4].

To enable uncertainty estimation, overfitting prevention and
overall accuracy improvement, Bayesian LSTM-based RNNs
have been proposed [4], which learn distributions over their
weights instead of constant-pointwise values. Through re-
peated Monte Carlo (MC) sampling of the weights and cor-
responding multiple feedforward passes through the network,
the Bayesian model is able to express its prediction along
with both epistemic and aleatoric uncertainty [4]. Bayesian
RNNs were applied in contrasting applications, for example:
unemployment forecasting [5], fault detection [6], language
modelling [7] or medicine [8].

‡
Equal contribution.

§
Corresponding author.

0 50 100

°5

0

NLL: -29.04, L1: 24.97, RMSE: 0.33, Target: Normal

(a) (b)
0 50 100

°5.0

°2.5

0.0

2.5

NLL: 166.64, L1: 87.63, RMSE: 0.88, Target: Anomaly

Ground truth

Mean

Total uncertainty

Epistemic uncertainty

Fig. 1. Anomaly detection in a normal (a) and anomalous ECG case (b).
The Bayesian model can perfectly fit the normal case, while not being able
to replicate the anomalous case along with high uncertainty. The y-axis
represents zero mean and unit variance centered voltage. The x-axis represents
the timesteps with 140 timesteps in total. The fit is measured with respect
to negative log-likelihood (NLL), L1 and root-mean-squared error (RMSE).
Total uncertainty combines aleatoric and epistemic uncertainty. The predicted
uncertainty, as a shaded area, is shown as ± 3 standard deviations.

The deployment of Bayesian RNNs is especially useful
in medical applications where uncertainty estimation enables
users to better understand and interpret the model’s predic-
tions. A demonstration of this is shown in Figure 1 where the
Bayesian recurrent architecture is used to detect anomalies in
an electrocardiogram (ECG) through its reconstruction. In an
anomalous ECG on the right, the model is more uncertain in
its prediction in comparison to the normal case. Therefore, a
physician can be better guided in their investigations and di-
agnoses based on the modelled uncertainty, instead of looking
only at the reconstructed mean or the quantitative metrics.

However, the benefits of Bayesian RNNs come with real-
world execution burdens: the required MC sampling to obtain
the prediction as well as the model uncertainty degrade their
hardware performance, which limits their deployment in real-
life applications. For instance, a typical three-layer Bayesian
RNN with hidden size being 32 with 100 MC samples requires
10.46 seconds on an Intel Xeon CPU, which cannot meet the
requirements of real-world applications, e.g. with respect to
real-time ECG analysis [8] or fault detection [6].

Therefore, there is a demand for specific hardware accel-
erators for Bayesian RNNs. Nevertheless, there are several
challenges while accelerating Bayesian RNNs:
• Compute-intensive: To make a prediction, Bayesian RNN

might sequentially perform the feedforward pass through
the whole network S times, which significantly increases

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(IC

FP
T)

 |
 9

78
-1

-6
65

4-
20

10
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
FP

T5
28

63
.2

02
1.

96
09

84
7

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

the amount of required computation.
• Memory-intensive: Sampling the weight distributions S

times produces S different sets of weights, which multiplies
the memory requirement by S times compared with that of
pointwise non-Bayesian RNNs.

• Resource-intensive: As Bayesian RNN requires to imple-
ment both an RNN engine and random number generators,
it demands more resources than a pointwise alternative.
In this work we introduce several strategies to target these

challenges. The compute and memory demands are targeted by
our proposed pipelining scheme and efficient random number
generation that account for recurrence and data dependency
of Bayesian RNNs. Moreover, the structure and portion of
Bayesian layers in an RNN and the configuration of our
hardware design present a trade-off between algorithmic and
hardware performance. To provide efficient resource utiliza-
tion, we introduce a framework for design space exploration
(DSE) tailored to Bayesian RNNs and a configurable ac-
celerator. To the best of our knowledge, this is the first
field-programmable gate array (FPGA) based accelerator for
Bayesian LSTM-based RNN architectures using Monte Carlo
Dropout (MCD) [4]. In summary, our contributions include:
• A novel hardware architecture to accelerate Bayesian

LSTM-based recurrent neural networks inferred through
Monte Carlo Dropout, which achieves low latency and high
energy efficiency (Section III).

• An automatic framework for exploring the algorithmic-
hardware performance trade-off under users’ requirements
e.g. with respect to uncertainty estimation while targeting
Bayesian recurrent architectures (Section IV).

• A comprehensive evaluation of algorithmic and hardware
performance with respect to real-time ECG anomaly detec-
tion and classification with respect to different LSTM-based
recurrent architectures (Section V).

II. PRELIMINARIES AND RELATED WORK

In this section we review recurrent neural networks,
Bayesian inference and related hardware accelerators.

A. Recurrent Neural Networks
RNNs were demonstrated to achieve outstanding perfor-

mance in a number of tasks where understanding time-related
relationships was crucial [3], [9], [10]. In particular, LSTM [3]
was proven to be effective in capturing long-term dependencies
through recurrent processing and storing of useful informa-
tion. Therefore, this work focuses on accelerating recurrent
architectures built around LSTMs. LSTM operation can be
described by the following equations:

it = σ(W i
xx

i
t +W i

hh
i
t−1 + bi) ct = f t � ct−1 + it � gt

f t = σ(W f
xx

f
t +W f

hh
f
t−1 + bf) ht = ot � tanh(ct)

gt = tanh(W g
xx

g
t +W g

hh
g
t−1 + bg)

ot = σ(W o
xx

o
t +W o

hh
o
t−1 + bo)

The σ, tanh, � represent element-wise sigmoid, tanh
and multiplication operations. W = {W i

x,W
f
x,W

g
x,W

o
x,

W i
h,W

f
h,W

g
h,W

o
h} and b = {bi, bf , bg, bo} represent the

learnable weights and biases. xt,ht−1, ct−1 denote the input

xt ∈ RI with I features, hidden state ht−1 ∈ RH with H
features and the cell state ct−1 ∈ RH with H features at the
current time step t or t − 1, the previous time step out of
total time steps T . Note that, h0, c0 are initialized as zeroes.
The intermediate outputs it,f t, gt,ot ∈ RH are the input,
forget, modulation and output gates respectively. Note that we
replicate the input xt and the hidden state ht−1 such that:

xi
t,x

f
t ,x

g
t ,x

o
t = xt

hi
t−1,h

f
t−1,h

g
t−1,h

o
t−1 = ht−1

The decoupling of the input and the hidden state for each
weight or gate is crucial for performing Bayesian inference [4].

B. Bayesian Inference

MCD in RNNs lays in casting dropout [11] as Bayesian
inference with two major differences [4]. First, the dropout
is enabled during training as well as evaluation. Second, the
dropout mask z ∼ Bernoulli(1 − p); z = {zi

x, z
f
x, z

g
x, z

o
x ∈

RI ; zi
h, z

f
h, z

g
h, z

o
h ∈ RH}, with the same dimensionality

as one time step of the input or the hidden state, is sam-
pled only once for all time steps T and individually for
all xi

t,x
f
t ,x

g
t ,x

o
t and hi

t−1,h
f
t−1,h

g
t−1,h

o
t−1, such that for

example xi
t = xi

t � zi
x or hi

t−1 = hi
t−1 � zi

h. Probability
p ∈ [0, 1] of sampling 0 practically represents the trade-off
between accuracy and calibration of the architecture. Dropout
can be applied to only input, only the hidden states or both and
it does not need to be applied to every cell in an architecture,
which results in a partially Bayesian architecture [12]. From
the hardware perspective, such architectures represent a trade-
off between algorithmic and hardware performance [13]. The
prediction in Bayesian architectures is obtained by running
the same input through the RNN S times, each time with
a different set of sampled masks z for each layer i where
MCD is applied. The collected outputs from the individual
passes are then averaged to form a prediction. The S samples
increase the compute and number of memory accesses linearly
with complexity O(S). Bayesian RNNs have been used in
time-series forecasting and classification [5], [8], where they
demonstrated fine algorithmic performance.

C. Hardware Accelerators

Due to high computational, low-latency and reconfigurabil-
ity demands, custom hardware accelerators for NNs represent a
viable implementation platform. Especially FPGAs present an
energy-efficient, configurable and high-performance hardware
technology for accelerating NN architectures [14].

There has been ample work on FPGA-based implementa-
tions of persistent LSTMs whose weights are stored in on-
chip memory [15]–[19]. For example, FINN-L [15] quantizes
the RNN into 1-8 bits which surpasses a single-precision
floating-point accuracy for a given dataset. Other studies on
LSTM implementations store weights in the off-chip memory
considering an FPGA, which was identified as a performance
bottleneck [2], [20]–[22]. In addition, LSTM weights’ reuse
methods [21], [22] between various timestep were proposed to
reduce the off-chip memory accesses to decrease the energy

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

σ +

Ct-1
Ct

ht

tanh

σ

σ

tanh

MVM

MVM MVM

MVM

MVM

MVM MVM

MVM

xt

ht-1

D
X

D
X

Bernoulli
sampler

⊙

⊙

⊙

Fig. 2. Overview of the hardware implementation of the Bayesian LSTM.

cost and improve the overall system’s throughput. Some of the
previous studies [1], [23]–[25] focused on weight pruning and
model compression to reduce the size of weights to achieve
favorable hardware performance. In [26], BLINK was proposed
which utilized bit-sparse data representation for the LSTM
runtime. It improved the energy efficiency of the LSTM by
turning the multiplication into a bit shift operation without
impairing its accuracy. However, none of these FPGA-based
RNN designs target Bayesian RNNs.

At the same time, several hardware accelerators have been
proposed to accelerate Bayesian NNs (BNNs) [13], [27]–[29].
However, these designs only focus on accelerating feedforward
BNNs. Cai et al. [28] proposed a hardware design called
VIBNN to accelerate BNNs consisting only of dense layers.
Their accelerator consumes a large amount of resources while
implementing Gaussian random number generators. Awano
& Hashimoto [29] proposed BYNQNet to accelerate BNNs,
which achieves 4.07 and 8.99 times higher throughput and
energy efficiency than VIBNN. However, the design puts
strict restrictions on the used nonlinear activation functions
and thus limiting real-world applicability. By exploiting the
activation sparsity in BNNs, [30] proposed a novel hardware
architecture called Fast-BCNN. Nevertheless, the design can
only be used to accelerate Bayesian convolutional NNs (BC-
NNs) with ReLU [31]. Fan et. al [13] proposed an FPGA-
based accelerator for BCNNs inferred through MCD [4]. The
design achieves nearly 10 times higher compute efficiency
than BYNQNet. None of the previously mentioned accelerators
for BNNs target RNNs, and thus, they do not consider the
recurrence or inherent data dependency in RNNs.

In comparison to previous work, this paper focuses on
accelerating Bayesian RNNs. To the best of our knowledge,
this is the first work to accelerate Bayesian RNNs on an FPGA.

III. HARDWARE DESIGN

In this section we outline the proposed pipelined accelerator
and an efficient random number generation for MCD-based
BNNs and the target recurrent architectures.

A. Design Overview

This work adopts a streaming design [20], [32], [33] where
all individual layers are mapped on-chip and different layers
run in a pipelined fashion to achieve low latency. Unrolling
the overall architecture in this way results in a more efficient

R102

R121

R127

R0

SIPO

FIFO...…

I/H-bit

4-tap
128-bit
LFSR

4-tap 128-bit LFSR

4-tap
128-bit
LFSR

Extra
Logic

1-bit

Fig. 3. Hardware architecture of the implemented Bernoulli sampler.

utilization of resources, with a 1-to-1 ratio of DSP blocks
to compute units. Besides, this design adopts the initiation
interval (II) balancing for multiple LSTM layers to achieve
low latency and high hardware efficiency.

An overview of the proposed hardware design of a single
LSTM layer is illustrated in Figure 2. The input and output
data are transferred using DMA via an AXI bus. The input xt

and hidden state ht−1 are masked by the output of Bernoulli
samplers and then fed to the LSTM gates. The masking
along with the decomposition, as discussed in Section II-A,
is performed by demultiplexor units (DX) that control which
individual features get passed forward. There are four gates at
the front of the LSTM layer, each containing a matrix-vector
multiplication (MVM) unit. The element-wise operations and
activation functions: sigmoid, tanh, addition and multiplication
are performed on the output of the MVMs, previously factor-
ing in the weights W i and biases bi of that given LSTM i. At
the end of the layer, the current cell state ct and hidden state ht

are produced. The ht is required in the LSTM gates in the next
time step iteration; it shows the existence of data dependencies
which are not in forward-only NNs. The activation functions
are implemented using BRAM-based lookup tables with a
range of precomputed input values. The weights and biases are
mapped on-chip automatically into registers when the design
is synthesized. Hence, weight sampling is avoided along with
additional memory traffic by introducing routing through DXs,
enabling complete on-chip computation and elimination of the
memory challenge in Section I. A similar design logic as
presented here can be used for other recurrent units such as
the gated recurrent unit [34].

B. Bernoulli Sampler and Design Pipelining

As MCD randomly sets inputs as zeros during runtime, it
requires the hardware to generate random 1s and 0s. To achieve
this goal, we design a Bernoulli sampler in hardware as
illustrated in Figure 3. The 4-tap linear feedback shift register
(LFSR) is the basic module in our Bernoulli sampler, which
generates random binary values with a probability of p=0.5.
To generate random binaries with user-defined probability,
there are Nlfsr LFSRs followed by an extra logic block.
For instance, to generate zeros with a probability p=0.125,
it requires Nlfsr=3 with an extra three-input NAND gate as
the extra logic. In this paper, to save the hardware resources,
we set Nlfsr=3 and we set the dropout probability uniformly

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

Sampling Layer 1
– Sample 1

Bayesian Layer 1, Sample 1

Bernoulli
Sampler 1 and

Engine 1

T Time steps

Sampling Layer 2
– Sample 1 Bayesian Layer 2, Sample 1

Bernoulli
Sampler 2 and

Engine 2

Sample 1 Sample 2

Sampling Layer 1
– Sample 2

………..

………..

Fig. 4. Overlapping the computation with Bernoulli sampling.

2 3 4

1 2 3 4

1 2 3 4

TS
1

Fig. 5. Three cascaded LSTM layers with time step (TS) pipelining.

to p=0.125, as advised by [8], for both the inputs x as well as
hidden states h. Since all the generated random binary values
need to be outputted in parallel, a serial-in-parallel-out (SIPO)
module is placed after LFSRs followed by a first-in-first-out
(FIFO) module. If the given layer is not Bayesian, both DX
and Bernoulli sampler are not needed.

To further improve the hardware performance, we propose
to overlap the Bernoulli sampling with the computation of
LSTMs, which is illustrated in Figure 4. As the Bernoulli
sampling does not rely on the inputs, it can be performed
before the start of all time steps T for a single LSTM.
However, generating random binaries for all engines and
inputs and hidden states will cost a large amount of on-
chip memory. Therefore, all the Bernoulli samplers in our
design only pre-sample random binaries required by a single
input. This overlapping approach can hide the time cost of
Bernoulli sampling into the computation, and at the same
time, decrease the on-chip memory consumption. In addition
to the sample-wise pipelining, we also introduce the pipelining
over each time step to further increase parallelism, as shown
in Figure 5. Note that while the illustrated example shows
3 cascaded LSTM layers with 4 time steps, the real design
may involve more layers and more time steps. By leveraging
the combination of sample-wise pipelining and time step
pipelining, our design provides a fundamental solution to the
Bayesian RNNs that demand repeated MC sampling, targeting
the compute-intensive challenge mentioned in Section I.

C. Recurrent Autoencoder and Classifier

Figure 6 (a) demonstrates the hardware architecture of the
recurrent autoencoder that is used for anomaly detection [9],
[10] in our experiments. It consists of two parts: a pipelined en-
coder and a pipelined decoder, each balanced with NL LSTM

L
S

T
M

L
S

T
M

R
e

p
e

a
t

L
S

T
M

L
S

T
M

Encoder Decoder

T
e

m
p

o
ra

l

D
e

n
s
e

In
p
u
t

R
e

c
o

n
s
tr

u
c
ti
o
n

L
S

T
M

L
S

T
M

D
e

n
s
e

In
p
u
t

C
la

s
s
if
ic

a
ti
o

n

(a) (b)

Fig. 6. Recurrent autoencoder (a) and classifier (b) architectures each with
NL=2 LSTMs in their respective parts.

instances giving in total 2NL layers. Given the unrolling,
the hardware resource consumption scales with the total layer
count. Encoder processes the time-series input x ∈ RT×I into
a bottleneck encoding containing only the last hidden state
hT ∈ RH/2 of the last LSTM in the encoder. The last hidden
state in the decoder has a reduced dimensionality RH/2 in
order to learn to convey only the most relevant information
to the decoder [35]. The encoding is repeated T times which
can be effectively achieved by caching it for exactly T time
steps. The decoder transforms the repeated embedding time
step by time step into output h ∈ RT×H . h is then processed
further by a temporal dense layer, where the same dense
layer processes each output in the sequence to give the final
reconstruction of the input, again in a pipelined fashion. A
dense layer is simply implemented as a single MVM unit.
The architecture aims to learn a useful embedding which
captures the essence of the input signal and allows its efficient
reconstruction. Based on the quality of the reconstruction the
input is labelled as normal or anomalous.

The hardware model for classification can be built in a
similar fashion, by considering only the encoder part of the
architecture as shown in Figure 6 (b) with NL layers. The
last hidden state hT ∈ RH of the encoder is not repeated but
processed through a dense layer that reshapes it to the number
of output classes and processes it through a softmax activation.
Hence the classifier is fully pipelined. Given an input signal,
the encoder captures variable-size input relationships into a
consistent output embedding that is used for classification,
given that the input is labelled. The hidden size H , number of
layers NL, the portion of Bayesian LSTMs B or the hardware
configuration can vary as we discuss in the optimization
framework.

IV. OPTIMIZATION FRAMEWORK

In this section, we first present an overview of the proposed
optimization framework. Then, the resource and latency mod-
els are introduced, which are used to accelerate the DSE.

A. Overview of Framework

An overview of the proposed framework is shown in Fig-
ure 7. Given user-defined priorities in terms of the target metric
and the platform-specific hardware constraints, it is necessary
to optimize both the algorithmic and hardware configuration
of the RNN as well as the accelerator. Therefore, we propose
an optimization framework to perform DSE under both user-
defined algorithmic and hardware constraints. In our design,

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

ConfigurationHardware
Optimization

Hardware
Constrains

Resource
and Latency

Models

Algorithm
Optimization

Metric
Requirements;

Mode
Selection

Algorithmic
Performance
Lookup table

Hardware-specific
Inputs

User-specific
Inputs

Quantization

Algorithm-
specific
Inputs

Fig. 7. Overview of the optimization framework.

the performance trade-off is decided by two categories of
parameters: 1) Algorithmic architectural parameters, which
include the overall network architecture A: the hidden size
H , the number of layers NL for encoder or decoder and the
portion of Bayesian layers B and 2) Hardware parameters
R: which consist of reuse factors Rx, Rh, Rd of processing
engines. The objective of our framework is to optimize the
latency and algorithmic metrics such as accuracy and quality
of uncertainty prediction by exploring both A and B to target
all three challenges mentioned in Section I.

At the start, the framework requires users to specify the
hardware constraints, metric requirements and the focus mode.
The main hardware constraint is the number of available
DSPs on the target hardware platform. The optimization mode
is selected to minimize or maximize the chosen objective
through greedy optimization with respect to algorithmic and
hardware configurations. At first, the algorithmic optimization
is conducted with respect to a previously built lookup table
consisting of algorithm-benchmarked architectures. Following
algorithm optimization and potential re-training, the networks
are quantized depending on hardware constraints. In this
work we consider 16-bit fixed-point quantization. Next, the
parameters R of a hardware configuration are optimized with
respect to a hardware model. The hardware model is used
to estimate the resource consumption or latency given the
available configurations. Based on the determined hardware
parameters, the latency is estimated given a performance
lookup table for various BNN configurations with different A.
At the end, the configurations which do not meet the minimal
requirements are filtered resulting in a final configuration.

B. Resource Model

In this paper, we mainly consider the resource consumption
in terms of DSPs as DSPdesign, which represent the resource
bottleneck, while being limited by the total available DSPs
as DSPtotal. The number of DSPs for a given LSTM layer
DSPi and the complete design using 16-bit representation,
except cit−1 which is represented in 32-bit, is shown as:

DSPi =
4× Ii ×Hi

Rx
+

4×H2
i

Rh
+ 4×Hi

DSPdesign =

L∑
i=1

DSPi +DSPd ≤ DSPtotal

Ii, Hi and O represent the input, hidden state and output di-
mensionality for layer i. L is 2NL if considering autoencoder
or NL if considering the classifier. The factor of 4 means there
are 4 MVMs for input and 4 for the hidden state in a single
LSTM layer. The f t×ct−1 in the LSTM tail needs two Xilinx
DSPs to construct one multiplier unit, thus the LSTM tail unit
consumes 4×Hi DSPs. The DSPd is the DSP consumption
for the final dense layer which equals HL×O×T

Rd
if considering

autoencoder or HL×O
Rd

if considering the classifier. The Rx, Rh

and Rd represent the reuse factors for the MVMs processing
the input, hidden state or the final dense layer respectively.
T is the time step or sequence length. In the design space
exploration, additional 5% of the DSPtotal was added since
we found that the HLS tool often optimizes the DSP usage
by replacing the multipliers using other simpler logic when
possible.

The trade-off between latency, throughput and FPGA re-
source usage is determined by the parallelism of the calcula-
tion. This work adopts the reuse factor used in [32] to fine tune
the parallelism, which is configured to set the number of times
a multiplier is used in the computation of a module. With a
reuse factor of R, 1

R fewer multipliers and computation are
performed. With a higher reuse factor, the DSP resource usage
can be reduced, however, the latency of processing MVMs will
increase. The reuse factors should be carefully chosen so that
the design can fit into the targeted FPGA chip while keeping
the latency as small as possible.

C. Latency Model

The individual layer latency Lati and end-to-end latency
Latdesign, which is dominated solely by the recurrent cells,
are modeled as:

II = max
i=1,...,L

IIi Lati = II × T + (ILi − II)
Latdesign = II × T + (ILi − II)×NL

where II is the initiation interval of the single time step loop,
T is the time sequence length, ILi is the iteration latency. The
II is the number of clock cycles before a unit can accept new
inputs and is generally the most critical performance metric
in many systems [36]. In the proposed pipelined design, the
processing of the cascaded LSTM layers can be overlapped.
For example, the second layer i=2 does not need to wait for the
whole sequence of hidden states to begin computation. Just a
single hidden state from the former LSTM layer is sufficient
for the computation in the next LSTM layer. Furthermore,
since the II of a model is decided by the largest individual
layer i, the II of the cascaded layers is set to be the same
to achieve the best hardware resource efficiency. Thus, the
total latency of a design with NL cascaded LSTM layers is
given as Latdesign. It has to be noted that the decoder in the
autoencoder can only be started after the encoder calculation
is completed, since only the last time step hidden state is
returned in the last layer of the encoder. Thus, the latency
of an autoencoder with 2NL LSTM layers, NL for encoder
and NL for decoder, is simply Latdesign × 2.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

As shown in the equations above, the Latdesign is dom-
inated by the II when T is fixed. This work achieves the
optimal II via identifying the proper reuse factors under the
hardware resource limitations, as shown in Section IV-B to
achieve the lowest II and end-to-end latency.

V. EXPERIMENTS

In this section we first review the general experimental
setup followed by algorithmic DSE and hardware performance
comparison with respect to different hardware platforms.

The experiments were performed on ECG5000 dataset [37],
that contains 5000 samples split into a training set of only 500
samples and a test set of 4500 samples. By default, the dataset
has 4 classes: 1 normal and 3 anomalous. Each ECG has
T=140 and it was preprocessed such that each sample was zero
mean and unit variance centered. It is a challenging dataset
mainly due to its small size and class imbalance, which can
be associated with anomaly detection or classification tasks.
For both tasks we trained various recurrent architectures with
respect to 1000 epochs, batch size 64, gradient clipping set as
3.0 and weight decay set as 0.0001 to provide regularization.

Next, we present the algorithmic DSE that represents an
algorithmic optimization and population of the lookup table
in the proposed framework. It is followed by a hardware
optimization and performance comparison. Arrows in Tables
and Figures symbolize desired trends and bold values represent
the best score.

A. Algorithmic Optimization
1) Anomaly Detection: For anomaly detection, we split

the data into normal and anomalous samples. We appended
anomalous cases from the train set to the test set and we
trained the autoencoder from Section III-C only with respect to
normal data to be able to recreate it. We measured the wellness
of the fit with respect to root-mean squared error. Based on the
fit, we analyzed the models with respect to receiver operating
characteristic and the respective area under the curve (AUC),
average precision (AP) and accuracy (ACC) at the cutoff point
that maximizes true positive rate against false positive rate
in detecting anomalies. We considered autoencoders with A:
H={8, 16, 24, 32} and NL={1, 2} LSTMs in encoder and
decoder with dropout B benchmarked at every position and
combination.

The results with respect to the DSE in floating-point and
S=30 are shown in Figure 8. It can be seen that the Pareto
optimal architectures were at least partially Bayesian. The
best model was with H=16, NL=2 layers in encoder or
decoder and dropout applied both in the encoder and de-
coder B=YNYN. Y/N stands for MCD enabled or disabled
respectively for that layer. The model achieved fine algorithmic
performance with AUC, AP and ACC all approaching 1.

2) Classification: For classification we evaluated the mod-
els trained on all four classes with respect to ACC, macro
AP and average recall (AR), since the dataset is severely
unbalanced. Additionally, we considered uncertainty estima-
tion qualities with respect to sequences of random Gaus-
sian noise for which we measured the predictive entropy

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate [↓]

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e
[↑

]

H: 16, NL: 2, B: YNYN, AUC=0.987, ACC=0.961, AP=0.979

H: 16, NL: 1, B: YN, AUC=0.967, ACC=0.957, AP=0.912

H: 32, NL: 2, B: YYNN, AUC=0.985, ACC=0.951, AP=0.976

Pointwise

Bayesian

Optimal cutoff

Fig. 8. Receiver operating characteristic on the ECG test set with respect
to Bayesian and pointwise (without any Bayesian layers) autoencoders in
anomaly detection. H is hidden size, NL is number of layers in encoder or
decoder, B symbolizes Bayesian in the given layer enabled (Y) or disabled (N).
AUC is area under the curve, ACC is accuracy and AP is average precision.

Average Precision (AP) ["]
0.58 0.60 0.62 0.64 0.66 0.68 Average

Recall (AR) ["]
0.60

0.62
0.65

0.67

A
cc

u
ra

cy
(A

C
C
)

["
]

0.88
0.89
0.90
0.91
0.92

H: 8, L: 3, B: YNY, AP=0.688, AR=0.643, ACC=0.922, Entropy=0.295

H: 32, L: 3, B: NYY, AP=0.630, AR=0.635, ACC=0.907, Entropy=0.575

H: 16, L: 1, B: Y, AP=0.651, AR=0.673, ACC=0.913, Entropy=0.102

Pointwise

Bayesian

Pareto optimal

0.1 0.2 0.3 0.4 0.5

Entropy [nats, "]

Average Precision (AP) ["]
0.58 0.60 0.62 0.64 0.66 0.68 Average

Recall (AR) ["]
0.60

0.62
0.65

0.67

A
cc

ur
ac

y
(A

C
C
)

["
]

0.88
0.89
0.90
0.91
0.92

H: 8, NL: 3, B: YNY, AP=0.688, AR=0.643, ACC=0.922, Entropy=0.295

H: 8, NL: 3, B: NYN, AP=0.668, AR=0.666, ACC=0.926, Entropy=0.135

H: 8, NL: 3, B: YNN, AP=0.594, AR=0.640, ACC=0.889, Entropy=0.595

Pointwise

Bayesian

Pareto optimal

0.1 0.2 0.3 0.4 0.5

Entropy [nats, "]

Average Precision (AP) ["]
0.58 0.60 0.62 0.64 0.66 0.68 Average

Recall (AR) ["]
0.60

0.62
0.65

0.67

A
cc

u
ra

cy
(A

C
C
)

["
]

0.88
0.89
0.90
0.91
0.92

H: 8, NL: 3, B: YNY, AP=0.688, AR=0.643, ACC=0.922, Entropy=0.295

H: 8, NL: 3, B: NYN, AP=0.668, AR=0.666, ACC=0.926, Entropy=0.135

H: 8, NL: 3, B: YNN, AP=0.594, AR=0.640, ACC=0.889, Entropy=0.595

Pointwise

Bayesian

Pareto optimal

0.1 0.2 0.3 0.4 0.5

Entropy [nats, "]

Fig. 9. Classification performance on the ECG test set with respect to
Bayesian and pointwise (without any Bayesian layers) recurrent nets. H is
hidden size, NL is number of layers, B symbolizes Bayesian in the given
layer enabled (Y) or disabled (N).

in nats. We considered classifiers as per Section III-C with
A: H={8, 16, 32, 64} and NL={1, 2, 3} LSTMs in the en-
coder with dropout B benchmarked at every position and
combination. Figure 9 summarizes the performance of the
considered architectures while running in floating-point and
S=30. Similarly to anomaly detection, the best performing
architectures were again at least partially Bayesian. In this
case the optimal architecture was identified with H=8, NL=3
layers overall with dropout applied such that B=YNY. The
model achieved high accuracy and precision.

3) Sampling: As discussed in Section II-B, the software
performance of Bayesian architectures depends on the number
of feedforward samples S that also affects the overall runtime.
Figures 10 (a,b) demonstrate the relationship between the soft-
ware metrics for both anomaly detection (a) and classification
(b) with respect to the best architectures for each task. It can
be seen that an S larger than 30 results in diminishing returns.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

1510 20 30 50 100
Samples

0.974

0.976

A
re

a
U

nd
er

C
ur

ve
(A

U
C
)

["
]

1510 20 30 50 100
Samples

0.920

0.922

A
cc

ur
ac

y
(A

C
C
)

["
]

Fig. 10. Software performance change for anomaly detection (a) and
classification (b) with increasing number of samples S from 1, 30 to 100
samples.

TABLE I
COMPARISON OF FLOATING-POINT AND QUANTIZED BEST MODEL FOR

ANOMALY DETECTION.

Representation
Precision Accuracy [↑] Average

Precision [↑] Area under
Curve [↑]

Floating-point 0.95± 0.01 0.96± 0.02 0.98± 0.01

Fixed-point 0.95± 0.01 0.97± 0.01 0.98± 0.01

B. Quantization

The next step given the outlined framework in Section IV
is quantization. In Tables I and II the performance of the
best floating-point models for both anomaly detection and
classification is compared with respect to the 16-bit fixed-
point quantization when S=30. The results were collected
with respect to retraining the best architectures three times
to obtain the mean and the standard deviation for comparison.
The results demonstrate that the chosen fixed-point quantiza-
tion scheme and configuration preserves high accuracy and
uncertainty estimation, seen in entropy, of both best models.

Next we discuss the hardware optimization and performance
comparison with respect to different hardware platforms.

C. Performance Comparison with GPU and CPU

We implemented the proposed design from Section III on
Xilinx ZC706, which consists of a XC7Z045 FPGA and a dual
ARM Cortex-A9 processor. 1 GB DDR3 RAM is installed
on the platform as the off-chip memory. The Xilinx Vivado
HLS 2019.2 tool was used for synthesis. The FPGA power
is reported by the Xilinx Vivado tool. The design frequency
was 100MHz. The reuse factors were determined through the
optimization framework and set as Rx=16 and Rh=5 when
H=16 and Rx=12 and Rh=1 when H=8 given the FPGA. The
Rd is set to Rx for autoencoder and is set to 1 for classifier
to achieve low latency.

Table III shows the resource utilization for the designs of the
optimal architectures for anomaly detection and classification
on the FPGA. It can be seen that both Bayesian RNN models
can fit the FPGA and almost all of the FPGA’s DSPs or
LUTs were utilized with 758 and 898 DSPs used for anomaly
detection or classification architectures. At the same time,
the estimated DSP consumption for these architectures with
the model presented in Section IV-B were 754 and 915 re-

TABLE II
COMPARISON OF FLOATING-POINT AND QUANTIZED BEST MODEL FOR

CLASSIFICATION.

Representation
Precision Accuracy [↑] Average

Precision [↑] Average
Recall [↑] Entropy

[nats,↑]

Floating-point 0.92± 0.0 0.68± 0.01 0.65± 0.01 0.36± 0.14

Fixed-point 0.92± 0.0 0.68± 0.01 0.65± 0.02 0.38± 0.11

spectively, demonstrating fine accuracy of the resource model,
which is more than 98% accurate.

To demonstrate the advantage of our FPGA-based accel-
erator compared with CPU and GPU implementations, we
evaluated the best RNN models found in anomaly detection
and classification tasks on the FPGA, a TITAN X Pascal
with 3,840 CUDA cores clocked at 1.4 GHz and an Intel
Xeon E5-2680 v2 CPU with 8 CPU cores clocked at 2.4
GHz with respect to latency, power consumption and energy
consumption per sample. We measured the power of the CPU
using a power meter. The power of GPU was reported by
an Nvidia toolkit. PyTorch 1.8 [38] is used for both CPU
and GPU implementations. The random number generation
for CPU and GPU implementations is performed via default
PyTorch calls and default pseudo-random number generators
for each platform. To optimize the hardware performance
on each platform, we use TensorRT and CuDNN 8.11 li-
braries for the GPU implementation, and MKLDNN for the
CPU implementation. The number of samples was set to be
S = 30 as indicated by Section V-A. As GPUs always
show advantages in multi-batch workload, we set the batch
size to be 50 and 200 on all hardware platforms for a fair
comparison. This batch size is realistic in our application,
considering for example multiple patients. The results are
presented in Table IV. Compared with GPU implementation,
our FPGA-based design was nearly 2∼8 times faster and
consumed 20∼26 times less power. In terms of the energy
consumption, which was measured by energy per sample, our
design was nearly 106 times more efficient than the GPU
implementation. Comparing with the CPU implementation,
our FPGA-based accelerator achieved approximately 100∼400
times higher energy efficiency. FPGA implementations are
faster and more efficient because they are unrolled on-chip
with respect to our tailor-made design. The FPGA design

TABLE III
RESOURCE UTILIZATION FOR THE BEST ARCHITECTURES.

Task LUT FF BRAM DSP

Available 219k 437k 545 900

Anomaly
H=16, NL=2, B=YNYN

Used [↓] 207k 218k 149 758

Utilized [%, ↓] 94 49 13 84

Classification
H=8, NL=3, B=YNY

Used [↓] 62k 52k 64 898

Utilized [%, ↓] 28 11 5 99.8

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
HARDWARE COMPARISON BETWEEN FPGA, CPU AND GPU IMPLEMENTATIONS.

Task Batch Latency [ms, ↓] Power [W, ↓] Energy Consumption [J/Sample, ↓]

Size FPGA CPU GPU FPGA CPU GPU FPGA CPU GPU

Anomaly
H=16, NL=2,
B=YNYN

50 41.31 4011 379.81 3.44 15 69 0.005 2.01 0.53

200 165.24 5964 402.76 0.019 2.98 0.56

Classification
H=8, NL=3,

B=YNY

50 25.23 3690 245.14 2.47 16 65 0.002 1.97 0.36

200 100.92 4981 256.98 0.008 2.66 0.38

TABLE V
OPTIMIZATION FOR ANOMALY DETECTION.

Mode A :
{H,NL,B}

Latency [ms, ↓] Accuracy [↑] Average
Precision [↑] Area

under Curve [↑]
FPGA CPU GPU

Opt-Latency 8, 1, NN 6.94 133.45 10.57 0.93 0.87 0.95

Opt-Accuracy / Precision
/ Area under Curve 16, 2, YNYN 165.24 5485 250.27 0.96 0.98 0.99

TABLE VI
OPTIMIZATION FOR CLASSIFICATION.

Mode A :
{H,NL,B}

Latency [ms, ↓] Accuracy [↑] Average
Precision [↑] Average

Recall [↑] Entropy [nats, ↑]
FPGA CPU GPU

Opt-Latency 8, 1, N 3.44 120.52 6.49 0.90 0.62 0.66 0.15

Opt-Accuracy 8, 3, NYN 100.92 4799 193.10 0.93 0.67 0.67 0.14

Opt-Precision 8, 3, YNY 100.92 4789 182.59 0.92 0.69 0.64 0.30

Opt-Recall 8, 2, YN 100.91 3176 123.59 0.91 0.64 0.67 0.20

Opt-Entropy 8, 3, YNN 100.92 4795 191.64 0.89 0.59 0.64 0.60

processes the input with batch size 1, since requests need to
be processed as soon as they arrive.

Lastly, based on the latency model in Section IV-C, the
estimated latencies of the two architectures with 50 batches
were 42.25ms and 25.77ms respectively. Hence, the analytical
prediction errors were only 2.26% and 2.13% respectively,
confirming the accuracy of the latency model.

D. Optimization Framework Efficiency

To demonstrate the effectiveness of our framework on find-
ing optimized designs under different user-defined priorities,
we evaluated the proposed framework with respect to both
anomaly detection and classification on the ECG5000 dataset.

For the anomaly detection, since it is primarily a regression
task, we set the optimization modes as Opt-Latency, Opt-
Accuracy, Opt-Precision and Opt-AUC. If users wish to only
optimize hardware performance, they would pick the config-
uration with the optimal latency. However, if users wish to
obtain a model with minimized errors, they would maximize
the accuracy. If users wish to maximize the true positive
rate and minimize the false positive rate, or in general to
obtain model that has high precision on a range of thresholds,
they would pick the model with the highest AUC or AP
respectively. The results are presented in Table V. Surprisingly,

we found that Opt-Accuracy, Opt-Precision and Opt-AUC
generated the same model with H=16, NL=2 and MCD
applied in the first and third layers. While the Opt-Latency
simply traded-off the algorithmic performance for the smallest
hidden size, NL=1 with no MCD using S=1 to achieve the
lowest latency. As we can see from Table V, our FPGA-based
design was still 1.4∼33.2 times faster than both CPU and GPU
implementations depending on different model architectures.

For the classification task, there can be up to five op-
timization modes, namely Opt-Latency, Opt-Accuracy, Opt-
Precision, Opt-Recall and Opt-Entropy. In addition to the
modes presented in the previous paragraph, if the users wish to
minimize false negatives, e.g. diagnosing a normal condition
in an anomalous ECG, they would pick the model with the
highest recall. If the model has to support high uncertainty
containing outlier ECG signal values, the user could pick the
model with the highest entropy. Different optimization modes
generated different model architectures as shown in Table VI.
The highest accuracy we can achieve was 93%. Similarly, with
the help of our framework, we achieved 0.68 AP, 0.67 AR and
0.60 nats entropy under different optimization modes with the
speedup ranging from 1.2 to 1.9 compared to GPU imple-
mentations. Again, the Opt-Latency traded-off the algorithmic
performance for the smallest hidden size, non-Bayesian archi-

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

tecture with NL=1 and S=1 to target the improvement in the
hardware performance. Note that, although the models with
NL=3 or NL=2 LSTM layers in Table VI achieve similar
latency as discussed in Section IV-C due to pipelining, their
resource and energy consumption are different.

VI. CONCLUSION

This work proposes a novel high-performance FPGA-based
design to accelerate Bayesian LSTM-based recurrent neural
networks inferred through Monte Carlo Dropout. The pre-
sented design is sufficiently versatile to support a variety of
network models with respect to different safety-critical tasks
concerning real-time performance on analyzing electrocardio-
grams. In comparison to the GPU implementation, our FPGA-
based design can achieve up to 10 times speedup with nearly
106 times higher energy efficiency. At the same time, this
is the first work that is focused on accelerating Bayesian
recurrent neural networks on an FPGA. Moreover, this work
presents an end-to-end framework to automatically trade-off
both algorithmic and hardware performance, given algorithmic
requirements and hardware constraints. In future work we aim
to explore co-design of custom recurrent cells and reconfig-
urable hardware accelerators, to obtain the most optimized
configurations and hardware implementations. Additionally,
we are interested in supporting a wide variety of dropout rates
in hardware.

ACKNOWLEDGMENT

This work was supported in part by the United Kingdom EP-
SRC under Grant EP/L016796/1, Grant EP/N031768/1, Grant
EP/P010040/1, Grant EP/V028251/1 and Grant EP/S030069/1
and in part by the funds from Corerain, Maxeler, Intel, Xilinx
and State key lab of Space-Ground Integrated Information
Technology (SGIIT). Martin Ferianc was sponsored through
a scholarship from the Institute of Communications and Con-
nected Systems at UCL. We also thank the reviewers for
insightful comments and suggestions.

REFERENCES

[1] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ACM, 2017, pp. 75–
84.

[2] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neu-
ral networks hardware implementation on FPGA,” arXiv preprint
arXiv:1511.05552, 2015.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” Advances in Neural Information
Processing Systems, vol. 29, pp. 1019–1027, 2016.

[5] P. L. McDermott and C. K. Wikle, “Bayesian recurrent neural network
models for forecasting and quantifying uncertainty in spatial-temporal
data,” Entropy, vol. 21, no. 2, p. 184, 2019.

[6] W. Sun, A. R. Paiva, P. Xu, A. Sundaram, and R. D. Braatz, “Fault
detection and identification using bayesian recurrent neural networks,”
Computers & Chemical Engineering, vol. 141, p. 106 991, 2020.

[7] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” arXiv preprint arXiv:1704.02798, 2017.

[8] J. van der Westhuizen and J. Lasenby, “Bayesian LSTMs in medicine,”
arXiv preprint arXiv:1706.01242, 2017.

[9] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised
learning of video representations using LSTMs,” in International
Conference on Machine Learning, PMLR, 2015, pp. 843–852.

[10] B. Hou, J. Yang, P. Wang, and R. Yan, “LSTM-based auto-encoder
model for ECG arrhythmias classification,” IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 4, pp. 1232–1240,
2019.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[12] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” arXiv preprint arXiv:1511.02680, 2015.

[13] H. Fan, M. Ferianc, M. Rodrigues, H. Zhou, X. Niu, and W. Luk, High-
performance FPGA-based accelerator for Bayesian neural networks,
2021. arXiv: 2105.09163.

[14] S. Mittal, “A survey of FPGA-based accelerators for convolutional
neural networks,” Neural Computing and Applications, vol. 32, no. 4,
pp. 1109–1139, 2020.

[15] V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N.
Wehn, and M. Blott, “FINN-L: library extensions and design trade-
off analysis for variable precision LSTM networks on FPGAs,” in
28th International Conference on Field Programmable Logic and
Applications (FPL), IEEE, 2018.

[16] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar, et al., “Why compete
when you can work together: FPGA-ASIC integration for persistent
RNNs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), IEEE, 2019,
pp. 199–207.

[17] Z. Que, H. Nakahara, H. Fan, J. Meng, K. H. Tsoi, X. Niu, E.
Nurvitadhi, and W. Luk, “A reconfigurable multithreaded accelerator
for recurrent neural networks,” in 2020 International Conference on
Field-Programmable Technology (ICFPT), IEEE, 2020, pp. 20–28.

[18] V. Rybalkin, C. Sudarshan, C. Weis, J. Lappas, N. Wehn, and L. Cheng,
“Efficient Hardware Architectures for 1D-and MD-LSTM Networks,”
Journal of Signal Processing Systems, pp. 1–27, 2020.

[19] V. Rybalkin and N. Wehn, “When Massive GPU Parallelism Ain’t
Enough: A Novel Hardware Architecture of 2D-LSTM Neural Net-
work,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2020, pp. 111–121.

[20] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator
for long short-term memory recurrent neural networks,” in Design
Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific,
IEEE, 2017, pp. 629–634.

[21] Z. Que, Y. Zhu, H. Fan, J. Meng, X. Niu, and W. Luk, “Mapping large
LSTMs to FPGAs with weight reuse,” Journal of Signal Processing
Systems, vol. 92, no. 9, pp. 965–979, 2020.

[22] N. Park, Y. Kim, D. Ahn, T. Kim, and J.-J. Kim, “Time-step interleaved
weight reuse for LSTM neural network computing,” in Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics
and Design, 2020, pp. 13–18.

[23] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M.
Wu, and L. Zhang, “Efficient and effective sparse LSTM on FPGA
with bank-balanced sparsity,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ACM,
2019, pp. 63–72.

[24] R. Shi, J. Liu, K.-H. H. So, S. Wang, and Y. Liang, “E-LSTM: efficient
inference of sparse LSTM on embedded heterogeneous system,” in
2019 56th ACM/IEEE Design Automation Conference (DAC), IEEE,
2019, pp. 1–6.

[25] G. Nan, C. Wang, W. Liu, and F. Lombardi, “DC-LSTM: deep
compressed LSTM with low bit-width and structured matrices,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS),
IEEE, 2020, pp. 1–5.

[26] Z. Chen, G. J. Blair, H. T. Blair, and J. Cong, “BLINK: bit-sparse
LSTM inference kernel enabling efficient calcium trace extraction
for neurofeedback devices,” in Proceedings of the ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design, 2020,
pp. 217–222.

[27] X. Jia, J. Yang, R. Liu, X. Wang, S. D. Cotofana, and W. Zhao,
“Efficient computation reduction in Bayesian neural networks through
feature decomposition and memorization,” IEEE Transactions on Neu-

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

ral Networks and Learning Systems, vol. 32, no. 4, pp. 1703–1712,
2020.

[28] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian, M. Pedram, and Y.
Wang, “VIBNN: Hardware acceleration of Bayesian neural networks,”
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 476–488, 2018.

[29] H. Awano and M. Hashimoto, “BYNQNet: Bayesian neural network
with quadratic activations for sampling-free uncertainty estimation on
FPGA,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, 2020, pp. 1402–1407.

[30] Q. Wan and X. Fu, “Fast-BCNN: Massive neuron skipping in Bayesian
convolutional neural networks,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), IEEE, 2020,
pp. 229–240.

[31] A. F. Agarap, “Deep learning using rectified linear units (ReLU),”
arXiv preprint arXiv:1803.08375, 2018.

[32] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis,
J. Ngadiuba, M. Pierini, R. Rivera, N. Tran, et al., “Fast inference
of deep neural networks in FPGAs for particle physics,” Journal of
Instrumentation, vol. 13, no. 07, P07027, 2018.

[33] S. Tridgell, M. Kumm, M. Hardieck, D. Boland, D. Moss, P. Zipf, and
P. H. Leong, “Unrolling ternary neural networks,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 4,
pp. 1–23, 2019.

[34] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[35] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[36] Xilinx, “SDSoC Profiling and Optimization Guide.”
[37] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.

Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of
a new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, e215–e220, 2000.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http: / /papers.neurips.cc/
paper /9015- pytorch - an - imperative - style - high - performance - deep -
learning-library.pdf.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:13:58 UTC from IEEE Xplore. Restrictions apply.

