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T his article presents a powerful and innovative approach to us-
ing spiking neural networks for financial time-series prediction. 
The novelty of our approach, which we call “unsupervised spike 
learning,” is that it predicts spikes in the price time series instead 
of price movement and direction. We adopt the unsupervised 

spike-timing-dependent-plasticity (STDP) learning method, such that 
teaching signals are no longer required. A new model topology for spiking 
neural networks is adopted in our approach and several spike definitions are 
presented. Based on this new approach, three rewarding high-frequency trad-
ing strategies are developed and backtested. Using intra-day high-frequency 
tick data for crude oil futures and gold futures prices, the results of various 
experiments using unsupervised spike learning are reported. The experimen-
tal results show that this approach performs well, achieving high accuracy in 
predicting price spikes. Moreover, our experiments demonstrate that using 
the STDP learning rule, a spiking neural network can recognize patterns 
hidden in historical price time series and can also be used to predict price 
spikes. We also report the results of applying novel intra-day high-frequency 
trading strategies that combine our unsupervised spike learning approach 
with traditional trading strategies. These new trading strategies are backtested 
in the crude oil futures market. The Sharpe ratio of each strategy is more than 
20, showing that the new strategies are continuously profitable.

Introduction
Financial markets have been evolving for hundreds of years. Techniques for 
predicting the prices of financial instruments trading on the markets have 
been of great interest to theoreticians and practitioners alike. Such financial in-
strument price prediction remains a challenging task due to the non-stationary 
feature of the financial time series, as well as the wide range of factors that can 
impact the asset price. The distribution of asset returns is consequently also 
very difficult to model, being generally non-stationary and skewed. Despite 
– or perhaps because of – such challenges, the domain of financial instru-
ment price prediction remains one of the most popular fields of research, with 
significant scope both for research and for commercial applications.

With the development of computer technology and its application by both 
traders and exchanges, together with the evolution of market micro-structure, 
price quotation and trade execution are consistently getting faster. In modern 
exchanges and trading firms, millions of orders and trades can be executed 
in a matter of seconds, enabling high-frequency/low-latency trading. Gen-
erally, high-frequency trading aims to submit large volumes of orders and 
execute trades at extremely high speeds, thereby profiting from adding up a 
large number of small quick profits. According to the law of large numbers, 
high-frequency trading is continuously profitable as long as the winning rate 
is more than 0.5. In the high-frequency world, the price is no longer affected 
by macroeconomic and political factors, where many factors are highly un-
predictable. High-frequency financial time series tend to be dominated over 
extremely short timescales by market microstructures and the trading behav-
ior of market participants, both of which are affected in turn by the relatively 
large number of electronic market participants. As a result, modern statistical 
and machine learning methods tend to be well suited to modeling high-

frequency financial time series, compared to low-frequency time series such 
as daily returns. This article focuses on exploring the applicability of statistical 
learning methods to predicting high-frequency financial time series.

In the past few years, artificial neural networks (ANNs) and deep learn-
ing have experienced significant success in many applications, from natural 
language processing and machine translation to computer vision and au-
tonomous vehicles. However, though ANNs are inspired by the human brain, 
such networks operate quite differently from the biological brain. In ANNs 
and deep learning, linear layers and non-linear activation functions are used 
to form perceptrons. In addition, non-linear techniques, such as convolution 
and recurrence, are used in ANNs – unlike in the human brain. In contrast, 
in the human brain, neurons use spikes and timing to convey information 
to complete the learning task. Further, there is no backpropagation in the 
human brain, whereas most ANNs use backpropagation to learn statistical 
patterns in training data. To mimic the brain more closely, spiking neural net-
works (SNNs) were introduced. SNNs use spikes and spike timing to convey 
information and apply different learning rules – an approach which turns out 
to be far more biologically plausible. Consequently, SNNs have considerable 
potential for many applications. Moreover, SNNs have been implemented in 
hardware with high performance and low power consumption (Cheung et 
al., 2016), enabling, for example, data centers to accelerate SNN applications 
based on field-programmable hardware technology.

As ANNs and deep learning are increasingly pervasive, there is a growing 
body of research concerned with the applications of deep learning in financial 
time-series prediction. However, there is limited research concerning the 
application of SNNs in the field of financial time-series prediction, and the 
work that is available is mainly concerned with supervised learning to predict 
the direction of the price series. Unfortunately, due to the lack of an effective 
learning method and the non-stationary nature of financial time series, ex-
isting research continues to exhibit limitations, with only a few publications 
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demonstrating results capable of practical application. Specifically, we believe 
there are two important challenges that need to be addressed:

•  To demonstrate the widespread applicability of SNNs for the task of 
financial time-series prediction.

•  To develop practical applications based on SNNs for financial time-
series prediction and for risk management.

There is significant academic and industrial value of a proven approach to 
applying SNNs for financial time-series prediction, which is the main motivation 
for this article. We address the above two challenges, focusing on spiking neural 
networks in financial time-series prediction, by applying an innovative unsuper-
vised spike learning method to the development of high-frequency trading strat-
egies. Our contributions to addressing the above challenges are as follows:

•  An innovative method called “unsupervised spike learning” for address-
ing challenge one. To predict price spikes in financial time series, this 
method applies unsupervised learning to training spiking neural net-
works, achieving high predictive accuracy in forecasting price spikes.

•  Three-spike learning-based trading strategies for addressing challenge 
two. Each strategy is developed by combining our unsupervised spike 
learning method with a traditional momentum-related trading strategy. 
These strategies have been shown to be continuously profitable in the 
backtesting period for intra-day high-frequency trading. The Sharpe 
ratio of each strategy is more than 20 in backtested commodity futures.

Related work
Maass (1997) provides a thorough and complete computational model for 
spiking neural networks, showing that the spiking neural network is a univer-
sal function approximator. Since then, a huge amount of research work has 
been conducted and spiking neural networks have been successfully applied 
in various fields of machine learning and deep learning, making them the 
third-generation neural networks. However, there has been little research on 
adopting spiking neural networks for financial time-series prediction.

Sun et al. (2016) use spiking neural networks to forecast the carbon price 
time series in the InterContinental Exchange. They propose a model that 
combines the variational mode decomposition method and spiking neural 
networks. The carbon price time series is firstly decomposed into various 
relatively stable components through the variational mode decomposition 
method and then these components are input to the spiking neural network 
to obtain predictions. The learning algorithm employed for training spik-
ing neural networks is spike propagation, which is a supervised learning 
algorithm proposed by Bohte et al. (2002). Simulation results suggest that 
their proposed joint model outperforms conventional models; however, the 
contributions made solely by spiking neural networks are not quantified. 
Another research work on spiking neural networks in finance is that by Reid 
et al. (2014). A novel type of spiking neural network, the polychronous spik-
ing network, is proposed. During training, segments of price time series are 
input into spiking neural networks, and the label for a corresponding segment 
is the actual price movement direction. A supervised training method is used 
for training the spiking network. The proposed spiking neural network is 
tested on three financial time series: IBM stock data, US/Euro exchange rate, 

and Brent crude oil price data. The performance of spiking neural networks 
surpasses the performance of traditional multi-layer neural networks. Trading 
strategies are developed using the prediction results produced by polychro-
nous spiking networks, and the performance is better than their baseline.

Background
Spiking neural network basics
SNNs were originally introduced to model neuron dynamics in the human brain 
due to their biologically realistic features. The SNN approach is based on three 
key components, namely spiking neurons, spike trains, and synaptic plasticity.

Spiking neuron
The spiking neuron mimics the neurons in the human brain. Spiking neu-
rons are connected to other spiking neurons of other layers, with specified 
membrane potential and a threshold. The neuron accepts input from other 
neurons, which can increase (excitatory) or decrease (inhibitory) membrane 
potential. When the membrane potential exceeds the threshold of the neuron, 
it emits a spike. The most famous and popular model for spiking neurons 
is the leaky integrated-and-fire (LIF) neuron model. The dynamics of the 
LIF neuron model can be described by the following formula (Ponulak & 
Kasiński, 2011):

C du
dt

 (t) = – 1
R

 u(t) + (io(t) + Σj 
wj ij (t))

Spike trains
A spike train is a form of language that encodes the information in the out-
side world or the data. A chain of 0s and 1s can illustrate this. For sample, in 
the sequence 00101000, the first two 0s are the normal stage before the first 
spike. Then a spike is emitted. After the first spike, the neuron returns to the 
former stage and after a small while (the 0), it spikes again. This sequence 
is called a spike train. Since the spikes are all in the same form for all the 
neurons, one spike cannot encode any useful information. Instead, it is the 
number of spikes and the frequency of spikes, as well as the timing of spikes, 
that convey the information.
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Synaptic plasticity
Synapses connect neurons, such that spikes are transmitted between neurons 
via synapses. Each synapse is associated with a weight, which is used to scale 
the incoming spike train. There are two types of synapses: excitatory and 
inhibitory. If the spikes transmit via an excitatory synapse, the membrane 
potential of postsynaptic neurons increases; otherwise, for inhibitory neu-
rons, the membrane potential decreases. In biological brains, synapses are 
strengthened or weakened during the learning process, and this is known as 
synapse plasticity. Similarly, in spiking neural networks, during the training 
process the network adjusts the weights of the connections (synapses) so that 
the network learns to recognize certain patterns in the data.

SNN input encoding
Spike trains are the only carriers of information transferring inside the spik-
ing neural networks. As a result, the inputs to spiking neural networks must 
also be spike trains. However, most of the time the raw input is a series of 
floating-point numbers, so an encoding scheme is required to convert the 
raw input into spike trains. The most popular method is the Poisson encoding 
method. Details about the Poisson encoding method can be found in Heeger 
and Heeger (2000).

SNN dynamics
Figure 1 shows the dynamics of a spiking LIF neuron. In the beginning, the 
spiking neuron is at resting potential, and then the input spike trains arrive. 
The input spike trains provide stimulation, increasing the membrane poten-
tial of the neuron towards the threshold θ. Once the membrane potential 
exceeds the threshold θ, the spiking neuron emits a spike and the membrane 
potential is reset to resting level. The emitted spike trains are the input spike 
trains for the spiking neurons in the subsequent layer. In addition, for each 
timestamp, if there is no spike emitted, the membrane potential decreases by 
a small amount. In Figure 1, the middle part shows the change of membrane 
potential of a spiking neuron; in the lower part, the vertical bars represent the 
firing times of the spiking neuron.

Unsupervised STDP learning rule in spiking neural networks
Spike-timing-dependent plasticity (STDP), which is an unsupervised learning 
rule, is the most famous learning rule in spiking neural networks (Caporale 
& Dan, 2008). The main idea of STDP is to adjust the weights of the synapses 
according to the relative timing of their spikes. Intuitively, if a postsynaptic 
neuron spikes a little bit after a presynaptic neuron, the synapses between 
them are strengthened. On the contrary, if a postsynaptic neuron spikes a 
little bit earlier than a presynaptic neuron, the synapses between them are 
weakened. It has been shown that when used properly with appropriate 
encoding methods and network structures, STDP has mechanisms similar to 
those of expectation-maximization algorithms, so that it can learn the pat-
terns of certain distributions. The mathematical formula for the STDP learn-
ing rule is (Tavanaei et al., 2019):

if tpre − tpost ≤ 0

∆w = A exp(
–|tpre − tpost|

τ ), where A > 0
 else

∆w = B exp(
–|tpre − tpost|

τ ), where B > 0

Unsupervised spike learning methodology
This section presents the innovative unsupervised spike learning method. The 
novel elements of the proposed approach are briefly listed as follows:

1. Use unsupervised learning instead of supervised learning.
2. Predict spikes in price time series instead of price movement directions.
3. Use innovative model topology, including local connections.
4. Use intra-day high-frequency data instead of daily close data.

Data
Description
High-frequency future-contract tick data are used in unsupervised spike 
learning experiments. We collected price tick data of two commodities traded 
on the Chicago Mercantile Exchange, crude oil futures and gold futures, for 
all 23 trading days in May 2017. The data comprise the transaction price and 
transaction size for all the contracts of crude oil and gold futures. Our experi-
ments are carried out on dominant contracts, which are contracts with the 
most trading volume on a trading day.

Data pre-processing
The raw price time series cannot be input directly to a spiking neural net-
work. A series of pre-processing is conducted as follows.

Step 1: Volume-weighted average price. The volume-weighted average price 
(vwap) is used in the proposed unsupervised spike learning method. For a 
time period whose number of transactions is denoted by num, the formula 
for calculating the vwap is

vwap = P1 ∗ V1 + P2 ∗ V2  + ... + Pnum ∗ Vnum

V1 + V2 + ...  + Vnum

Figure 1: Schematic diagram for dynamics of LIF neurons in spiking 
neural networks. The diagram shows input spike trains, change of 
membrane potential, and output spike trains. Adapted from Ponu-
lak and Kasiński (2011)
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Figure 2: Comparison of the raw transaction price and the vwap. The two panels show the price move for the same contract for the same 
period. The vwap is smoother and the spikes are more obvious here. Note that the x-axis of the left panel is 10 times the x-axis of the right 
panel since we use window length 10 to aggregate the raw price into vwap.

The reason for converting the raw price to the vwap is that the vwap move is 
much more smooth and can avoid the “zig-zag” noise of the raw price. There is 
a large proportion of trading time in which the transaction price oscillates be-
tween the best bid and best ask prices, leading to the “zig-zag” behavior of the 
raw price. The noise resulting from these oscillations can affect the capability 
of a spiking neural network to identify price spikes and trends. Thus, convert-
ing to vwaps can significantly improve the performance of our spiking neural 
network. Besides, aggregating raw prices also greatly decreases the amount of 
data points, which makes training and testing faster. Furthermore, it binds vol-
ume information into the price series, which is more rational in an economic 
sense. Figure 2 compares the raw transaction price and the vwap.

Step 2: Price difference and negative price difference. The vwap is still not the 
input to the spiking neural network model. The next step is to take the price 
difference and the negative price difference between adjacent timestamps in the 
vwap time series. The reasons for this pre-processing technique are as follows.

First, differencing the price time series can remove the day-trend compo-
nent in price time series so that a spiking neural network can focus on recog-
nizing high-frequency intra-day local price spiking behavior. Even though the 
data in our unsupervised spike learning experiment are intra-day, meaning 
that there is no seasonal information in the price time series, there still exists 
a trend component in the price time series. This is the trend in the whole 
trading day. The trend component interferes with the recognition of local 
price information and causes a disturbance to the detection of price spikes. In 
Figure 3, unobserved components analysis is applied to price time series and 
price difference time series separately. The results show that differencing the 
price time series removes the trend component, so that the price difference 
time series is better than the price time series as input to spiking neural 
networks. For details about the unobserved components analysis method and 
the algorithmic process for generating Figure 3, refer to Seabold and Perktold 
(2010) and Durbin and Koopman (2012).

Second, the effect of the different magnitude of the price needs to be 
eliminated. The financial market is never static, sometimes the commodity 
price varies so much that there is a large gap between the open price and 
the close price. As a result, the input spike trains may have a systematic 
bias for different trading times. For example, if there is a great price drop in 
a day, the price near the opening time will have a much larger magnitude 
than the price near the closing time; this would cause the rate of the spike 
train in the beginning hour of trading to be systematically higher than the 
rate of the spike train in the hour before the market closing time. Con-
sequently, the bias will lead to a systematic difference in spike frequency 

for different trading hours. However, the price spikes are only related to 
the price change, not the magnitude of the price. Such bias can influence 
the performance of a spiking neural network. Taking price difference and 
negative price difference can eliminate this bias caused by the different price 
magnitudes. Using this technique, the input now represents the magni-
tude of the price change instead of the price itself, which is exactly what is 
needed to catch the price spike.
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For financial data, price spikes can be generated not only by price surges, 
but also by price plunges, hence both positive and negative price differences 
carry information. However, due to the features of spiking neural networks, 
their input data need to be normalized to non-negative intervals. If we feed 
only price difference data to the network, during data normalization, negative 
price trend information will be lost. Hence, we feed both positive price differ-

ence and negative price difference into the spiking neural networks to identify 
price spikes due to both price surges and price plunges.

Step 3: Data normalization. The last pre-processing step is to normalize 
the data. The data normalization process is essential before input to spik-

ing neural networks. The reason is that the input trains to spiking neural 
networks involve Poisson encoding, which requires a positive rate, while the 
price change can be negative. The normalization approach in our unsuper-
vised spike learning method is similar to z-score normalization, but the new 
mean value is positive, not zero. Given the target mean value and standard 
deviation, the formula for the normalization method is

zi = max ( xi – ∗ mean(x)
stdev(x) ∗ new_stdev + new_mean,       0)

where mean(x) and stdev(x) are the mean and standard deviation of the initial 
data, while new_mean and new_stdev are the mean and standard deviation of 
the data after normalization. new_stdev and new_mean are two hyperparam-
eters. In particular, new_mean requires attention since it is directly related to 
the spiking frequency of a spiking neural network. Since the Poisson encod-
ing requires the input to be non-negative, the max operator is applied to clip 
the negative value among normalized data to zero.

In the context of the proposed unsupervised spike learning method, one 
pitfall in the data normalization process is to use the min-max normalization 
method. The reason is that this method can be seriously affected by the extreme 
values in time-series data. For example, if there is an abnormally large value in 
the data, then after min-max normalization, most of the data will be in a small 
range near the new_min value, while this large value will be new_min + new_
range. Hence, the normalized data would be affected by this abnormal value, 
which distorts the information contained in the price time-series data, resulting 
in an adverse impact on the predictive performance of spiking neural networks.

Figure 3: Unobserved component model analysis for price time series and price difference time series. The left panel is for price time series and 
the right panel is for price difference time series. The figure shows that differencing the price time series removes the trend component in price 
time-series data.

SPIKING NEURAL NETWORKS

24 wilmott magazine

In the context of the proposed 
unsupervised spike learning 
method, one pitfall in the data 
normalization process is to use 
the min-max normalization 
method



Spike definitions
In this section, several important definitions about spikes in price data are 
introduced. The definition of price spikes here is not the same as the literal 
meaning of “spike.” These definitions will be used to evaluate the performance 
of the unsupervised spike learning method.

Real spike vs. fake spike
To identify the spikes in price movement, the first thing to do is to define the 
criterion for a “real” spike. Thus, when a spiking neural network emits a spike 
signal, we can judge whether this spike is a valid spike with this criterion, 
making it possible to calculate the accuracy of spike prediction. The intu-
ition for classifying spikes as real spikes or fake spikes is mainly based on the 
return between adjacent price timestamps. If the average return in the extent 
of the spike is larger than a threshold, the spike is classified as a real spike, 

otherwise it is regarded as a fake spike. Since the price series can be both up 
and down in the whole interval of a spike, the absolute value of returns is 
used in our calculation, allowing a strong trend in the same direction and 
strong ripples (fluctuations) in both directions to be considered.

The criterion is related to the absolute value of the percentage return 
of the intra-day price series. The price data have been pre-processed and 
aggregated to produce vwap data. Then we use this time series to get all the 
percentage returns between adjacent vwaps. Taking the absolute value of 
the percentage return yields the required absolute percentage return. Let Xt 
denote the vwap time series at time t. The formula for the absolute percentage 
return is then

rt = | 
Xt +1

Xt
 –1|,           where t = 1,2,3,..., n – 1 

Now, the rt (t = 1, 2, 3, ..., n – 1) time series is the intra-day absolute return 
series of the vwap. We define the “pivot return” as the median of the rt series:

rpivot = median(rt),           where t = 1,2,3,..., n – 1

Notice that the median return of the entire day is used. Since the definition 
of a real spike is used for evaluation after the whole experiment, it does not 
introduce future information into the experimental process. When a spiking 

neural network gives out a spike at a certain timestamp, we use the average 
vwap return (absolute value) of a certain time period immediately after the 
spike timestamp as the strength of this spike. So, for the spike S:

Sstrength = |rt +1| + |rt +2| + |rt +3| + ... + |rt + window |
window

In the above formula, t is the timestamp of the spike S, and window is the 
length of the period, based on the number of vwap data updates. If Sstrength is 
greater than rpivot, this spike is defined as a “real” spike, otherwise the spike 
is regarded as a “fake” spike. The intuition behind this criterion is that, for a 
spike to be real, the price needs to change drastically around the timestamp of 
the spike.

Momentum vs. reversion spike
Another classification of the price spike is determined by the vwap both 
before and after the timestamp of the spike signal. The two categories are 
called “momentum” spike and “reversion” spike. The motivation behind these 
definitions is as follows.

As before, we first get the Pprior_avg:

Pprior_avg = Pt+window + Pt+window+1 + ... + Pt–2 + Pt–1

window

where t is the timestamp of the spike signal, and window is the length of the 
time period prior to the spike. Similar to Pprior_avg , we define Ppost_avg as the aver-
age vwap of a time period immediately after the timestamp of the spike signal:

Ppost_avg = Pt +1 + Pt +2 + ... + Pt + window

window

where t is the timestamp of the spike, and window is the length of the time pe-
riod after the spike. Using Pspike to denote the price at the timestamp of the spike, 
we calculate the difference between Pprior_avg and Pspike , as well as the difference 
between Ppost_avg and Pspike . The sign of the product of the two resulting differences 
is the foundation to classify the price spike as “momentum” or “reversion”:

mom_rev_flag = (Pprior_avg – Pspike) ∗ (Ppost_avg – Pspike)

If mom_rev_flag is greater than 0, the spike is defined to be a reversion spike, oth-
erwise the spike is a momentum spike. The insights for this definition are that, if 
mom_rev_flag is positive, meaning the price before and after the spike lies on the 
same side of the price at the timestamp of the spike signal, then the direction of 
the price move changes after the spike. However, if mom_rev_flag is negative, the 
two mean prices lie on both sides of the price at the spike signal time, meaning 
that the direction of the price movement doesn’t change after the spike.

Network topology
Basic components
This article adopts the LIF model for the neurons in spiking neural networks. 
All neurons in a spiking neural network are of the same type. The connec-
tions between different layers are called synapses. Every synapse connects two 
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neurons between adjacent layers by a weight w, and the weights are updated 
according to the unsupervised STDP learning rule.

Double-input model
We adopt the double-input model for the proposed unsupervised spike learn-
ing method, which has a more complicated structure than a naive feedfor-
ward neural network. As it is called, the input layer has two neurons (called 
X1 and X2, respectively) and is of dimension two. The input to a double-input 
model is the price difference series and the negative price difference series, as 
discussed in the section on experimental results. It has one hidden layer and 
one output layer. The hidden layer is divided into two parts, H1 and H2. One 
of the neurons in the input layer is fully connected to all neurons in H1, while 
the other input neurons are connected to all neurons in H2. As a result, the 
topology is not in the complete fully connected style commonly found in tra-

ditional ANNs. The numbers of neurons in H1 and H2 are both hyperparam-
eters, and in our experiments their default values are determined heuristically 
to be 64. As usual, no connection exists between neurons of the same layer; 
also, there is no connection between H1 and H2 in the hidden layer.

As for the output layer, it has only one LIF neuron. Only the spikes emitted 
by the neuron in the output layer are considered a spike signal of the network, 

which is treated as the prediction for a price spike at that trading timestamp. The 
connections between the hidden layer and the output layer are of fully connected 
style, with synapses from all neurons in the hidden layer (including those in H1 
and H2) to the output neuron. Since the hidden layer is divided into two parts 
and both parts are fully connected to the output layer, the two parts have a com-
peting relationship for spikes due to the mechanism of the STDP learning rule. 
To some extent, each part plays an “inhibiting” role with regard to the other part. 
Figure 4 depicts the topology of our double-input model.

Simulation process
The whole simulation process of the proposed unsupervised spike learning 
method is composed of encoding the input into spike trains, propagating 
spikes along the network, and catching the output spike for analysis.

Input encoding
For double-input model topology, two time series are pre-processed. One 
is the price difference and the other is the negative price difference time 
series, obtained by multiplying the price difference by −1. The pre-processing 
techniques are the same for the two time series. For every time series, Pois-
son encoding is carried out to generate spike trains. In the end, if we have N 
timestamps, and the simulation time is denoted by T, then we have 2N spike 
trains of length T as input to the spiking neural network. For each simulation 
step, two spike trains are input to the network.

Spike propagation and learning
After spike trains are input to the spiking neural network, the spikes propagate 
through the network. The propagation follows the direction of the connec-
tions inside the network, as well as the spiking rule of LIF nodes. Once a LIF 
neuron receives a spike, the membrane potential of that neuron increases by 
the corresponding weight of the associated synapse, and once the membrane 
potential exceeds the pre-determined threshold, the neuron gives out a spike, 
which is propagated by the synapse to the subsequent neuron. For every simu-
lating time step, if the neuron does not emit a spike, the membrane potential 
decreases by a small amount, where the value of this amount is a hyperparam-
eter. If a spike is emitted, the membrane potential of the emitting neuron is 
reset to the initial resting potential. After a neuron spikes, there is a refractory 
time for this neuron in which the neuron cannot spike again no matter what 
the potential is. The length of the refractory time is also a hyperparameter. As 
for learning, all connection weights are updated by the STDP learning rule.

Output and performance analysis
For the spiking neural network in our approach, the output layer has only one LIF 
neuron and only the spikes emitted by the output neuron are considered a price 
spike signal emitted by the spiking neural network. Throughout the simulation 
process, all price spike signals and the corresponding timestamp are recorded. 
Using the recorded price spike signals and the price time series, performance 
metrics of the method can be calculated to evaluate the prediction accuracy.

One important aspect of our approach is that no future information 
is used when predicting price spikes. In our unsupervised spike learning 
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method, the input to a spiking neural network is a time series. Thus, every 
price spike signal that a spiking neural network emits is based on a historical 
time series. No future information is available at that timestamp.

Performance metrics
The performance metrics in unsupervised spike learning are mainly about the 
percentage of several types of price spikes among all price spike signals. The 
most important metric is spike accuracy, defined to be the percentage of real 
spikes among all price spike signals emitted by the spiking neural network. For 
unsupervised spike learning, the ability to predict price spikes can be confirmed 
by high spike accuracy. Other metrics include the percentage of momentum 
spikes among all emitted spikes. The percentage of reversion spikes is not used, 
since it is given by 100 percent minus the momentum spike percentage, as a 
result of our definitions. The momentum spike percentage is important in shed-
ding light on the logic in developing spike learning-based trading strategies. 
Table 1 summarizes the performance metrics used in the experiments.

Table 1: Performance metrics in the unsupervised spike learning method

Performance metrics Calculation formula

Spike accuracy Real spike number/total spike number

Momentum spike percentage Momentum spike number/total spike number

Unsupervised spike learning experimental details 
and results
Two experiments are carried out to verify the effectiveness of the unsuper-
vised spike learning method. The two experiments are the train-test experi-
ment and the transfer experiment. The model topology and the main perfor-
mance metrics used for each experiment are listed in Table 2.

Table 2: Model topology and main performance metrics used in the 
experiments of unsupervised spike learning

Experiment Model topology Performance metrics

Train-test experiment Double-input model Spike accuracy, momentum spike percentage

Transfer experiment Double-input model Spike accuracy

Experimental details
Train-test experiment
The train-test experiment applies a common method for testing the perfor-
mance of the unsupervised spike learning method. The data are split into a 
training set and a testing set, where the training set is used to train the model 
while the testing set is used to test the model. In unsupervised spike learn-
ing experiments, the data are price time-series data of 23 consecutive trad-
ing days in May 2017. Since the experiments are focused on intra-day price 
behavior, the price series in one day is regarded as the smallest unit. Thus, 
the method to split the dataset here in the train-test experiment is to use the 
price time series in one day as the training set, and the data in the following 
day become testing data for the model trained. The training set and testing set 

are selected on a rolling basis. Specifically, the first model is trained using the 
price time series of the first day and tested on the second day’s price time se-
ries. Next, the second day’s price data become the training set and the trained 
model is tested on the price time-series data of the third day, and so on. In 
this way, the price time-series data of all trading days, except for the first and 
last day, will act as both training set and testing set, each for one time. The 
price time series of the first day only performs the role of training set, while 
the price time series of the last day only acts as testing set. In this way no 
future time series is used for predicting past time series.

Transfer experiment
The train-test experiment is carried out on both crude oil future price data 
and gold future price data. However, since the two time series are both com-
modity future price time series, common features should exist in their price 
behavior. Take technical analysis for example: the classical technique can be 
applied to all kinds of future price time series. It is of great interest whether 
the spiking neural network trained on one future price time series is able 
to predict price spikes in the price time series of another kind of future. To 
figure out this issue and to further investigate the potential financial time-
series prediction power of our unsupervised spike learning method, a transfer 
experiment is carried out based on both price time series.

The fundamental idea for the transfer experiment is to train the spiking 
neural network on one future price dataset and test the trained spiking neural 
network on another future price dataset. For all trading days, both crude oil 
future price data and gold future price data are available. For every trading 
day, a spiking neural network is trained using the crude oil price data of that 
day, and the trained spiking neural network is tested on gold price data of the 
same day. After that, training data and testing data are interchanged. For each 
trading day, gold future price data becomes training data and crude oil future 
price data becomes testing data. Performance metrics on testing data for both 
rounds are calculated and the test results are evaluated.

Experimental results
The results for the three experiments are shown in Table 3. The results show 
that the spike accuracy is around 66 percent for crude oil and around 60 per-
cent for gold in both training and testing experiments, which is significantly 
greater than 50 percent and illustrates the potential of our unsupervised spike 
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learning method. The momentum spike percentage is continuously greater 
than 50 percent, which inspires the development of the strategies in the fol-
lowing sections. As for the comparison between the train-test experiment and 
the transfer experiment, there is no significant difference between the results 
of the two experiments, which shows that the two securities behave the same 
from a micro-transaction perspective.

Table 3: Results for train-test experiment and transfer experiment

Experiment Category Spike accuracy 
(avg)

Momentum spike 
percentage (avg)

Train-test experiment Crude oil-train 66.07% 53.66%

Crude oil-test 65.94% 54.00%

Gold-train 58.92% 54.74%

Gold-test 58.70% 54.52%

Transfer experiment Crude oil-test(trained on gold) 65.83% 53.28%

Gold-test(trained on crude oil) 59.78% 53.86%

Spike learning-based trading strategies and backtest  
performance
Strategy details
The novel unsupervised spike learning method addresses the first challenge 
mentioned in the introduction section. The method innovatively solves the 
prediction problem by predicting price spikes instead of price movement 
direction. Meanwhile, it applies the unsupervised STDP learning method to 
train the spiking neural networks, which no longer require teaching signals. 
The experimental results suggest that the method achieves high prediction 
accuracy in predicting price spikes, and the momentum spike percentage is 

systematically greater than 0.5. Based on the successful results of the unsu-
pervised spike learning experiments, three high-frequency trading strate-
gies are put forward to address the second challenge. These three strategies 
are developed by combining the novel unsupervised spike learning method 

with classical trading strategies and technical analysis indicators. The general 
procedure for establishing the novel strategies is to use price spike signals for 
strategic timing of entering a position, followed by the direction determina-
tion (long or short) according to the logic of traditional strategies. Specifically, 
the first step is to run the unsupervised spike learning method for target price 
time series. Whenever a price spike signal is generated, a position is ready to 
be established at the corresponding timestamp. The next step is to determine 
the direction of the position according to the logic of the traditional strategy. 
Finally, the position is entered and is held for a specific period of time.

The three strategies share some common assumptions. The initial capital 
value is 1. For the sake of convenient calculation of strategy profits, the 
order size of each order is the exact quantity such that the notional value of 
the order is 1. The order price is the vwap at the timestamp that is one step 
later than the price spike signal. Each position is held for n vwap time-
stamps and closed afterwards, using the vwap at the corresponding closing 
timestamp. The hyperparameter n in the backtest has value 3. The position 
is closed using market order should there be a remaining position at the 
end of each day.

Spike learning-based momentum strategy
The first strategy is called the spike learning-based momentum strategy, 
which is a combination of our unsupervised spike learning method and the 
traditional momentum strategy. The traditional momentum strategy believes 
that the strong movement in the market is most likely followed by another 
strong movement in the same direction. The price movement has a moving 
momentum, which is similar to the notion of “momentum” in physics. Thus, 
in momentum strategy a long position is established after a sharp price rise, 
while a short position is entered after a price plummet, hoping to profit from 
the momentum of the price movement.

When combined with traditional momentum strategy, the price spike 
signals in the unsupervised spike learning method are regarded as “momen-
tum” signals for entering a position, where the direction of the position is 
determined by the price movement prior to the price spike signal. The logic is 
that a surge or plummet in price will cause a price spike, and the momentum 
of the price movement still exists after the price spike signal, thus the price 
will continue to move in the same direction as before. In this strategy, a price 
spike signal emitted by the spiking neural network leads to a portfolio posi-
tion consistent with the direction of the prior price movement. Specifically, 
multiple spikes are emitted by the spiking neural network in our unsuper-
vised spike learning method. For each spike signal, the strategy enters a posi-
tion at the corresponding timestamp. The long/short direction of the position 
is determined by position_flag:

position_flag = Pt+window + Pt+window+1 + ... + Pt–2 + Pt–1

window  – Pt

where t is the timestamp when the spike signal is emitted, window is a parameter 
for the strategy, and the default value in backtest is 3. The procedure for deter-
mining the direction of the position is in Strategy Logic 1. Other configurations 
include those where the default holding period is three and no leverage is used.
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Strategy Logic 1: Spike learning-based momentum strategy 
1: Calculate position_flag
2: if position_flag > 0 then Enter short position
3: else if position_flag < 0 then Enter long position
4: else No transaction
5: end if 

Spike learning-based Alexanders filter strategy
The second strategy is called the spike learning-based Alexanders filter strat-
egy, which is a combination of our unsupervised spike learning method and 
the Alexanders filter indicator. The logic of this strategy is similar to the logic 
of the first strategy; however, the new strategy uses a different indicator called 
the Alexanders filter to determine the directions of entered positions. The 
Alexanders filter is a simple technical analysis indicator defined mainly by a 
quotient of two prices:

ALF = ( Pt

Pt – n
 – 1.0) ∗ 100

where t is the timestamp when the spike signal is emitted, n is a parameter 
for the strategy, and the default value in backtest is 1. The strategy follows the 
logic shown in Strategy Logic 2.

Strategy Logic 2: Spike learning-based Alexanders filter strategy 
1: Calculate ALF
2: if ALF > 0 then Enter long position 
3: else if ALF < 0 then Enter short position 
4: else No transaction
5: end if 

Spike learning-based stochastic oscillator strategy
The third strategy is called the spike learning-based stochastic oscillator 
strategy, which is a combination of our unsupervised spike learning method 
and the stochastic oscillator indicator. The stochastic oscillator, usually 
denoted %K, is also a technical analysis indicator with values ranging from 
0 to 100:

%K = ( Pt – Ln

Hn – Ln
) ∗ 100

where t is the timestamp when the spike signal is emitted, Ln is the lowest 
price during the past n timestamps, and Hn is the highest price during the past 
n timestamps. Here, n is a parameter for this strategy, and the default value in 
backtest is 3. The strategy follows the logic shown in Strategy Logic 3.

Strategy Logic 3: Spike learning-based stochastic oscillator strategy 
1: Calculate %K
2: if %K > 50 then Enter long position 
3: else if %K < 50 then Enter short position 
4: else No transaction
5: end if

Comparative performance of popular time-series models
To quantify the improvements and advantages of spike learning-based trading 
strategies over the trading strategies based on popular time-series models, 
strategies based on two popular time-series models are also backtested in 
the same price dataset. The two time-series models are the long short-term 
memory (LSTM) model and the autoregressive integrated moving average 
(ARIMA) model. For the LSTM model, future price movement direction is 
predicted based on past n observations of the price time series. The prediction 
is represented in the form of the probability of price rising. If the probability 
is higher than a threshold, a long position is established; if the probability is 
lower than another threshold, a short position is entered. The n and the two 
thresholds are all hyperparameters. The hyperparameters are tuned such that 
the LSTM-based strategy has similar average daily transaction numbers to the 
spike learning-based strategies. For the ARIMA model, the price of the next 
timestamp is predicted using past n observations of the price time series. If 
the predicted price is higher than the current price, a long position is estab-
lished; otherwise, a short position is entered. An interval of fixed length is in-
troduced between two predictions to make the ARIMA strategy have proper 
average daily transaction numbers. The two strategies work as the control 
group and their backtest performances are given below.

Comparative performance of naive versions of proposed strategies
Besides the performance comparison with popular time-series models, for 
each proposed spike learning-based trading strategy, a naive version of the 
corresponding strategy is also backtested in the same price dataset. This 
kind of comparison quantifies the improvement that the unsupervised spike 
learning method provides in each trading strategy. The naive version of each 
strategy removes the spike signal information provided by the unsupervised 
spike learning method; instead, transaction timestamps are randomly chosen 
from the price time series, ensuring that the transaction number is the same 
as in the corresponding spike learning-based strategy version. Take momen-
tum strategy for example. If in one trading day the spiking neural network 
generates n spike signals such that the spike learning-based momentum 
strategy has n transactions, the naive version of momentum strategy random-
ly chooses n timestamps for trading transactions in this day, where at each 
timestamp the direction is determined by the rules of momentum strategy. 
The same logic applies to naive versions of the Alexanders filter strategy and 
the stochastic oscillator strategy.

Strategy performance
The three proposed strategies are backtested in crude oil future price time series 
for all trading days in May 2017. The price data in this month cover various 
market conditions. There are eight days when the price time series is in a trend-
ing market state, with four days of uptrending and four days of downtrend-
ing; for the remaining trading days the price time series fluctuates in the day 
to a varying extent. The data also incorporate both quiet market periods and 
volatile market periods. Using the high-frequency intra-data, the volatility for 
each trading day can be calculated. For the whole backtesting period, there are 
five days that have volatilities smaller than 20 percent and four days that have 
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Strategy Accumulated return 
(one month)

Annualized volatility Sharpe ratio Win rate Profit/loss ratio Transaction number 
(daily avg)

Momentum – spike based 105.17% 59.17% 21.28 52.42% 1.022:1 2586

Momentum – naive version 76.51% 51.09% 17.91 51.20% 1.013:1 2586

Alexanders filter – spike based 134.14% 66.27% 24.24 53.05% 1.050:1 2586

Alexanders filter – naive version 98.41% 53.24% 22.12 51.39% 1.048:1 2586

Stochastic oscillator – spike based 119.89% 59.98% 23.94 52.84% 1.031:1 2586

Stochastic oscillator – naive version 78.21% 48.55% 19.27 51.03% 1.024:1 2586

LSTM model 101.72% 120.30% 10.12 53.53% 1.007:1 2158

ARIMA model 46.34% 32.21% 17.17 49.73% 1.016:1 2782

Table 4: Backtest performance of all strategies

volatilities greater than 30 percent, with the remaining days having volatilities 
between 20 and 30 percent. Overall, the price data selected for backtesting are 
able to represent various market conditions and different market regimes.

The corresponding naive versions of the strategies and the strategies based 
on two popular time-series models are backtested in the same price dataset. 
To reduce uncertainty in backtesting performances of the naive strategy 
versions, each naive strategy is backtested 100 times and the performance 
metrics are calculated based on the average statistics of the repetitive back-
testing. All the performance statistics are listed in Table 4. It turns out that 
the backtest results of the three strategies are incredibly remarkable. Each 
strategy makes continuous profits in the consecutive 23 trading days, with the 

Alexanders filter strategy accumulating the most profit and having the highest 
Sharpe ratio. For profitability and Sharpe ratio, the proposed spike learning-
based trading strategies perform much better than both LSTM and ARIMA 
strategies. Compared with the LSTM strategy, the spike learning-based strate-
gies have similar win rates, but higher profit/loss ratios and lower volatilities. 
Though the ARIMA strategy has lower volatility, the proposed strategies have 
higher win rates and profit/loss ratios. The comparison with naive strategy 
versions shows that the spike learning-based strategy versions are systemati-
cally better than the corresponding naive strategy versions, which confirms 
the significant contributions that the unsupervised spike learning method 
makes for the proposed trading strategies.

Insights and evaluation
Unsupervised spike learning experimental results and strategy perfor-
mance analysis
The experimental results involving the unsupervised spike learning method 
show that the method performs very well. The spike accuracy is around 66 
percent in crude oil future and around 60 percent in gold future. Due to the 
usage of “median return” in defining “real spike,” the bottom line for the 
performance of any method is 50 percent. The spike accuracy results in these 
experiments, which are significantly more than 50 percent, confirm that the 
unsupervised spike learning method is capable of predicting price spikes 
precisely.

The momentum spike percentage is about 54 percent in our experiments. 
We found this performance metric to be stably greater than 50 percent, which 
indicates that the unsupervised spike learning method tends to detect a price 
spike at an early stage. This could also be the reason for the good performance 
of trading strategies based on momentum or momentum-related indica-
tors. The proposed three-spike learning-based trading strategies achieve 
strong performance in backtesting results, with the Alexanders filter strategy 
working best. All strategies at least double their net value in one month, with 
Sharpe ratios all being more than 20. The win rates are all greater than 50 
percent and the profit/loss ratios are all greater than 1. As our spiking neural 
network generates thousands of trading signals per day, each strategy is able 
to make continuous small profits every day due to the law of large numbers. 
The comparison with popular strategies based on time-series models, as well 
as naive versions of the proposed strategies, also favors the proposed spike 
learning-based trading strategies.

In practice, the three-spike learning-based strategies are all analogous to a 
strategy called “scalping,” popular in the futures markets. Scalping profits from 
small price changes, usually at sub-minute level. A successful scalper has a 
relatively high ratio of winning trades versus losing ones, while keeping profits 
roughly equal or slightly bigger than losses. The spike learning-based strategies 
have many features in common with scalping. The win rates are greater than 
50 percent, and the profit/loss ratios are slightly more than 1. However, in the 
proposed three-spike learning-based strategies, trading transactions happen at 
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the seconds level, not at the minutes level. By combining traditional strategies 
with our unsupervised spike learning method, the manual “scalping” is carried 
out automatically at higher frequency by computers.

Relationship to technical analysis
During the STDP learning process of the unsupervised spike learning 
method, neurons inside spiking neural networks become more and more 
selective to hidden patterns inside the inputs, which are salient and presented 
consistently in inputs (Masquelier & Thorpe, 2010). Consequently, the STDP 
learning rule makes the spiking neural network increasingly sensitive to pat-
terns repetitively presented in the input. For the spiking neural network in 
our unsupervised spike learning method, the improved ability to recognize 
specific patterns results in successful predictions in financial price time series 
and profitable trading strategy. One hypothesis for this success is that in the 
proposed unsupervised spike learning method, the spiking neural network 
effectively performs technical analysis on the price time series. The transfer 
experiment described earlier in this article appears to confirm this hypothesis.

The price data in the transfer experiment involve different types of futures 
in training and testing. The spiking neural network is trained by crude oil 
future price and tested by gold future price, or vice versa. Results in Table 3 
show that the testing results have no significant difference from the training 
results. This implies that spiking neural networks trained by one future price 
time series can be successfully applied to another kind of future price time 
series, even though there are different characteristics between the two future 
price time series. This is evidence supporting the existence of similar patterns 
in different future price time series.

There are many features in common between the innovative unsupervised 
spike learning method and technical analysis. Results in the transfer experi-
ment provide evidence for the argument that the spiking neural network 
performs technical analysis in the context of our unsupervised spike learn-

ing method. Technical analysis is an analytical method for examining and 
predicting price movements in financial markets, using historical price 
time-series charts. The principle for technical analysis is that when a particu-
lar pattern appears in historical price charts, the following price movement is 
predictable. The economic reason for technical analysis is that special patterns 
in historical price series imply special conditions of factors that affect price 
movements, such as investor behavior, or market supply and demand. When 
it comes to our unsupervised spike learning method, spiking neural networks 
are trained to recognize specific patterns which repetitively appear in price 

time series. The specific patterns found by spiking neural networks are analo-
gous to the specific shapes in technical analysis. Thus, the learning process of 
spiking neural networks can be considered as performing technical analysis 
in historical price series. Technical analysis is not restricted to any asset class, 
thus it can be performed in different price time series. If a spiking neural net-
work is trained to perform a task analogous to technical analysis, it must have 
extended capability to perform well in various future price time series. The 
success of the transfer experiment justifies this extended capability and shows 
the generalization power of the unsupervised spike learning method.

Conclusion and future work
Summary of achievements
Inspired by SNNs and spiking behavior in financial price time series, this 
article investigates how to use spiking neural networks in financial time-
series prediction. The innovative unsupervised spike learning method and the 
proposed spike learning-based trading strategies together successfully address 
the challenges introduced in the introduction section.

Our unsupervised spike learning method makes use of the unsupervised 
STDP learning rule. It no longer predicts the direction of price movement but 
predicts price spikes in price time series. In this way, it introduces a new ap-
proach in financial time-series prediction, without the need to label training 
data. Meanwhile, the unsupervised spike learning method deals with high-
frequency intra-day transaction data, showing its capability to study high-fre-
quency price behavior. Various spike definitions are detailed, and an innova-
tive spiking neural network topology is proposed. Customized performance 
metrics are proposed to evaluate experimental results.

Experiments using the unsupervised spike learning method are carried 
out in price time series of crude oil futures and gold futures. Two experiments 
are carried out to evaluate spike learning performance and investigate the 
mechanism inside the unsupervised spike learning method. The train-test 
experiment is aimed at testing the performance of the unsupervised spike 
learning method, while the transfer experiment is aimed at finding out the 
principles of spiking neural networks and their learning process in the unsu-
pervised spike learning method. The experimental results of the unsupervised 
spike learning method show that the method achieves excellent performance. 
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It is confirmed that the pattern recognition process inside the spiking neural 
networks is analogous to technical analysis in price time series.

As far as practical application of spiking neural networks for financial 
time-series prediction is concerned, three-spike learning-based trading strate-
gies are proposed by combining the unsupervised spike learning method with 
traditional trading strategies. Each strategy is backtested on crude oil futures 
using historical intra-day price time series. Backtest results of the strategies are 
extremely encouraging, with Sharpe ratios uniformly greater than 20. The com-
parison with two popular strategies demonstrates and quantifies the advantages 
of the proposed spike learning-based trading strategies. The comparison with 
the corresponding naive versions of the strategies shows the improvements that 
the unsupervised spike learning method brings to trading strategies.

Future work
Despite the success of the unsupervised spike learning method, there are still 
three areas in which further research is needed. The first concerns under-
standing the spikes in price time series and the process of making more pre-
cise predictions. Currently, the proposed unsupervised spike learning method 
can indicate a spike, but is not capable of predicting a specific type of spike, 
for example, momentum spike or reversion spike. Only by comprehending 
the price spike behavior can we predict the specific type of spike precisely, 
which leads to a robust and profitable trading strategy.

The second area is to optimize the parameter tuning process when apply-
ing spiking neural networks to price time-series predictions in various assets 
and more complex assets. For example, different futures have different behav-
iors, so the hyperparameters can be very different in different futures. There 
are so many hyperparameters in the setting of spiking neural networks that it 
is quite difficult to find the optimum hyperparameters for a particular asset. 
The problem is even more difficult for more complex assets, such as options 
with various maturities and strike prices.

The third area concerns computational performance and efficiency for 
spiking neural networks. Given a requirement for accuracy, it is essential 
to accelerate the computations and optimize the run time in spiking neural 
networks to meet the requirements of high-frequency trading. In the context 
of high-frequency trading, the latency is at the microsecond level, or even the 
nanosecond level. The computing process inside spiking neural networks is 
required to be ultra-efficient to meet the requirement of high-frequency trad-
ing. The trade-off between accuracy and run time will be the focus of future 
research.
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