
Enabling Fast Uncertainty Estimation: Accelerating Bayesian
Transformers via Algorithmic and Hardware Optimizations

Hongxiang Fan
Department of Computing

Imperial College London

London, UK

h.fan17@imperial.ac.uk

Martin Ferianc
Department of Electronic and

Electrical Engineering

University College London

London, UK

martin.ferianc.19@ucl.ac.uk

Wayne Luk
Department of Computing

Imperial College London

London, UK

w.luk@imperial.ac.uk

ABSTRACT

Quantifying the uncertainty of neural networks (NNs) has been

required by many safety-critical applications such as autonomous

driving or medical diagnosis. Recently, Bayesian transformers have

demonstrated their capabilities in providing high-quality uncer-

tainty estimates paired with excellent accuracy. However, their

real-time deployment is limited by the compute-intensive attention

mechanism that is core to the transformer architecture, and the

repeated Monte Carlo sampling to quantify the predictive uncer-

tainty. To address these limitations, this paper accelerates Bayesian

transformers via both algorithmic and hardware optimizations. On

the algorithmic level, an evolutionary algorithm (EA)-based frame-

work is proposed to exploit the sparsity in Bayesian transformers

and ease their computational workload. On the hardware level,

we demonstrate that the sparsity brings hardware performance

improvement on our optimized CPU and GPU implementations.

An adaptable hardware architecture is also proposed to acceler-

ate Bayesian transformers on an FPGA. Extensive experiments

demonstrate that the EA-based framework, together with hardware

optimizations, reduce the latency of Bayesian transformers by up to

13, 12 and 20 times on CPU, GPU and FPGA platforms respectively,

while achieving higher algorithmic performance.

KEYWORDS

Bayesian transformer, Adaptable micro-architecture, Sparsity

1 INTRODUCTION

Transformers [26] have become the leading approach in a wide

range of natural language processing (NLP) [4] or computer vision

(CV) tasks [31] by virtue of the attention mechanism. However, due

to their deterministic inference, standard transformers cannot reli-

ably quantify their uncertainty on predictions. Invalid uncertainty

estimates can result in overconfident and uncalibrated decisions,

which present hazards for deploying NNs in safety-critical appli-

cations such as in healthcare or autonomous driving [11, 15]. To

overcome this drawback, Bayesian transformers [10, 22, 32] have

been introduced with the mathematical grounding for reliable un-

certainty estimation. An illustrative example is presented in Figure 1.

Given a valid and an invalid sentence, the Bayesian transformer will

be rightfully certain and correct on the valid sentence, while being

uncertain given a random sentence. In practice, this uncertainty

can be recorded and used to judge whether the system is certain

enough to make a decision or additional expertise is required.

Among various Bayesian transformers, Monte Carlo Dropout

(MCD)-based transformers have become the mainstream approach

Figure 1: Comparison of standard andBayesian transformers.

for providing reliable uncertainty estimation [8, 22]. However, the

repeated Monte Carlo (MC) sampling and the compute-intensive

attention mechanism deteriorate their hardware performance, lim-

iting their deployment in real-world applications. For instance, our

experiments show that a Bayesian RoBERTa [13] inferred though

MCD with 20 MC samples for a sentence sequence takes nearly 800

ms on an Intel Xeon Gold 6154 CPU to make a prediction paired

with uncertainty estimation, which cannot meet the requirements

of real-world applications, such as in autonomous driving [17].

To address the aforementioned performance bottlenecks, we ex-

plore and exploit sparsity in Bayesian transformers to improve their

hardware performance with respect to any hardware platform. Ac-

cording to their characteristics, this paper classifies the sparsity into

three categories, namely head, block and sample sparsity. The three

sparsity categories are controlled by dropout rates, the number of

Bayesian blocks and the number of samples respectively. A higher

sparsity represents a trade-off between hardware and algorithmic

performance. To explore this trade-off, we propose an evolutionary

algorithm (EA)-based framework to optimize the configurations of

Bayesian transformers. On the hardware level, we show that the

sparsity can be exploited to improve the hardware performance on

our optimized CPU and GPU implementations. To further exploit

the three sparsity categories on hardware, a highly optimized hard-

ware architecture is proposed with the support of head, block and

sample skipping. It also adopts a run-time adaptable computational

engine to achieve high hardware performance.

Therefore, our contributions in this paper can be summarized as

follows:

• A general framework to exploit the sparsity in Bayesian trans-

formers, which improves their hardware performance on dif-

ferent hardware platforms without sacrificing their algorithmic

performance (Section 3).

325

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
DAC '22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07…$15.00
https://doi.org/10.1145/3489517.3530451

Hongxiang Fan, Martin Ferianc, and Wayne Luk

• A hardware architecture design for accelerating Bayesian trans-

formers, which adopts a run-time adaptable computational en-

gine, and exploitation of sparsity to achieve high hardware per-

formance (Section 4).

• A comprehensive evaluation of various transformers on differ-

ent datasets, which demonstrates improvements in both algo-

rithmic and hardware performance on CPU, GPU and FPGA

platforms (Section 5).

2 BACKGROUND AND RELATEDWORK

2.1 Bayesian Transformer

2.1.1 Transformer Architecture. Based on the attention mecha-

nism [26], transformers have been dominant in various NLP ap-

plications such as language modelling [18] and sentiment classi-

fication [4, 19]. The basic building module of transformers is the

attention block, whichmainly consists of amulti-head self-attention

layer followed by a feed-forward network (FFN) [26]. According to

the network structure, there are three categories of transformers,

namely: encoder-only, decoder-only and encoder-decoder [19]. In

this paper, our target application is sentence classification [28],

hence, we mainly focus on accelerating and optimizing encoder-

only transformers, such as BERT [4] and RoBERTa [13].

2.1.2 Bayesian Inference. Although transformers show excellent

capability in processing long sequences of data, one of their main

drawbacks is that they are not able to provide mathematically-

grounded estimates of their uncertainty for predictions. To ad-

dress this issue, Bayesian transformers have been proposed [22, 25,

32] with the ability to quantify their uncertainty. Among various

Bayesian approaches, Monte Carlo Dropout (MCD) [8] has become

a wide-spread Bayesian inference scheme [6, 22, 25, 27]. The con-

cept of MCD lays in casting dropout [24], which is used both during

training and evaluation, as Bayesian inference. As dropout is ap-

plied, it randomly sets certain connections as zeros. The dropout

mask, which determines which connections are enabled or dis-

abled, is generated by sampling from a Bernoulli distribution with

a probability 𝑝𝑚𝑐𝑑 ∈ (0, 1). The prediction, along with uncertainty

estimation, is obtained by performing MC sampling of the weights

from the learnt posterior distribution and running the input through

the network for the different sets of masks.

Dropout is naturally present in the transformer architecture, fol-

lowing the output of FFN [26]. Moreover, inspired by the drophead

regularization [34], this paper applies dropout after the multi-head

attention layer, which randomly drops out entire head outputs in

the attention block. Dropping of heads assumes a variational dis-

tribution over the whole head weights instead of the individual

weights as for FFN [33]. Note that, not every attention module

needs to have dropout applied or have the same dropout rate 𝑝𝑚𝑐𝑑 .

2.2 Hardware Accelerators

2.2.1 Transformer Accelerators. Various hardware architectures

have been proposed to accelerate transformers, but they overwhelm-

ingly focus on accelerating standard transformers. 𝐴3 [9] and SpAt-

ten [29] achieved 100× and 160× higher throughput than TITAN

Xp GPU respectively. However, these accelerators did not optimize

the FFN part, which limits their end-to-end hardware performance.

FTRANS [12] attempted to accelerate transformer as a whole by

optimizing pipeline strategies between different layers. Lu et al. [14]

accelerated a single attention block based on a systolic array. Nev-

ertheless, none of these designs investigated or accelerated the

computation of Bayesian transformers.

2.2.2 Bayesian Neural Network Accelerators. Several hardware and

algorithmic strategies have been introduced to accelerate Bayesian

NNs [20]. Cai et al. [2] accelerated Bayesian multi-layer perceptrons

(MLPs) on an FPGA. Awano & Hashimoto [1] improved the perfor-

mance of Bayesian MLPs by adopting a sampling-free approach for

uncertainty estimation. Targeting Bayesian convolutional NNs, [6]

introduced FPGA-based accelerators with hardware and algorith-

mic optimizations for high hardware efficiency. Fast-BCNN [27]

skipped the zeros caused by the element-wise ReLU activation for

more efficient computation. However, these optimizations were

designed for Bayesian convolutional or MLP nets, which cannot be

straightforwardly applied to Bayesian transformers with different

network structures and basic building blocks.

In comparison to the related work, our work thoroughly in-

vestigates the computation pattern in Bayesian transformers and

identifies three different categories of sparsity. This sparsity is ex-

ploited through a novel optimization framework, optimized CPU

and GPU implementations and a specialized FPGA-based hardware

architecture for accelerating Bayesian transformers.

3 OPTIMIZATION FRAMEWORK

3.1 Sparsity Exploitation

To improve the hardware performance of Bayesian transformers,

we analyse their compute pattern and identify extensive amount of

sparsity in their computation that can be exploited. In this paper, we

classify the sparsity into three categories: i) head sparsity, ii) block

sparsity and iii) sample sparsity, which are illustrated in Figure 2.

The head sparsity is induced through employing MCD, where

several heads in the Bayesian attention block are randomly dropped

out with a dropout probability 𝑝𝑀𝐶𝐷 . With MCD applied, the com-

putation associated with the dropped heads is redundant, and thus

can be skipped to achieve higher hardware performance. For in-

stance, the forth head in the second Bayesian attention block of Fig-

ure 2 is dropped after MCD, so it is only needed to compute the first

three heads to compute the output. The block sparsity is caused

by the non-Bayesian attention blocks in Bayesian transformers. As

the first attention block is non-Bayesian, we only need to compute

it once in the first sample. Then, we can skip the first block while

Figure 2: Sparsity categories in Bayesian Transformers.

326

Enabling Fast Uncertainty Estimation: Accelerating Bayesian Transformers via Algorithmic and Hardware Optimizations

Figure 3: An overview of EA-based framework.

running the second sample because its results have been cached

after the first sample. Lastly, we note the sample sparsity, which

stands for redundant MC samples associated with the uncertainty

estimation. Our experiments reveal that fewer samples can lead

to the similar quality of uncertainty. In this paper, we systemati-

cally exploit these three categories of sparsity by considering both

algorithmic and hardware performance of Bayesian transformers.

3.2 EA-based Optimization Framework

The head, block and sample sparsity decide the trade-off between

the algorithmic and hardware performance, which is controlled by

the dropout rates, the number of Bayesian layers and the number

of samples respectively. However, these three parameters form a

large design space, making it challenging to explore it efficiently.

For instance, choosing the dropout rates from {0.1, 0.2, 0.4} and the
number of MC samples from {2, 5, 10, 20} for a 24-layer Bayesian
BERT-Large creates in total 324 × 4 = 1, 129, 718, 145, 924 different
configurations in the design space, which makes the optimization

process time-consuming. To address this challenge, this work pro-

poses an EA-based framework to optimize the configurations of

Bayesian transformers with respect to algorithmic as well as hard-

ware performance.

An overview of our proposed framework is presented in Figure 3.

The framework accepts the baseline Bayesian transformer archi-

tecture as an input, including the combinations for the potential

number of Bayesian attention blocks, available dropout rates and

the executable number of MC samples. Then, the framework moves

to the optimization stage. During the optimization, there are in total

five steps: population initialization, evaluation, selection, mutation

and crossover. In population initialization, we initialize 𝑁𝑝𝑜𝑝 dif-

ferent Bayesian transformers using random configurations. Then,

different random configurations are encoded as genes for numerical

optimization. We use the first and last elements of each gene to

denote the numbers of Bayesian attention blocks and the number

of MC samples respectively, while the rest of the gene is used to

represent the dropout rates for each Bayesian attention block. Prior

to the evaluation step, we finetune the pre-trained transformer

using the dropout rates specified by the current genes, replacing

the original dropout rates [22]. The finetuned transformers are

then evaluated using different number of samples to obtain their

algorithmic or hardware performance. Given their performance,

the selection step chooses the best 𝑁𝑝𝑎𝑟𝑒𝑛𝑡𝑠 genes as the parents

for the next iteration, and the mutation is then applied to randomly

mutate each parent gene with a probability 𝑃𝑚𝑢𝑡𝑎𝑡𝑒 . In the last

step, the crossover randomly mixes two genes with a probability

𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 . We repeat steps 2 ∼ 5 for 𝑁𝑒𝑣𝑜 iterations, and select the

gene with the highest score as the output configuration.

To meet different users’ requirements, we define our objective

function using accuracy (Acc), latency (Lat) and average predictive

entropy (aPE). aPE measures the quality of uncertainty estimation

over a dataset of uniformly sampled random sentences of size 𝐸 as:

aPE = 1
𝐸

∑𝐸
𝑒=1 −

∑𝐾
𝑘=1 𝑝 (𝑦

𝑘
𝑒 |𝒙𝑒) log 𝑝 (𝑦

𝑘
𝑒 |𝒙𝑒). 𝒚 is the output prob-

ability across 𝐾 classes and 𝒙 is the input sentence representation.

Given the randomness of the inputs, the architecture should aim

for high uncertainty along with high accuracy on the test data.

Therefore, the objective function can be formulated as follows:

𝑆𝑐𝑜𝑟𝑒 = 𝛼 × 𝑎𝑃𝐸 + 𝛽 ×𝐴𝑐𝑐 − 𝛾 × 𝐿𝑎𝑡 − 𝑃𝑇 (1)

The overall score is a weighted average of the three different

metrics parameterized by 𝛼 , 𝛽 and 𝛾 . The parameters enable us

to define priorities in terms of algorithmic or hardware perfor-

mance trade-offs while maximising the score. Additionally, there is

a penalty term 𝑃𝑇 when users’ constraints for 𝑎𝑃𝐸
′
, 𝐴𝑐𝑐

′
and 𝐿𝑎𝑡

′

are not satisfied, which can be formulated as:

𝑃𝑇 =

{
0, 𝑎𝑃𝐸 ≥ 𝑎𝑃𝐸

′
, 𝐴𝑐𝑐 ≥ 𝐴𝑐𝑐

′
, 𝐿𝑎𝑡 ≤ 𝐿𝑎𝑡

′

𝛾, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

In our proposed framework, users are allowed to set 𝛼 , 𝛽 , 𝛾 , 𝑎𝑃𝐸
′
,

𝐴𝑐𝑐
′
and 𝐿𝑎𝑡

′
to fulfill their different needs.

4 HARDWARE ACCELERATOR

4.1 Hardware Architecture

The proposed hardware architecture for executing Bayesian trans-

formers is presented in Figure 4. The core compute module is the

adaptable processing engine (AdaptPE), which is followed by a

shortcut (SC) addition, a layer normalization (LN) and a dropout

for the post processing. We perform the regular MCD using the

dropout module. The per-head MCD is implemented using the

adaptable Bernoulli sampler, input and weight managers. An SC

buffer is designed to cache the input data while performing the SC

addition. The intermediate results are stored in the off-chip memory

to reduce the resource usage of on-chip memory. We adopt block

floating-point [5, 7, 23] with 16-bit mantissa and 8-bit exponent to

represent both data and weights to improve hardware performance.

In AdaptPE, there are five different computational engines (CEs),

namely CEQ, CEK, CEV, CEQK and CEWV. Each CE is composed

of a multiply-accumulate unit (MAC) followed by an accumulator

and an SC adder. We design each CE with a demultiplexer or a

multiplexer to support run-time adaptability for different data flows

and computation. There are three buffers in each AdaptPE to cache

intermediate results. A softmaxmodule is placed between CEQK and

CEWV. The adaptable Bernoulli sampler consists of 𝑁𝑙 𝑓 𝑠𝑟 128-bit

linear-feedback shift registers (LFSRs) to generate random bits. A

probability (Prob) control module receives 𝑁𝑙 𝑓 𝑠𝑟 random bits, and

outputs a Bernoulli random variable with the desired probability

using extra logic.

4.2 Computational Process

The computation of the whole network is performed block by block

using the AdaptPEs. To further reduce the on-chip memory usage,

327

Hongxiang Fan, Martin Ferianc, and Wayne Luk

Figure 4: Hardware architecture of our design.

we divide each attention block into four chunks as shown in Fig-

ure 5(a). The first chunk contains the computation associated with

the dot-product attention, including transformations and multipli-

cation between query, key and value vectors. The second chunk

includes a linear transformation LT, followed by the SC addition

and the LN. The main computation in both third and fourth chunks

are fully connected (FC) layers. There is an addition and an LN at

the end of the fourth chunk. All the intermediate results between

chunks are stored in the off-chip memory.

To improve hardware efficiency, our AdaptPE is designed to

support different chunks with runtime adaptability using demulti-

plexers and multiplexers as shown in Figure 5. While processing

the first chunk, we connect CEQ, and CEK with CEQK to perform

the multiplication between query and key vectors. The softmax

module is enabled after CEQK. Also, CEV and CEQK are connected

with CEWV to get the results of the first chunk. As both FC and LT

are essentially matrix multiplications, CEs inAdaptPE can be reused

for computation. Therefore, while processing the rest of chunks,

CEQ, CEK and CEV are used as separate engines for vector-matrix

multiplication. At the same time, as both CEQK and CEWV adopt

low parallelisms in their MAC, we connect them together using an

extra adder as another engine. In this manner, we can achieve a

balanced workload across different engines to eliminate inefficient

Figure 5: Adaptable computational engine.

computation. The SC and LN are also enabled for the second and

forth chunks.

4.3 Skipping Sparsity

To improve the hardware performance, we design our accelera-

tor to skip the redundant computation associated with the head,

block and sample sparsity. We support redundant block and sam-

ple skipping using weight and input managers. A register in both

weight and input register files is used to control the number of

repeated executions in the current processing block. While running

the non-Bayesian blocks, the register is set as one to ensure that

the engine only runs the non-Bayesian block once. In this way, the

computation of the redundant blocks can be skipped. The register

is set as one until the first Bayesian block, and then is set to be the

number of MC samples on Bayesian blocks. The input of the first

Bayesian block will be cached, and reused for different MC samples

to decrease the memory traffic.

The skipping of redundant heads is supported by using the adapt-

able Bernoulli sampler. To skip heads, we first perform Bernoulli

sampling to generate random bits. These random bits are used as

the dropout mask for MCD. By analysing the dropout mask, the

positions of all the valid heads are cached in the register file. Then,

the address generators in both input and weight managers calculate

the addresses of valid heads using the cached positions. Therefore,

only valid inputs and weights and transferred to the on-chip mem-

ory. As the Bernoulli sampling is independent to the computation,

we use our Bernoulli sampler to generate random bits one block

prior to the calculation to ensure that the dropout mask and the

loading address are available before the processing of each block.

5 EXPERIMENTS

We implemented our EA-based framework using Python 3.7. The
finetuning and evaluation of transformers were implemented using

PyTorch 1.10 [16] and Huggingface’s tools [30]. We used an Intel

Xeon Gold 6154 CPU and a GeForce RTX 2080 Ti for CPU and GPU

benchmarking. We optimized both CPU and GPU implementations

to support block and sample skipping by using additional PyTorch

variables to control the number of running blocks and samples. We

used four pre-trained transformers: DistilBERT [21], BERT-Base [4],

RoBERTa [13] and Electra [3], as baselines with respect to the

proposed design space exploration and exploitation. We finetuned

them for sentence classification on SST-2 and MRPC [28] datasets.

The length of the input sequence was set as 128. The entropy, in

terms of aPE, was measured with respect to sequences of completely

random words. We set the population size as 18 and we optimized

for 10 iterations. The parent, mutation and crossover sizes were all

set as 6 with 𝑃𝑠𝑒𝑙𝑒𝑐𝑡 = 0.25, 𝑃𝑚𝑢𝑡𝑎𝑡𝑒 = 0.5 and 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = 0.5.

5.1 Effectiveness of Framework

To visualize the effectiveness of our framework, we optimized Dis-

tilBERT on the SST-2 dataset. We iterated through and measured

all the design points in terms of aPE, accuracy and latency using

a GPU. The results are presented in Figure 6. We then applied our

EA-based framework using three sets of optimization parameters,

i.e., {𝛼 = 1.0, 𝛽 = 0.01, 𝛾 = 0.01}, {𝛼 = 0.01, 𝛽 = 1.0, 𝛾 = 0.01}
and {𝛼 = 0.01, 𝛽 = 0.01, 𝛾 = 1.0}, indicating different optimization

328

Enabling Fast Uncertainty Estimation: Accelerating Bayesian Transformers via Algorithmic and Hardware Optimizations

Table 1: The improvement of EA-based framework on CPU and GPU platforms.

SST-2 MRPC

Evo-Mode
aPE [nats] Acc [%]

Latency [ms]
aPE [nats] Acc [%]

Latency [ms]

CPU GPU CPU GPU

Bayesian DistilBERT
Baseline 0.312 88.64 362.17 78.33 0.304 83.62 346.93 81.80

Evo-Opt 0.358 88.99 34.71 (10×) 6.49 (12×) 0.390 84.06 28.33 (12×) 7.35 (11×)

Bayesian BERT-Base
Baseline 0.241 88.07 797.32 162.66 0.076 87.01 822.03 160.59

Evo-Opt 0.273 88.18 164.30 (5×) 31.01 (5×) 0.081 87.01 212.46 (4×) 39.13 (4×)

Bayesian RoBERTa
Baseline 0.132 88.50 841.07 169.00 0.062 88.97 799.51 157.68

Evo-Opt 0.166 89.44 67.03 (13×) 14.33 (12×) 0.101 89.22 148.47 (5×) 31.56 (5×)

Bayesian Electra
Baseline 0.134 92.26 839.17 158.19 0.151 88.54 793.73 165.96

Evo-Opt 0.164 92.31 73.60 (11×) 15.73 (10×) 0.429 88.72 254.77 (3×) 42.31 (4×)

Figure 6: Design space of Bayes-DistilBERT on SST-2.

Figure 7: Speedup breakdown of FPGA-based accelerator.

priorities for aPE, accuracy and latency respectively. As shown

in Figure 6, our EA-based framework was able to find the configu-

rations with the highest accuracy, the lowest latency and the best

quality of uncertainty estimation under different priority settings.

We then applied our EA-based framework to all transformers and

datasets to evaluate their performance gains on both CPU and GPU.

The dropout rates were chosen from {0.1, 0.2, 0.4} and the number

of MC samples were selected from {2, 5, 10, 20}. We obtained the

baseline performance of the Bayesian transformers by hand-tuning

the dropout rate on the validation data and using the same dropout

rate at all positions in the transformer architecture where MCDwas

applicable, as discussed in Section 2.1.2. The batch size was set as

one to measure the latency. We set the constraints on 𝑎𝑃𝐸
′
and𝐴𝑐𝑐

′

(Equation 2) for maintaining the baseline algorithmic performance.

We set 𝛼 = 0.01, 𝛽 = 0.01 and𝛾 = 1.0 for all the models for both SST-

2 andMRPC datasets. As shown in Table 1, our EA-based framework

improved the latency by 4 ∼ 13 times on both CPU and GPU. Apart

from the improvement in the hardware performance, we observed

an increase in the algorithmic performance. For Bayesian RoBERTa

on SST-2, we improved the accuracy by 0.94% and the aPE by 0.03
nats. On MRPC, Bayesian Electra and Bayesian DiltilBERT achieved

0.028 and 0.086 higher aPE compared to their baseline performance.

5.2 Performance of Hardware Architecture

We implemented our hardware architecture on a Xilinx VCU118

platform using Verilog. The design parameters 𝑃ℎ𝑒𝑎𝑑 , 𝑃𝐿𝑇 and

𝑃𝑄𝐾 were set as 6, 128 and 64 respectively for a load-balanced

pipeline. The resource utilization is presented in Table 2 and the

final FPGA design was clocked at 182 MHz. We used the proposed

framework on our FPGA-based design to optimize the configura-

tions of Bayesian transformers. The optimization parameters of EA

were kept the same as in Section 5.1. We used the SST-2 dataset

to visualize the effect of different sparsity categories on our de-

sign in Figure 7. As it can be seen, the head sparsity improved the

hardware performance by 1.05 ∼ 1.3 times depending on different

models. Block sparsity decreased the latency by 1.6 ∼ 6.6 times. At

the same time, there was 3.7 ∼ 10.2 times speedup introduced by

sample sparsity. By exploiting all sparsity categories, it achieved up

to 20 times speedup on both Bayes-DistilBERT and Bayes-RoBERTa.

Table 3 compares our FPGA-based design with a GPU imple-

mentation. Both implementations used the same EA optimized

Table 2: Resource utilization of the design on the FPGA.

Resources LUTs Registers DSPs BRAM

Used 822,902 1,315,368 6,144 1,391

Total 1,182,240 2,364,480 6,840 2160

Utilization 70% 55% 89% 64%

329

Hongxiang Fan, Martin Ferianc, and Wayne Luk

Table 3: Performance comparison of our FPGA design versus

GPU implementation.

GPU Our Work

Platform GeForce RTX 2080 Ti Xilinx VCU118

Frequency 1.545GHz 182MHz

Technology 12 nm 20 nm

Acceleration Library CuDNN, PyTorch 1.10 -

Power [W] 238 45

Model
Bayes-

DistilBert

Bayes-

RoBERTa

Bayes-

DistilBert

Bayes-

RoBERTa

Latency (Norm.) [ms] 6.49 14.33 7.88 (4.73) 14.38 (8.6)

Energy Eff. [J/Sequence] 1.54 3.41 0.35 0.64

configurations on Bayes-DistilBERT and Bayes-RoBERTa for a fair

comparison. Since the input sentences are produced sequentially

in real-life applications, we set the batch size to one. Table 3 shows

our design is over 5 times higher energy efficiency on Bayesian

DistilBERT. Although our design was slightly slower than the GPU

implementation, our board adopted an older technology (20nm). If

we scaled the performance by 20
12 with respect to the GPU technol-

ogy (12nm), our design was able to achieve lower latency as seen in

the brackets in Table 3. There are three reasons for the high hard-

ware performance of our design: i) an adaptable compute engine to

accelerate multiple layers together using runtime adaptability, ii)

the support of intelligent head, block and sample skipping and iii)

the EA-based framework to exploit three categories of sparsity.

6 CONCLUSION

This paper proposes an evolutionary algorithm (EA)-based frame-

work to exploit sparsity in Bayesian transformers. We achieve up

to 13 and 12 times speedup on our optimized CPU and GPU im-

plementations. Additionally, an adaptable hardware architecture is

proposed to accelerate Bayesian transformers on an FPGA, which

achieves up to 5 times higher energy efficiency than GPU imple-

mentation. In future, we aim to extend our EA-based framework to

other neural networks, improve the generality of our design and

explore a sampling-free method for Bayesian inference.

ACKNOWLEDGEMENT

The support of UK EPSRC grants (UK EPSRC grants EP/L016796/1,

EP/N031768/1, EP/P010040/1, EP/V028251/1 and EP/S030069/1) is

gratefully acknowledged.

REFERENCES
[1] H. Awano and M. Hashimoto. 2020. BYNQNet: Bayesian Neural Network with

Quadratic Activations for Sampling-Free Uncertainty Estimation on FPGA. In
2020 Design, Automation Test in Europe Conference Exhibition (DATE). 1402–1407.

[2] Ruizhe Cai et al. 2018. VIBNN: Hardware acceleration of Bayesian neural net-
works. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Vol. 53.
476–488.

[3] Kevin Clark et al. 2020. Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint arXiv:2003.10555 (2020).

[4] Jacob Devlin et al. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. CoRR (2018).

[5] Hongxiang Fan et al. 2019. Static block floating-point quantization for convolu-
tional neural networks on fpga. In International Conference on Field-Programmable
Technology (ICFPT). IEEE, 28–35.

[6] Hongxiang Fan et al. 2021. High-Performance FPGA-based Accelerator for
Bayesian Neural Networks. In Proceedings of the 2021 ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 1–6.

[7] Jeremy Fowers et al. 2018. A configurable cloud-scale DNN processor for real-
time AI. In ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 1–14.

[8] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In International Conference on
Machine Learning (ICML). 1050–1059.

[9] Tae Jun Ham et al. 2020. Aˆ 3: Accelerating Attention Mechanisms in Neu-
ral Networks with Approximation. In IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 328–341.

[10] Ranganath Krishnan et al. 2020. Specifying weight priors in bayesian deep
neural networks with empirical bayes. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34. 4477–4484.

[11] Christian Leibig et al. 2017. Leveraging uncertainty information from deep
neural networks for disease detection. Scientific Reports 7, 1 (2017), 1–14.

[12] Bingbing Li et al. 2020. FTRANS: energy-efficient acceleration of transformers
using FPGA. In ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED). 175–180.

[13] Yinhan Liu et al. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 (2019).

[14] Siyuan Lu et al. 2020. Hardware Accelerator for Multi-Head Attention and
Position-Wise Feed-Forward in the Transformer. arXiv preprint arXiv:2009.08605
(2020).

[15] Rowan McAllister et al. 2017. Concrete Problems for Autonomous Vehicle
Safety: Advantages of Bayesian Deep Learning. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence (IJCAI),. 4745–4753.

[16] Adam Paszke et al. 2019. Pytorch: An imperative style, high-performance deep
learning library. Proceedings of the 2019 Advances in neural information processing
systems (NeurIPS) 32 (2019), 8026–8037.

[17] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. 2021. Multi-Modal Fusion
Transformer for End-to-End Autonomous Driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7077–7087.

[18] Alec Radford et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[19] Colin Raffel et al. 2019. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019).

[20] Johanna Rock, Tiago Azevedo, René de Jong, Daniel Ruiz-Muñoz, and Partha
Maji. 2021. On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications. arXiv preprint arXiv:2111.09838 (2021).

[21] Victor Sanh et al. 2019. DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. CoRR (2019).

[22] Artem Shelmanov et al. 2021. How Certain is Your Transformer?. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume (EACL). 1833–1840.

[23] Zhourui Song et al. 2018. Computation error analysis of block floating point
arithmetic oriented convolution neural network accelerator design. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 32.

[24] Nitish Srivastava et al. 2014. Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–
1958.

[25] Evgenii Tsymbalov et al. 2020. Dropout Strikes Back: Improved Uncertainty
Estimation via Diversity Sampling. arXiv preprint arXiv:2003.03274 (2020).

[26] Ashish Vaswani et al. 2017. Attention is all you need. In Advances in neural
information processing systems (NeurIPS). 5998–6008.

[27] Qiyu Wan and Xin Fu. 2020. Fast-BCNN: Massive Neuron Skipping in Bayesian
Convolutional Neural Networks. In Proceedings of the 2020 Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 229–240.

[28] Alex Wang et al. 2018. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint arXiv:1804.07461 (2018).

[29] Hanrui Wang et al. 2021. SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning. IEEE International Symposium on High
Performance Computer Architecture (HPCA) (2021).

[30] Thomas Wolf et al. 2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771 (2019).

[31] Bichen Wu et al. 2020. Visual transformers: Token-based image representation
and processing for computer vision. arXiv preprint arXiv:2006.03677 (2020).

[32] Boyang Xue et al. 2021. Bayesian transformer language models for speech
recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 7378–7382.

[33] Zhilu Zhang, Adrian V Dalca, and Mert R Sabuncu. 2019. Confidence calibration
for convolutional neural networks using structured dropout. arXiv preprint
arXiv:1906.09551 (2019).

[34] Wangchunshu Zhou et al. 2020. Scheduled drophead: A regularization method
for transformer models. arXiv preprint arXiv:2004.13342 (2020).

330

