
Journal of Systems Architecture 118 (2021) 102198

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

In-circuit tuning of deep learning designs
Zhiqiang Que c,∗, Daniel Holanda Noronha a, Ruizhe Zhao c, Xinyu Niu b, Steven J.E. Wilton a,
Wayne Luk c

a University of British Columbia, Canada
b Corerain Technologies Ltd., China
c Imperial College London, UK

A R T I C L E I N F O

Keywords:
FPGA
EDA
Deep learning
In-circuit tuning
Reconfigurable computing

A B S T R A C T

This paper presents OTune, a novel overlay-based approach for rapid in-circuit debugging and tuning of Deep
Neural Network (DNN) designs targeting Field-Programmable Gate Array (FPGA). We first propose overlay-
based instruments that provide hardware profiling information to FPGA-based DNN developers for tuning
and debugging their designs. Our instrumentation is optimized to take advantage of characteristics of the
DNN application domain and traces useful information for in-circuit domain-specific development. Besides,
a light-weight overlay-based DNN processing engine is implemented to support rapid word length tuning,
which allows adjusting each DNN layer’s datapath without time-consuming FPGA compilation. Furthermore,
our approach enables tuning of FPGA-based DNN designs for edge systems, which would benefit developing
adaptive learning systems. Evaluation results show that OTune can tune a fixed-point design to the same
accuracy as a floating-point one with less than 4% added FPGA area.
1. Introduction

The emerging edge computing in recent years has seen successful
development in various fields given its potential in reducing latency,
protecting privacy and saving energy. Edge computing supports data
processing at the edge of a network, which is close to data sources
allowing reduction in data transmission. Although GPU solutions are
widely adopted in the cloud for DNN training and inference, they may
not be suitable for edge data processing due to their high power con-
sumption and cost. Besides, edge nodes should be able to serve multiple
DNN computation requests at a time, which makes them impractical
to target CPUs and GPUs [1,2]. In contrast, Field Programmable Gate
Array (FPGA) technology has shown promise in implementing DNNs
for edge nodes. Over the last decade, FPGAs have gained increasing
popularity in DNN deployment [3–5].

Nevertheless, it is challenging to implement such FPGA accelerator
designs, especially when in-circuit debugging and tuning are involved.
Software simulators can help addressing this challenge, but they have
major limitations: software simulation is insufficient to find the root
cause of many functional and performance bugs, largely due to the
fact that some hardware behaviors cannot be correctly or rapidly simu-
lated, e.g., non-deterministic DRAM accesses; running DNN workloads
that normally consist of millions of images on software simulators

∗ Corresponding author.
E-mail addresses: z.que@imperial.ac.uk (Z. Que), danielhn@ece.ubc.ca (D.H. Noronha), ruizhe.zhao15@imperial.ac.uk (R. Zhao), xinyu.niu@corerain.com

(X. Niu), stevew@ece.ubc.ca (S.J.E. Wilton), w.luk@imperial.ac.uk (W. Luk).

is time consuming; and some third-party hardware libraries may not
have accurate simulation models. Therefore, tuning and debugging of
DNN acceleration cannot be supported easily by software simulation.
The only method to find the cause of some types of function and/or
performance bugs is to run the hardware in a realistic environment at
the actual speed with representative workloads.

Besides, there is a significant gap between the software-oriented
representation of DNN models and their actual form of hardware
execution on FPGAs. DNN models are often trained and fine-tuned
on CPUs and/or GPUs using Python, C++, or C, and they are often
manually converted to hardware descriptions. This conversion process
is error-prone and time-consuming, and it may take several rounds until
DNN models are finally well tuned, which increases the cost to deploy
an optimal system on FPGAs. Therefore, it is preferable to build the
hardware once and carry out further tuning on that compiled version,
rather than converting a software-based DNN model to hardware every
time it needs tuning. However, it is still challenging to develop such a
hardware system that is able to fine-tune itself based on the hardware
profiling information. Furthermore, the resources of edge nodes are
often limited. Hence it is preferable for edge nodes to be engaged in
DNN inference rather than DNN training.

This paper addresses these limitations by proposing OTune, a novel
overlay-based rapid in-circuit tuning and debugging framework which
vailable online 4 June 2021
383-7621/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2021.102198
Received 31 December 2020; Received in revised form 26 April 2021; Accepted 31
 May 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:z.que@imperial.ac.uk
mailto:danielhn@ece.ubc.ca
mailto:ruizhe.zhao15@imperial.ac.uk
mailto:xinyu.niu@corerain.com
mailto:stevew@ece.ubc.ca
mailto:w.luk@imperial.ac.uk
https://doi.org/10.1016/j.sysarc.2021.102198
https://doi.org/10.1016/j.sysarc.2021.102198
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102198&domain=pdf


Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
allows users to adjust the word length to find the most suitable preci-
sion for a trained DNN model without re-compilation. Besides, instead
of retraining the deployed hardware models when accuracy decreases,
it fine tunes the deployed hardware models for various inputs to
get better accuracy for edge systems. The system of OTune has the
following components: a light-weight (less than 4% added area in our
current implementation) overlay-based DNN processing engine that
allows running network layers in various levels of precision without
recompilation; an overlay-based overflow instrument that provides in-
circuit overflow information for tuning and debugging; and a prototype
toolflow that rapidly explores the design space of word length through
a novel tuning algorithm. Different from normal word-length optimiza-
tion that aims to find the minimum number of bits to support a given
accuracy, our tuning algorithm optimizes the representations within a
fixed budget of bits to maximize accuracy, which is more hardware
friendly and efficient.

Edge nodes would need to cover various deep learning functions,
and in-circuit tuning would allow their optimization without time-
consuming re-compilation. In-circuit debugging and tuning can take
place at design time on a large FPGA, and the final version without
the related instruments can then target a small FPGA to optimize for
speed, energy consumption and cost at run time. For applications that
allow run-time monitoring, the edge nodes can send monitored data to
server nodes which can provide updated configurations, possibly based
on in-circuit tuning, to the edge nodes to adapt to run-time conditions.

To the best of our knowledge, this is the first overlay-based in-circuit
tuning approach that can optimize a DNN-based FPGA design.

We make the following contributions in this paper:

(1) A novel overlay-based overflow instrument for in-circuit tuning
and debugging.

(2) A novel light-weight overlay-based processing engine for run-
ning various DNN layers using mixed precision which can be
changed without recompilation.

(3) A framework for rapid in-circuit accuracy tuning of DNN designs
using mixed precision for different layers based on a novel
tuning algorithm.

This paper extends our previous work described in a conference
paper [6] and in an extended abstract [7]. The in-circuit tuning frame-
work, InTune [6], aims to address the aforementioned challenges by
exploiting hardware profiling information. While searching for an opti-
mal design, a user may wish to try out various configurations to observe
how the results evolve with the user’s understanding of how the circuit
operates. An important limitation of InTune is that, every time a user
proposes a new tuning configuration, the circuit concerned will be
modified and recompiled. Recompilation is slow, and this limits tuning
productivity. Meanwhile, InTune tunes DNNs under the constraint of
identical word length across all layers. Unlike the instruments in [6],
the instrument proposed in this work is based on an overlay which can
be reconfigured without re-compilation. Besides, a light-weight spatial
processing engine is proposed to support CNN layers with various data
representations within a fixed word length. Combining the overlay-
based instruments and the flexible hardware engine, our approach can
optimize an FPGA design to achieve high accuracy for DNNs.

2. Background and preliminaries

2.1. Convolution neural networks (CNNs)

A typical CNN consists of 𝑁 layers including convolution, ReLU,
pooling, and Fully-Connected (FC) layers, where 𝑁 denotes the total
number of layers.
2

Fig. 1. Standard convolution layers.

Fig. 2. Depthwise and Pointwise convolution layers.

2.1.1. Convolution layers
Convolution layers perform multi-dimensional convolution compu-

tation between an input feature map and a filter, as shown in Fig. 1.
They extract features from an input feature map and generate a new
feature map. More specifically, given an input tensor 𝑥 ∈ 𝑅𝑁𝑥×𝑁𝑦×𝑁𝑐

(e.g. a 2D image with 𝑁𝑐 channels), a weight tensor 𝑤 ∈ 𝑅𝑘𝑥×𝑘𝑦×𝑁𝑐×𝑁𝑓 ,
and a bias term 𝑏 ∈ 𝑅𝑁𝑓 , a standard convolution layer 𝑓 is defined as:

𝑓 (𝑥,𝑤, 𝑏)𝑙𝑚𝑛 =
𝑙+𝑘𝑥∕2
∑

𝑖=𝑙−𝑘𝑥∕2

𝑚+𝑘𝑦∕2
∑

𝑗=𝑚−𝑘𝑦∕2

𝑁𝑓
∑

𝑘=0
𝑤𝑖𝑗𝑘𝑛𝑥𝑖𝑗𝑘 + 𝑏𝑛

Generally, weights in convolution layers are called convolutional
kernels. Convolutional layers have hyper-parameters such as kernel
width (𝑘𝑥, 𝑘𝑦), number of filters 𝑁𝑓 , stride and dilation factors.

Besides standard convolution, there are other types of convolution.
Depthwise convolution [8–10] and pointwise convolution [8] are both
lightweight building blocks of modern CNNs, as shown in Fig. 2. Com-
pared with standard convolution, depthwise convolution only applies
one filter on each channel, which significantly decreases the amount
of computation and parameters and is relatively efficient. However, it
only filters input channels and does not combine them to create new
features. So a pointwise convolution which has kernel size of 1 × 1, is
used to generate new features via a linear combination of the output
of the depthwise layers.

2.1.2. Fully-Connected (FC) layers
FC layers are an affine transformation of the input feature vector. It

contains a single matrix–vector multiplication followed by a bias offset.

2.1.3. Rectified Linear Unit (ReLU)
Relu is one of the many non-linear activation functions which

bring non-linearity to the CNNs. To acquire non-linearity, CNN usually
contains activation layers. It computes an activated value 𝑓 (𝑥) as:

𝑓 (𝑥𝑖𝑗 ) = 𝑅𝑒𝐿𝑈 (𝑥𝑖𝑗 ) = 𝑚𝑎𝑥(0, 𝑥𝑖𝑗 )

2.1.4. Max-pooling
The forward 2D max-pooling layer performs a non-linear sub-

sampling approach that takes only a summary statistic of the nearby
region, such as the maximum value of each small region, in the
input feature map. These regions can be constructed by performing
sliding window operations on the 2D input feature map. This layer can
significantly reduce the dimensions of feature maps and enhance the
translation-invariance property of CNNs.



Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
Fig. 3. Instruments overview [6].

2.2. Domain-specific debug instrumentation

When compared to circuits from other domains, machine learning
circuits can be substantially more difficult to debug. The CNN circuits
can require very long run times (such as computing multiple training
or inference samples) before their overall behavior can be understood.
Bugs can also be partially or completely masked due to the resilience
of neural networks. Moreover, applications are increasingly compiled
from high-level programming languages and frameworks, such as C and
TensorFlow [11], which means that having visibility in terms of the
automatically generated hardware may not be as useful.

A debug toolflow [12] addresses those problems by using domain-
specific characteristics of machine learning circuits to store useful in-
formation on-chip. Similar to common hardware-oriented debug flows,
debug instrumentation is added to the design in order to store a
history of how signals change over time for later interrogation. In
order to make efficient use of the trace buffer space, different statistics
about these large matrices are recorded [12] instead of recording their
raw values on-chip. Three types of instruments are proposed [12].
The distribution instrument stores a history of the distribution of an
observed matrix over time. The spatial sparsity instrument stores an
indicator of whether each particular element in a given matrix is zero
or not, based on a predetermined threshold. Finally, the summary
statistics instrument summarizes one kind of statistics over a single
frame, e.g., sparsity, average, or standard deviation.

Unlike the previous approach, it has been shown that the instru-
mentation circuitry can be reconfigured at debug-time without recom-
pilation [13], as shown in Fig. 4. After the circuit has been compiled,
but before it is run, the instrumentation can be configured in the three
ways described below:

2.2.1. Selective matrix tracing
This allows to select, at debug-time, which matrices should be

traced, given that these matrices have been instrumented at compile-
time.

2.2.2. Selective compression
The selective compression refers to the capability to choose the way

in which data will be compressed (which statistics will be computed)
at debug-time.

2.2.3. Flexible trace buffer
Instead of using a centralized memory as a trace buffer, multiple

memories can be dynamically combined to act as a single trace buffer.
This enables the user to store different signals for different amounts
of time. This can be used in tracing a signal that gives context of the
execution for long periods of time (e.g., the loss during training), while
storing less critical signals for a shorter time.
3

Fig. 4. Overlay-based Instrumentation Architecture [13].

After the instrumentation has been configured (by writing the con-
figuration through the JTAG port), the circuit is then run, and the
instrumentation records information regarding each identified matrix
into the trace buffer. As users refine their understanding of the behavior
of the circuit, they may wish to modify the debug scenario. This
iterative process does not require recompilation and it is repeated until
the root cause of the bug is determined.

3. Debug and tuning instrumentation

3.1. Debug of fused convolution blocks

Typically, convolution blocks consume most of the operations in
a convolutional neural network [5] and should be well-optimized for
performance improvement. Generally, a baseline accelerator for the
convolution block is mainly based on layer-by-layer execution which
involves significant external memory access and consequently cannot
fully exploit the potential of pipelined CNN layers. To address this issue,
the standard convolutions can be fused with a uniform kernel [14,
15], and various convolution types can be fused automatically [5].
However, it makes the debug of the system difficult because the data
of some internal layers will not show at the output. Although RTL
simulation may help to find the bugs of the fused layers, it requires
long run-times. If techniques for capturing raw variable values [16]
are used, it would be possible to record all values in an array, and
then perform the analysis off-line. However, for large arrays, this may
result in very inefficient use of trace buffer memory; every change to
every element in the array would consume an entry in the trace buffer.
For debugging fused convolution blocks, we propose to use novel
debug instruments to monitor overflow. In addition, the distribution
instrument [12] can be used to monitor all words in a specified array
and to aggregate the values into a histogram per frame, as shown in
Fig. 3. It can detect outliers or errors causing activations to ‘‘clamp’’ at
minimum/maximum values, which suits our purpose.

3.2. Overflow of CNNs on FPGA

Fixed-point operations, which are common in FPGA designs, can
produce results with fewer digits than the inputs. Thus, information loss
is possible. For example, the result of a fixed-point multiplication could
potentially have as many digits as the sum of the number of digits in
the two input operands. If the word-length of the result is less than the
number of this sum, then this result needs to be truncated, rounded
and/or saturated. Fractional digits lost below this value represent a
precision loss which is common in fractional multiplication. However,
if any valid integer digits are lost, the value will be radically inaccu-
rate. Unanticipated arithmetic overflow is a common cause of system
errors. Thus, this work focuses on overflow issues. In convolutional



Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
Fig. 5. Overflow map instrument overview.

layers, multiplications and accumulations are common and may lead
to overflow, which can cause severe computational accuracy loss.

In many FPGA-based DNN designs [3,17,18], the word lengths of
the intermediate data are extended to avoid potential overflow. How-
ever, if the final output data have a small word length, then overflow
can still occur. Such overflow bugs are hard to diagnose since they
may manifest themselves only after long run-time when, for example,
errors begin to accumulate. Sometimes, a neural network design may
not fail due to overflow but only suffers loss of accuracy, especially
when it is deployed on an FPGA using small word lengths. The FPGA
system may work fine but has lower accuracy than the floating-point
counterpart. This type of accuracy loss due to overflow can be difficult
to debug on FPGAs, since there can be many potential sources of
overflow accumulated in various layers.

The overflow statistics information from our proposed instruments
targeting hardware can quickly detect overflow issues in FPGA systems
from thousands of values in a dataset. A high-level fixed-point software
model of a hardware design may not capture all the details, while a
low-level fixed-point software model is difficult to develop and can be
slow to run.

3.3. The novel overflow instruments

A fixed-point computation unit targeting FPGAs can be carefully
designed without accuracy loss using large word length intermediate
data and calculation. However, the output data need to be down-scaled
into small word length, for example, 8-bit and then output to memory.
Thus, an overflow may happen in this step. Our debug instruments are
designed to track this sort of overflow. The debug instruments do not
need to check and trace every addition/multiplication but only the final
down-scaling. Thus, there could be only one possible overflow for each
output pixel, which means only one bit will be needed to store the
overflow status for each output pixel.

In addition, typically the FPGA performs down-scaling in saturation
mode, which means the debug instruments even do not need to perform
comparisons but just track the overflow bit in the original design, which
can save FPGA resources.

3.3.1. Overflow map instrument
This instrument monitors the overflow status of each output pixel.

Instead of storing all the values of the output data, it stores a Boolean
indicating overflow has occurred. This provides information about the
overflow status of the output tensor, and a 3D map can be reconstructed
from the tracked information as shown in Fig. 5.
4

Fig. 6. Overflow statistics instrument overview.

3.3.2. Overflow statistics instrument
Tracking and storing one bit for each output pixel can be expensive,

since many trace buffers are needed when the output tensor is large. In
contrast, this overflow statistics instrument focuses on calculating the
summary statistics to assist debugging and tuning machine learning cir-
cuits. Rather than storing one bit for each output data, this instrument
stores summary statistics for each output channel or just stores one
summary for a whole output tensor. While the overflow map instrument
traces every overflow case, the overflow statistics instrument, produc-
ing a histogram or a summary, does not retain location information of
the output pixel causing the overflow. An overview of its operation is
shown in Fig. 6. A counter is used to track the number of overflow cases
in the output.

The overflow rate defined in Eq. (1), based on the overflow infor-
mation for each output tensor related to CNN layers, can be useful
for debugging and tuning machine learning applications. In our OTune
approach, the overflow rate from hardware based on the instruments
is used to find the best configuration of datapath word length.

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤_𝑟𝑎𝑡𝑒 = 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤_𝑁𝑢𝑚
𝑊 ℎ𝑜𝑙𝑒_𝑇 𝑒𝑛𝑠𝑜𝑟_𝑃 𝑖𝑥𝑒𝑙_𝑁𝑢𝑚

(1)

3.4. Overlay-based overflow instruments

One limitation in our former work [6] is that every time the word
length of CNN layers needs modification, or every time a new overflow
instrument is to be used, the new user logic with the instrumentation
needs to be run through the entire FPGA compilation flow, including
synthesis, place and routing. This may take hours and significantly
limits debug and tuning productivity. Another limitation is that it only
supports tuning all the CNN layers using the same word length.

To address these limitations, we propose an overlay-based instru-
ment as shown in Fig. 7. Unlike the instruments described in Sec-
tion 3.3, this instrument is based on an overlay which can be reconfig-
ured without recompilation. After the user logic has been compiled, but
before it is run, this instrument can be configured either as an overflow
map instrument or an overflow statistics instrument. When compared
to the debugging instruments provided by previous overlay-based DNN
debugging system [13], the proposed overlay-based instrument is not
only used for debugging but also for tuning. In other words, this work
provides controllability (e.g. it is actually changing the circuit) rather
than just observability.



Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
Fig. 7. Overlay-based overflow instrument overview.

3.5. Mixed precision CNNs

Mixed-precision has been used in numerical computations for
decades. Generally, there are two methods to support mixed precision
CNNs. The first is a temporal architecture. A state-of-the-art temporal
design of DNNs accelerator using FPGA is the Bit-Serial Matrix Mul-
tiplication Overlay (BISMO) [19]. The proposed bit-serial multipliers
in the overlay are fed with one-bit digits from 256 weights and the
corresponding activations in parallel at one time. Their partial products
are accumulated by shifting over time. The second architecture is a
spatial one. The BitFusion architecture [20] is a classic spatial design
of a DNN accelerator in which a 2D systolic array of fusion units are
employed. These units spatially sum the shifted partial products of
two-bit elements from weights and activations.

This work proposes a light-weight spatial architecture which sup-
ports CNN layers with various data representations within a fixed word
length. The data format 𝑄𝑥.𝑦 is used in our design. It consists of
one sign bit, 𝑥 integer bits and 𝑦 fractional bits. Although there is
much previous work using fewer bits for both weights and activations
(e.g., between 1 and 8 bits), 16-bit is still a frequently used word
length [21]. Thus, we choose the total word-length as 16 bits for the
datapath of our design with the values of 𝑥 and 𝑦 constrained by the
equation 1 + 𝑥 + 𝑦 = 16. One limitation is that when the datapath
needs an additional integer bit, it will need to lose a fractional bit.
Losing a fractional digit may introduce a precision loss, but losing any
valid integer digit will incur large inaccuracy. Different from normal
word-length optimization that aims to find the minimum number of
5

bits to support a given accuracy, our tuning algorithm optimizes the
representations within a fixed budget of bits to maximize accuracy,
which is simpler since the total number of bits do not change.

There are many benefits of this light-weight spatial architecture.
First, the FPGA DSP blocks can be utilized efficiently since the mul-
tipliers are still 16 × 16 so that the result precision can be kept as
much as possible. Second, it can reduce the design cost. Only the output
cast unit needs redesigned by inserting a barrel shifter while all the
other components, such as the multipliers or accumulators, can remain
untouched. Thus, the main datapath can be almost the same as the
non-overlay datapath, which reduces the design cost to convert a non-
overlay datapath to an overlay-based one to support mixed-precision
for different CNN layers.

4. Implementation

4.1. Hardware architecture

Based on the optimization techniques presented above, a light-
weight mixed-precision spatial architecture of a CNN is illustrated in
Fig. 8. To improve the system scalability, we propose to use the single
processing engine architecture [22–24] where a computational engine
is designed to run one block or layer at a time, and the whole network
is processed by running the computational engine repeatedly, as shown
in Fig. 8 (left). It mainly consists of the computational engine, data
stream controller, light-weight CPU, on-chip and off-chip memory. In
the computational engine, there are several buffers, the Processing Ele-
ments Unit, max-pooling and ReLU modules. Each Processing Element
(PE) consists of several multipliers and a pipelined adder tree, which is
used to perform the multiply-accumulation in convolutional layers. The
data stream controller, which consists of several buffers, is dedicated
to the data communication between the computational engine and on-
chip memory. The data and weights/bias buffers, as shown in Fig. 8
(middle), are used to cache the input/output pixels and weights/bias
required by the Processing Elements unit which conducts convolutional
operations. The cast unit receives the convolutional results and down-
scales the large word length to 16-bit ones. One-bit overflow status is
also produced. Since max pooling and ReLU only have the operation of
comparison and selection, we can down-scale the engine results before
these modules to save FPGA resources. A fixed-point computation unit
targeting FPGAs can be carefully designed without accuracy loss using
large word length intermediate data and calculation. To keep the
accuracy, the result of the multipliers is 32-bit while the accumulator
word length is 46-bit to avoid overflow, as shown in Fig. 8 (top right).
However, the output data need to be down-scaled into small word
Fig. 8. The light-weight mixed-precision spatial architecture.



Journal of Systems Architecture 118 (2021) 102198Z. Que et al.

l
d
a

i
t
a
w

5

5

b

Fig. 9. CNN in-circuit debug and tuning flow.

ength, for example, 16-bit and then output to memory. When the input
ata format is 𝑄𝑥.𝑦, the fractional digits of the results of the multipliers
nd accumulators are 2𝑦. These results need to be right shifted by 𝑦 bits

using a barrel shifter and then they enter the saturation sub-unit to be
down-scaled into 16-bit as the required output.

To support various levels of precision and minimize the resources
used, a two-stage custom shifter is proposed in the cast unit. Bar-
rel shifters commonly consume a significant amount of hardware re-
sources. They can shift a data word by a varying number of bits
typically within a single clock cycle using only pure combinational
logic. Generally, a barrel shifter is split into n stages. Stage 𝑠 can shift
the operand by 2𝑠 bits or leave it unmodified. The number of parallel
2-to-1 multiplexers required for an n-bit barrel shift is 𝑛 log2 𝑛 [25]. The
proposed two-stage custom barrel shifter consists of a M-bit constant
shifter followed by a N-bit barrel shifter as shown in Fig. 8 (bottom
right). The constant shifter right shifts the data by a constant number
of bits, such as M bits, while the barrel shifter shifts the data by 0 up
to (𝑁−1) bits. Thus, this custom shifter can shift the data by 𝑀 bits up
to (𝑀 +𝑁 − 1) bits. Instead of using an (𝑀 +𝑁)-bit barrel shifter, our
custom shifter can significantly reduce the FPGA resource use since the
(𝑀+𝑁)-bit barrel shifter needs (𝑀+𝑁) log2(𝑀+𝑁) multiplexers while
our custom one only needs (𝑀 +𝑁) log2(𝑁) multiplexers. For instance,
when 𝑀 = 𝑁 = 8, our custom shifter can save 25% FPGA resource of
a barrel shifter.

After the shifter, the result is down-scaled in saturation mode where
the overflow is checked. Thus, our tuning and debugging instruments
do not need to calculate and trace every addition/multiplication but
only the final down-scaling. There could only be one possible overflow
for each output pixel, which means only one bit will be needed to store
the overflow status for each output pixel. In addition, since typically
the FPGA performs down-scaling in saturation mode, the tuning and
debugging instruments do not need to perform comparisons but just
record the overflow bit in the original design, which can save FPGA
resources.

4.2. Prototype toolflow of otune

Fig. 9 provides an overview of the in-circuit fine-tuning flow using
OTune. First, an FPGA design with flexible instruments is generated. To
efficiently process convolution blocks, OTune generates FPGA designs
with a light-weight overlay-based processing engine and inserts the
flexible instruments for debugging and tuning.

Once the FPGA accelerator processes a given dataset, functional
bugs will first be detected by the debugging instrument. When the
design is functionally correct, then tuning can begin. The data precision
is tuned based on the overflow rate provided by the tuning instrument.
One major benefit of using OTune is its support for data precision
tuning without design regeneration and recompilation. Because of this
6

Algorithm 1: OTune pseudocode.
1 Function OTune(𝑀,𝐷, 𝑃 ,𝑅,𝑤𝑙0):
2 𝑀 denotes the model trained on a domain-specific dataset 𝐷,

𝑃 specifies an FPGA platform, and 𝑅 is the requirements on
the design;

3 𝑤𝑙 is a set of word lengths configured for each layer, and 𝑤𝑙0
gives the initial values;

4 ℎ𝑤 ← 𝑂𝑣𝑒𝑟𝑙𝑎𝑦𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐺𝑒𝑛(𝑀,𝑃 ,𝑅,𝑤𝑙0);
5 𝑜𝑓 ← 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑅𝑎𝑡𝑒(ℎ𝑤,𝑤𝑙0);
6 𝑜𝑏𝑗∗, 𝑤𝑙∗, 𝑤𝑙 ← 0, 𝑤𝑙0, 𝑤𝑙0;
7 while 𝑜𝑓 ≥ 𝑇𝑜𝑣 do
8 if the overflow rate not less than a given threshold 𝑇𝑜𝑣,

the exploration continues;
9 𝑎𝑐𝑐 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(ℎ𝑤,𝑤𝑙,𝑀, 𝑃 ,𝐷);
10 the objective function measures the goodness of the

hardware based on its task accuracy 𝑎𝑐𝑐 and 𝑤𝑙;
11 𝑜𝑏𝑗 ← 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(ℎ𝑤,𝑤𝑙, 𝑎𝑐𝑐);
12 if 𝑜𝑏𝑗 ≥ 𝑜𝑏𝑗∗ then
13 𝑜𝑏𝑗∗, 𝑤𝑙∗ ← 𝑜𝑏𝑗, 𝑤𝑙
14 end
15 𝑜𝑓 ← 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑅𝑎𝑡𝑒(ℎ𝑤,𝑤𝑙);
16 and we will decide how the word length should be

updated by 𝑜𝑓 and 𝑎𝑐𝑐;
17 𝑤𝑙 ← 𝐹 𝑖𝑛𝑒𝑇 𝑢𝑛𝑒(𝑤𝑙, 𝑜𝑓 , 𝑎𝑐𝑐);
18 end
19 the word length setting 𝑤𝑙∗ that gives the best objective

score will be returned;
20 return ℎ𝑤,𝑤𝑙∗, 𝑎𝑐𝑐∗;
21 End Function

feature, exploring the vast design space characterized by data precision,
which has not been feasible [6], is now a viable objective.

Algorithm 1 illustrates how OTune explores data precision. It does
not cover the debugging step. The tuning strategy for OTune consists
of customizing the hardware template by systematic word length re-
finement and evaluating the effects such as in-circuit overflow rate to
determine whether further tuning is needed. This algorithm is driven
by the function 𝐹 𝑖𝑛𝑒𝑇 𝑢𝑛𝑒(), as shown in blue in line 17 which can fine-
tune the word lengths from the profiling information of the current
design, such as its overflow rate and model accuracy. The search space
is characterized by 𝑤𝑙, a set of word length values configured for each
layer. A change in 𝑤𝑙 affects the model accuracy. We devise an objec-
tive function that measures the goodness of a 𝑤𝑙 configuration based on
those affected factors in a balanced manner. Initially, 𝑤𝑙 is configured
by a set of lowest possible values. In each optimization step, we fine-
tune the position of the binary point of 𝑤𝑙 if the overflow rate is high
or the model accuracy is poor. This optimization terminates when the
overflow rate is below a given threshold 𝑇𝑜𝑣. During optimization, we
keep track of the best objective function score and the conresponding
𝑤𝑙 value, and the overall best 𝑤𝑙∗ will be returned in the end.

Compared to our former work [6], the function 𝑂𝑣𝑒𝑟𝑙𝑎𝑦𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒
𝐺𝑒𝑛(), as shown in red in Algorithm 1 , occurs only once outside the
while loop. Within the while loop, there is only 𝐹 𝑖𝑛𝑒𝑇 𝑢𝑛𝑒(), as shown
n blue. Please note that this tuning is different from word-length op-
imization, which aims to find the minimum number of bits to support

given accuracy. Here our tuning is to optimize the representations
ithin a fixed word length to maximize accuracy.

. Results and discussion

.1. Experiment setup

To find out the performance and limitations of the proposed overlay-
ased in-circuit tuning system, we implement the hardware system



Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
Table 1
Architecture of the VGG-7 CNN used in this paper.

Layer Input Image Size Num Filters Kernel Size Act.Fun.

Conv1–1 32 × 32 × 3 32 3 ReLU
Conv1–2 32 × 32 × 32 32 3 ReLU
Maxpool 32 × 32 × 32 32 2 –
Conv2–1 16 × 16 × 32 64 3 ReLU
Conv2–2 16 × 16 × 64 64 3 ReLU
Maxpool 16 × 16 × 64 64 2 –
Conv3–1 8 × 8 × 64 128 3 ReLU
Conv3–2 8 × 8 × 128 128 3 ReLU
Maxpool 8 × 8 × 128 128 2 –
Dense 2048 128 – ReLU
Dense 128 10 – Softmax

Table 2
Resource utilization.

LUT FF BRAM DSP

Avail. 218600 437200 545 900
Used 54032 46007 301 493
Utili. 24.72% 10.52% 55.23% 54.78%

Table 3
Overhead of overlays.

LUT FF LUT(h) FF(h)

FPGA total resource 437200 218600 – –
Overlay-based datapath 6791 1100 31.1 2.5
Overflow map
instrument

14 91 < 0.1 0.2

Overflow statistics
instrument

269 1132 1.2 2.6

Overlay-based overflow
instrument

334 1192 1.5 2.7

using Vivado HLS. A VGG-7 CNN model [26–28], as shown in Table 1,
is designed to demonstrate our framework with the CIFAR 10 dataset.
Although the model demonstrated in this work is small, our OTune
framework can be applied to other CNN variants since we focus on
utilizing the hardware profiling information to fine tune the designs.
The target platform is Xilinx ZC706, which consists of a XC7Z045 FPGA
and dual ARM Cortex-A9 processor. 1 GB DDR3 RAM is installed on
the platform as the off-chip memory. The DMA word length is 128-bit.
Vivado 2018.3 is used for synthesis and implementation. The weights
and bias are pre-processed off-line and stored in the off-chip memory.

5.2. Resource utilization and overhead of overlays

Table 2 shows the resource utilization of our design without the
overlay-based datapath and overflow instruments. Table 3 shows the
resource utilization overhead in our design. This table shows that the
proposed instrumentation requires a small amount of resources, even
when the overlay-based instrument is included. Compared to [13],
our instrument requires fewer FPGA resources. The overhead of the
overlay-based processing engine is significant, which costs about 3.11%
of the total LUTs on this FPGA. However, once the design is debugged
and tuned, one can then produce a final version of the design without
the overlay and the instruments, so that the FPGA implementation on
the edge nodes would not suffer from any overhead.

5.3. CNN accuracy fine-tuning with mixed precision

Using OTune, we can fine-tune the word length configuration for
each convolution layer based on hardware information, e.g., overflow
rate in output as shown in Fig. 10. The details of the layers Conv1-1
∼ Conv3-2 are shown in Table 1 while the word length configurations
for each convolution layer in each checkpoint are shown in Table 4.
The accuracy of the 32-bit floating-point model is 83.21%. As shown
7

Table 4
Checkpoints of mixed precision tuning of a CNN model.

Layer Checkpoint1 Checkpoint2 Checkpoint3 Checkpoint4

Conv1–1 Q0.15 Q1.14 Q1.14 Q1.14
Conv1–2 Q0.15 Q1.14 Q1.14 Q1.14
Conv2–1 Q0.15 Q1.14 Q2.13 Q2.13
Conv2–2 Q0.15 Q1.14 Q2.13 Q3.12
Conv3–1 Q0.15 Q1.14 Q2.13 Q3.12
Conv3–2 Q0.15 Q1.14 Q2.13 Q3.12

Fig. 10. Overflow rates of each CNN layer in various checkpoints.

Fig. 11. CNN model accuracy tuning.

in Fig. 11, the accuracy of the hardware using the fixed-point format
Q0.15 (shown in blue) is 74.98% which is much lower than the
accuracy of the 32-bit floating-point model. Fig. 10 shows that the
blue lines capturing the values collected from the overflow statistics
instruments indicate that the overflow rates of this model in each layer
at this checkpoint are high. Using OTune, the word lengths of each layer
in this CNN model can be fine-tuned to reduce the overflow rate, as
shown by the red, orange and green lines. Our approach improves the
accuracy of the CNN model by 8.23% as shown in Fig. 11. It shows that
OTune improves the design to have the same accuracy as the floating-
point one. While this work focuses on instrumenting and using overflow
information of CNN hardware, the proposed approach can be applied
to fine tune systems using some other instruments.

5.4. Speedup

We report the speedup provided by OTune over simulation-based
methodologies, e.g., hardware/software co-simulation using cycle ac-
curate RTL model. We compare the time for executing one input image
using ModelSim and our approach on a Zynq 7045 FPGA to get the
debug and profiling information. On average OTune achieves a speedup
of 1.01 × 106 times compared to RTL simulation using ModelSim. The



Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
comparison against a ModelSim simulation of the hardware design is
reasonable since only the RTL model has all the details of the real
hardware system. While a high-level software model of a hardware
design may have faster simulation than a low-level one, it may not be
able to capture all the details of the hardware and its environment.

When compared to InTune [6], it is estimated that a designer would
make about 5 re-compilations for this case study. OTune removes these
re-compilations. If an average re-compilation takes one hour, then
OTune can save 5 hours.

5.5. Comparison with previous work

Tuning parameters on a circuit-by-circuit basis can be slow since
it is difficult to obtain detailed estimates of candidate optimization
choices. [29] presents a novel hashing mechanism that enables rapid
evaluation of different inline expansion decisions for HLS design gen-
eration. DNNTune [30] can find the optimal mobile-cloud coordinated
deployment strategy across a variety of software frameworks. [31]
proposes using machine learning to auto-tune the performance and
power consumption of FPGA designs. Auto-tuning has also been applied
to effectively explore the large, high-dimensional space of tool-specific
parameters that control FPGA synthesis [32].

Fune [33] and Zac [34] enable fine-grained customization for CNNs
by pre-building multiple designs beforehand and dynamically recon-
figuring FPGA during run-time, which is beneficial only when the
pre-built options are in a small known set, and reconfiguration will
not be triggered frequently; otherwise, the effort of pre-building will
be enormous and the dynamic reconfiguration overhead will not be
negligible. Even with Xilinx Integrated Logic Analyzer (ILA), time-
consuming recompilation is required, which makes OTune promising.
In addition, the optimal configurations of the CNN engine for running
the various CNN layers may be different, which can introduce frequent
dynamic configuration of FPGAs to run even a single multi-layer CNN
model and bring long latency.

The Hardware-aware Automated Quantization (HAQ) proposed
in [35] leverages reinforcement learning (RL) to automatically deter-
mine the quantization policy. It takes the feedback from a high-level
hardware simulator to an RL agent. Nevertheless, as previously men-
tioned (Section 1), the hardware simulator may not capture all the
details of hardware systems. Besides, it does not support debugging
which involves instrumenting the design to increase observability.

Nevertheless, this RL-based HAQ technique can be complementary
to our instrumentation-based approach to explore data precision in the
tuning process. Moreover, the approaches mentioned earlier cover de-
sign tuning from a different perspective: they do not involve in-circuit
tuning and do not address issues in debugging deep learning designs.
Furthermore, in simulation, it is difficult to obtain accurate perfor-
mance information of DDR memories, the interaction among layers,
and some third-party hardware libraries. Therefore, tuning and debug-
ging of DNN acceleration cannot be accomplished easily by software
simulation.

When compared with a previous overlay-based DNN debugging
system [13], one of the key differences between [13] and this work is
that we are also providing controllability (e.g. we are actually changing
the circuit and tuning it into an optimal one) rather than just providing
observability. [36] also provides controllability by enabling rapid func-
tional changes through an overlay for debugging. Both [13,36] only
focus on debugging. However, our proposed approach can cover both
debugging and tuning of CNN designs.

6. Conclusions and future work

This paper presents OTune, a new approach which facilitates in-
circuit fine-tuning of fixed-point representation of weights in a CNN.
The novel aspects of OTune include the overlay-based instruments
and the light-weight overlay-based DNN processing engine. A new
8

tuning algorithm is also proposed, which has shown promise in our
experiments. Future work includes extending OTune to cover variable
word length, quantifying the benefits and the trade-offs of the pro-
posed approach for specific applications, exploring additional tuning
techniques such as those for block floating point representations, and
studying the use of our instruments for run-time tuning to support,
for example, adaptive federated learning in resource constrained edge
computing systems [37].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

The support of the United Kingdom EPSRC (grant numbers
EP/L016796/1, EP/N031768/1, EP/P010040/1, and EP/S030069/1),
Corerain, Xilinx and Intel is gratefully acknowledged.

References

[1] X. Wang, Y. Han, V.C. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge
computing and deep learning: A comprehensive survey, IEEE Commun. Surv.
Tutor. 22 (2) (2020) 869–904.

[2] J. Chen, X. Ran, Deep learning with edge computing: A review, Proc. IEEE
(2019).

[3] H. Fan, et al., A real-time object detection accelerator with compressed SSDLite
on FPGA, in: 2018 International Conference on Field-Programmable Technology,
FPT, IEEE, 2018, pp. 14–21.

[4] Z. Que, T. Nugent, S. Liu, L. Tian, X. Niu, Y. Zhu, W. Luk, Efficient weight reuse
for large LSTMs, in: 2019 IEEE 30th International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), Vol. 2160, IEEE, 2019,
pp. 17–24.

[5] R. Zhao, et al., Towards efficient convolutional neural network for domain-
specific applications on FPGA, in: 28th International Conference on Field
Programmable Logic and Applications, FPL, IEEE, 2018.

[6] Z. Que, et al., Towards in-circuit tuning of deep learning designs, in: International
Conference on Computer-Aided Design, ICCAD, IEEE, 2019.

[7] Z. Que, D.H. Noronha, R. Zhao, S.J. Wilton, X. Niu, W. Luk, Towards overlay-
based rapid in-circuit tuning of deep learning designs, in: 2020 International
Conference on Field-Programmable Technology, FPT, IEEE, 2020.

[8] A.G. Howard, et al., Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017, ArXiv Preprint ArXiv:1704.04861.

[9] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1251–1258.

[10] F. Mamalet, C. Garcia, Simplifying convnets for fast learning, in: International
Conference on Artificial Neural Networks, Springer, 2012, pp. 58–65.

[11] M. Abadi, et al., Tensorflow: Large-scale machine learning on heterogeneous
systems, 2015, Software available from tensorflow.org, http://tensorflow.org/.

[12] D.H. Noronha, et al., On-chip FPGA debug instrumentation for machine learning
applications, in: Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ACM, 2019.

[13] D.H. Noronha, R. Zhao, Z. Que, J. Goeders, W. Luk, S. Wilton, An overlay for
rapid FPGA debug of machine learning applications, in: International Conference
on Field-Programmable Technology, ICFPT, IEEE, 2019.

[14] M. Alwani, et al., Fused-layer CNN accelerators, in: The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, IEEE Press, 2016.

[15] Q. Xiao, et al., Exploring heterogeneous algorithms for accelerating deep con-
volutional neural networks on FPGAs, in: 2017 54th ACM/EDAC/IEEE Design
Automation Conference, DAC, IEEE, 2017, pp. 1–6.

[16] J. Goeders, S.J. Wilton, Signal-tracing techniques for in-system FPGA debugging
of high-level synthesis circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 36 (1) (2016) 83–96.

[17] K. Guo, et al., Angel-eye: A complete design flow for mapping CNN onto
embedded FPGA, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2017).

[18] R. Zhao, et al., Optimizing CNN-based object detection algorithms on embed-
ded FPGA platforms, in: International Symposium on Applied Reconfigurable
Computing, Springer, 2017.

[19] Y. Umuroglu, et al., BISMO: A scalable bit-serial matrix multiplication over-
lay for reconfigurable computing, in: 28th International Conference on Field
Programmable Logic and Applications, FPL, IEEE, 2018.

http://refhub.elsevier.com/S1383-7621(21)00143-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb1
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb2
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb3
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb4
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb5
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb5
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb5
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb5
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb5
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb6
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb6
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb6
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb7
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb7
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb7
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb7
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb7
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb10
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb10
http://tensorflow.org/
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb12
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb13
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb14
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb15
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb15
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb15
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb15
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb15
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb16
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb17
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb17
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb17
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb18
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb18
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb18
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb18
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb18
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb19
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb19


Journal of Systems Architecture 118 (2021) 102198Z. Que et al.
[20] H. Sharma, et al., Bit fusion: Bit-level dynamically composable architecture for
accelerating deep neural network, in: 45th Annual International Symposium on
Computer Architecture, ISCA, IEEE, 2018.

[21] T. Posewsky, D. Ziener, Throughput optimizations for FPGA-based deep neural
network inference, Microprocess. Microsyst. 60 (2018) 151–161.

[22] J. Misra, I. Saha, Artificial neural networks in hardware: A survey of two decades
of progress, Neurocomputing (2010).

[23] Z. Que, H. Nakahara, E. Nurvitadhi, H. Fan, C. Zeng, J. Meng, X. Niu, W.
Luk, Optimizing reconfigurable recurrent neural networks, in: IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing Machines,
FCCM, IEEE, 2020, pp. 10–18.

[24] Z. Que, et al., A reconfigurable multithreaded accelerator for recurrent neural
networks, 2020 International Conference on Field-Programmable Technology
(ICFPT), IEEE, 2020.

[25] D. Kroening, O. Strichman, Decision Procedures, Springer, 2016.
[26] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, 2014, ArXiv Preprint ArXiv:1409.1556.
[27] F. Li, B. Zhang, B. Liu, Ternary weight networks, 2016, ArXiv Preprint ArXiv:

1605.04711.
[28] S. Tridgell, et al., Unrolling ternary neural networks, Trans. Reconfigurable

Technol. Syst. (2019).
[29] D.H. Noronha, et al., Rapid circuit-specific inlining tuning for FPGA high-level

synthesis, in: International Conference on ReConFigurable Computing and FPGAs,
ReConFig, IEEE, 2017.
9

[30] C. Xia, et al., DNNTune: Automatic benchmarking DNN models for mobile-cloud
computing, ACM Trans. Archit. Code Optim. (2019).

[31] A. Mametjanov, et al., Autotuning FPGA design parameters for performance and
power, in: IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, IEEE, 2015.

[32] C. Xu, et al., A parallel bandit-based approach for autotuning FPGA com-
pilation, in: Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ACM, 2017.

[33] Q. Xiao, Y. Liang, Fune: An FPGA tuning framework for CNN acceleration, IEEE
Des. Test (2019).

[34] Q. Xiao, et al., Zac: Towards automatic optimization and deployment of quan-
tized deep neural networks on embedded devices, in: International Conference
on Computer-Aided Design, ICCAD, IEEE, 2019.

[35] K. Wang, et al., HAQ: Hardware-aware automated quantization with mixed
precision, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[36] A.-S. Jamal, J. Goeders, S.J. Wilton, An FPGA overlay architecture supporting
rapid implementation of functional changes during on-chip debug, in: 2018 28th
International Conference on Field Programmable Logic and Applications, FPL,
IEEE, 2018, pp. 403–4037.

[37] S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive
federated learning in resource constrained edge computing systems, IEEE J. Sel.
Areas Commun. (2019).

http://refhub.elsevier.com/S1383-7621(21)00143-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb20
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb21
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb22
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb22
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb22
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb23
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb24
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb25
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb28
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb28
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb28
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb29
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb30
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb30
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb30
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb31
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb31
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb31
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb31
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb31
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb32
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb32
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb32
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb32
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb32
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb33
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb33
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb33
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb34
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb36
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb37
http://refhub.elsevier.com/S1383-7621(21)00143-0/sb37

	In-circuit tuning of deep learning designs
	Introduction
	Background and preliminaries
	Convolution neural networks (CNNs)
	Convolution layers
	Fully-Connected (FC) layers
	Rectified Linear Unit (ReLU)
	Max-pooling

	Domain-specific debug instrumentation
	Selective matrix tracing
	Selective compression
	Flexible trace buffer


	Debug and tuning instrumentation
	Debug of fused convolution blocks
	Overflow of CNNs on FPGA
	The novel overflow instruments
	Overflow map instrument
	Overflow statistics instrument

	Overlay-based overflow instruments
	Mixed precision CNNs

	Implementation
	Hardware architecture
	Prototype toolflow of otune

	Results and discussion
	Experiment setup
	Resource utilization and overhead of overlays
	CNN accuracy fine-tuning with mixed precision
	Speedup
	Comparison with previous work

	Conclusions and future work
	Declaration of competing interest
	Acknowledgment
	References


