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ABSTRACT

Quantum circuit placement (QCP) is the process of mapping the
synthesized logical quantum programs on physical quantum ma-
chines, which introduces additional SWAP gates and affects the
performance of quantum circuits. Nevertheless, determining the
minimal number of SWAP gates has been demonstrated to be an
NP -complete problem. Various heuristic approaches have been pro-
posed to address QCP, but they suffer from suboptimality due to the
lack of exploration. Although exact approaches can achieve higher
optimality, they are not scalable for large quantum circuits due to
the massive design space and expensive runtime. By formulating
QCP as a bilevel optimization problem, this paper proposes a novel
machine learning (ML)-based framework to tackle this challenge.
To address the lower-level combinatorial optimization problem, we
adopt a policy-based deep reinforcement learning (DRL) algorithm
with knowledge transfer to enable the generalization ability of our
framework. An evolutionary algorithm is then deployed to solve
the upper-level discrete search problem, which optimizes the ini-
tial mapping with a lower SWAP cost. The proposed ML-based
approach provides a new paradigm to overcome the drawbacks in
both traditional heuristic and exact approaches while enabling the
exploration of optimality-runtime trade-off. Compared with the
leading heuristic approaches, our ML-based method significantly
reduces the SWAP cost by up to 100%. In comparison with the lead-
ing exact search, our proposed algorithm achieves the same level
of optimality while reducing the runtime cost by up to 40 times.
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1 INTRODUCTION

Quantum Computing (QC) has attracted significant research and
industrial interest due to its potential in various applications such
as data security [26] or quantum chemistry [4]. After IBM released
its first publicly available quantum processor [12], Intel and Google
also announced their 49 and 72 qubits quantum systems [10, 11] to
join the quantum race. Although quantum hardware is becoming
more sophisticated, the efficiency and scalability of software tools
for QC devices has been challenged due to the increasing number
of qubits and the growing size of quantum circuits [13, 35].

There are two processes involved in implementing a quantum
program on an actual quantum device: logic synthesis and quan-
tum circuit placement (QCP). Logic synthesis receives a quantum
program as input, and translates it into a list of primitive gates
supported by the underlying library. Then, QCP is applied to map
the logically-synthesized quantum circuit on the physical quantum
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Figure 1: An overview of our ML-based approach.

devices. As the underlying quantum hardware may have various
constraints such as the limited qubit connections, several extra
SWAP gates may be required by QCP, which increases the size
of quantum circuits and harms the fidelity of the execution [35].
Nevertheless, determining the minimal number of SWAP gates for
a quantum circuit on a quantum device has been demonstrated to
be an N'P-complete problem [27], confirming the difficulty of QCP.

Various exact methods have been proposed to address QCP [5,
29, 34, 35], but they suffer from poor scalability on large quantum
circuits. For instance, the leading exact method OLSQ-SWAP [29]
takes nearly half an hour on a high-end CPU server to map a 8-
qubit quantum adder vbe_adder_3 on an IBM Melbourne quantum
machine. Moreover, the increasing number of qubits in recently-
released quantum devices and the growing size of quantum circuits
further exaggerate the performance of exact approaches. Although
various heuristic approaches have been proposed to speedup QCP,
Tan et al. [30] suggest that there is still a huge optimality gap
between the exact solutions and the leading heuristic methods [3,
13, 28]. For example, the leading heuristic approach t|ket) [28]
needs 38 SWAP gates for queko_15_1 quantum circuit on Rigetti
Aspen-4 quantum machine, but the exact search [29] requires no
SWAP cost. The expensive runtime cost of exact methods and the
sub-optimal issue of heuristic solutions indicate a great demand for
a better approach to tackle QCP.

In this paper, we propose a machine learning (ML)-based frame-
work to address QCP. An overview of our proposed ML-based
approach is illustrated in Figure 1. We formulate QCP as a bilevel
optimization problem. As the upper-level problem of optimizing
the initial qubit mapping contains a vast design space, we adopt
an evolutionary algorithm to minimize the SWAP cost, which also



offers users the flexible exploration of optimality-runtime trade-
off. Then, we observe that the lower-level problem is essentially a
combinatorial optimization problem of minimizing the SWAP cost
given an initial qubit mapping. To enable the generalization ability
of our framework, we adopt a policy-based deep reinforcement
learning (DRL) algorithm with the capability of knowledge transfer.
To address the suboptimality caused by gate-by-gate or level-by-
level processing [30], we encode the whole circuit’s information
into our state space to optimize the SWAP strategy.
Our contributions in this paper can be summarized as follows:

e A novel ML-based framework to address quantum circuit place-
ment (QCP), which adopts an evolutionary algorithm (EA) in the
upper level to optimize the initial mapping. The EA-based method
also offers the flexibility for users to explore the optimality-
runtime trade-off (Section 3.1 & 3.3).

o Optimizing the SWAP strategy using a policy-based deep rein-
forcement learning (DRL) agent, which decreases the SWAP cost
by encoding the whole circuit’s information into state space. The
generalization ability of our framework is improved by using the
knowledge transfer of our DRL agent (Section 3.2).

e Extensive experiments on a wide range of quantum circuits
demonstrate the effectiveness of our ML-based framework com-
pared with heuristic and exact methods in terms of both optimal-
ity and runtime cost (Section 4).

2 BACKGROUND
2.1 Quantum Circuit and QCP

The quantum circuits specified by quantum programs contain a list
of quantum gates to perform quantum computation. The common
quantum gates include the single-qubit X gate that negates the
qubit, and the two-qubit CX that only changes the second qubit
by XOR the first and second qubits. In this paper, we assume the
quantum circuits have been processed by logic synthesis, so the
circuits only contain primitive gates supported by the underlying
library. Using Qiskit library as an example, a logically-synthesised
quantum circuit is shown in Figure 2(a), which only includes primi-
tive quantum gates such as X, CX, S, T and T . The horizontal lines
lo~4 represent the logic qubits. The two-qubit gates are specified
by vertical lines indicating their connection relationships.

The process of QCP is to map the logic quantum circuits on the
physical quantum devices such as IBM QX2 (Figure 2(b)). The main
difficulty during the QCP is that the physical qubit connections
sometimes cannot meet the connective requirements of two-qubit
quantum gates. For instance, in order to execute g; and g in Fig-
ure 2(c), it requires the physical connections on qubit pairs (ly, I2)
and (1, I3). Therefore, we initially map logical qutbits [y~4 to the
physical qubits py, p3, po, p4 and p; respectively. However, while
executing g3, the physical connection on pg (I2) and p4 (I3) is not
available using our initial mapping, making g3 inexecutable. To ad-
dress this issue, the common practice is to insert a SWAP gate [35]
between [y and I3 to exchange the physical qubits p; and p4. This
SWAP insertion makes g3 executable as its physical connection are
available under the new qubit mapping. Nevertheless, the extra
SWAP gates may harm the performance of quantum circuits. There-
fore, one of the main objectives for QCP is to decrease the number
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Figure 2: A quantum circuit after logic synthesis.

of SWAP gates [30]. It has been demonstrated that determining the
minimal numberof SWAP gates is an N'P-complete problem [27].

2.2 Related Work

2.2.1 Exact and Heuristic Approaches for Quantum Circuit Place-
ment. To minimize the number of SWAP gates required by QCP,
various exact methods have been proposed. Shafaei et al. [25] pro-
vided a routing algorithm by solving QCP as Minimum Linear
Arrangement problem. By formulating the QCP problem as a sym-
bolic optimization problem, Wille et al. [34, 35] adopted a Boolean
satisfiability solver to minimize the extra gate cost. Bhattacharjee et
al. [5] used a multi-tier method to address QCP via multiple levels
in parallel. Tan et al. [29, 30] found that the extra constraints were
imposed in previous exact methods by using the gate-by-gate or
the level-by-level arrangement. By changing the formulation, their
work improved the optimality of QCP while reducing the runtime
cost. However, as the number of quantum bits (qubit) becomes
larger, the runtime of these exact methods increases exponentially,
making them not feasible in the near future.

To speed up QCP, various heuristic approaches have been pro-
posed. Siraichi et al. [27] optimized the initial mapping based on
the out-degrees of the graphs constructed by quantum circuits.
Then, the SWAP gates were inserted according to the heuristic
distance between different qubits. Zulehner [38] addressed the
QCP problem for IBM’s QX architecture using an A* search al-
gorithm together with a look-ahead scheme. Childs et al. [6] used
routing via matchings and token swapping frameworks to min-
imize the number of SWAP gates required. Li et al. [13] tackled
QCP using a SWAP-based bidirectional heuristic search algorithm
with a reverse traversal technique to optimize the initial mapping.
Tannu et al. [31] and Murali et al. [18] also considered the gate fi-
delity into QCP. Sivarajah [28] provided an open-source framework
t|ket) [28], which showed leading results among various heuristic
approaches. However, the optimality gap between heuristic and
exact approaches [30] suggests an urgent need for a better solution.

2.2.2 ML Algorithms for Quantum Circuit Design. There has been
an increasing interest in applying ML algorithms for QC, but most
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of the work only focused on optimizing logical quantum circuits
instead of studying QCP. Targeting on variational quantum circuits
(VQC), Ostaszewski et al. [20] and Pirhooshyaran et al. [22] at-
tempted to optimize the design parameters of VQC before logic syn-
thesis. Wang et al. [32] provided a noise-adaptive search algorithm
for VQC by considering the effect of quantum noise. Several studies
also focused on optimizing quantum compilation [17, 36], which
tried to construct logic quantum circuits based on the specified uni-
tary transformations. Fosel et al. [7] optimized the logical quantum
circuits by considering the quantum hardware. However, these
methods did not address the problem of QCP: an NP-complete
problem with large design space and high dimensionality.

Several approaches attempted to adopt ML algorithms for QCP.
Paler et al. [21] adopted Gaussian Process to estimate the depth
of the generated quantum circuits. Although Acampora et al. [1]
optimized the initial mapping using deep neural networks, their
supervised learning method required large numbers of labelled
data, and the optimization of SWAP strategy was not addressed in
their paper. Pozzi et al. [9, 23] attempted to address qubit routing,
but the layer-by-layer processing suffered from the sub-suboptimal
issue [30]. The initial mapping problem was not addressed in their
work. In this paper, we propose an end-to-end ML-based framework
for QCP. A policy-based DRL algorithm is used to learn the optimal
SWAP strategy. We encode the quantum circuit’s information into
the state space to improve the optimality of results. An evolutionary
algorithm is then proposed to optimize the initial mapping.

3 PROPOSED METHOD

3.1 Problem Definition & Framework Overview

The problem of QCP can be described as mapping a list of logical
quantum gates G into the target quantum device specified by <
P,E >, where P = {p1, p2, ...,pr} represents physical qubits and
E = {e1, e, ...,en, } denotes N, edges between adjacent qubits. As
the input of QCP is the logically-synthesised quantum circuits,
this paper assumes G only contains single-qubit quantum gates Gy
and two-qubit quantum gates G,. Also, as the number of SWAP
gates will only be affected by two-qubit quantum gates [35], we
make G = G for simplicity. We define the outputs of QCP to be:
i) an initial mapping i € I, and ii) a SWAP strategy s € S. The
initial mapping i is a vector of size Nj, which denotes the mapping
between physical qubits and logical qubits. The SWAP strategy
s is a variable-length vector representing a series of legal SWAP
insertion allowed by the underlying quantum devices. In this paper,
we formulate the QCP as a bilevel optimization problem as follows:

arg max_ {Rgep(i,s,G,P,E) = Rini (i, G, P, E) + Rowap (i.5.G,P,E)} (1)
i€l se.

st s €arg ma;( {stap(i, t,G,P,E) = Rexe (i, t,G,P,E) — Cswap(t)} (2
te

Given a quantum circuit with G and i, the lower-level optimization
in Equation 2 aims at finding the optimal SWAP strategy s with
the minimal number of SWAP insertion Csyyqp(t) and the maxi-
mal execution reward Rexe (i, t, G, P, E). In the upper-level optimiza-
tion (Equation 1), the objective function tries to maximize the initial
reward Rinjt (i, G, P, E) and objective function Rsyap (i, t, G, P, E)
in the the lower-level problem. To address this bilevel optimiza-
tion problem, we propose a two-step ML-based framework, which
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Figure 3: Pre-process to extract state matrix.

is illustrated in Figure 1. We realize that the lower-level prob-
lem (Equation 2) is essentially a combinatorial problem. As RL
has recently demonstrated their advantages in combinatorial op-
timization [14, 15, 37], we adopt a policy-based DRL algorithm to
optimize SWAP strategies given a randomly-initialized mapping i.
Once the training of our DRL agent is completed, we then optimize
the initial reward R;n;; in Equation 1. As this upper-level problem
is essentially a discrete search problem with vast design space, we
adopt an evolutionary algorithm [16] to minimize the overall SWAP
cost, which offers the flexibility of exploring optimality-runtime
trade-off.

3.2 DRL for Swap Strategy Optimization

In the first step of our framework, we train a DRL agent to learn the
optimal SWAP strategy. To improve the generalization ability, we
randomly generate the initial mappings during the training. This
paper defines our DRL agent as follows:

3.2.1 State Space and Pre-Process. As indicated by [29, 30], the
layer-by-layer or level-by-level processing may lead to the subop-
timal problem. To address this issue, we represent the state using
a matrix that contains the whole quantum circuit’s information,
including the qubit dependencies of all the quantum gates, and the
mapping relationship between logical and physical qubits through-
out the execution. To encode the information into a matrix, we
pre-process the quantum circuit to get the state. There are three
operations involved in the pre-processing: i) extracting two-qubits
gates, ii) building dependency tree and iii) construction of state
matrix, which are illustrated in Figure 3. As the single-qubit gates
will not affect the SWAP cost [35], we first extract all the two-qubits
gates from the original quantum circuit. Then, a dependency tree
is built based on the extracted quantum gates, which indicates the
relative execution orders of two-qubits gates. A state matrix is
constructed according to the dependency tree and the mapping
relationship between logical and physical qubits. We use the i-th
row of the state matrix to represent i-th physical qubit and its asso-
ciated logical qubit. Each column of the matrix state represents a
separate time step (level). The element in the i-th row and the j-th
column denotes the position of qubit connected to the i-th qubit,
which is specified by its corresponding quantum gate at time step
Jj. The value is set to be —2 if no quantum gates are associated with
the qubit at a certain time step.



3.2.2  Action Space and Reward. The action space is defined by all
the SWAP insertions allowed by the underlying quantum devices.
We use an integer ranging from {0, 1, ..., N } to represent an action,
which corresponds to one of edges e;.n, specified by E.

The reward function of our DRL contains four components: i)
gate reward, which equals to the number of quantum gates exe-
cuted given the current action, the updated state and hardware
constraints, ii) done reward, which is applied when all the quan-
tum gates have been executed, iii) SWAP penalty when a SWAP
gate is inserted, and iv) non-execution penalty when there are no
executable gates after the SWAP gate is inserted. Note that the gate
reward and done reward refer to Rexe (i, t, G, P, E) in Equation 2.
This paper sets gate reward as +1 per gate, done reward as +10,
SWAP penalty as —3, non-execution penalty as +1.

3.2.3 DRL Agent and Optimization Stratety. We define the policy
network using a multi-layer perceptron (MLP) with three layers.
The hidden sizes are set to be 64, 64 and 96. The policy network
receives the state matrix as inputs, and generates an integer after
a softmax function to output an action. Another MLP with the
same configurations is used as our value network. Proximal Policy
Optimization (PPO) [24] is used in our approach to update the
parameters of both policy and value networks.

3.24 QCP Simulator. We implement a QCP simulator as the en-
vironment to interact with our DRL agent. Based on the current
action and state matrix, the QCP simulator outputs the accumulated
reward and the next state matrix. The pseudocode of the proposed
QCP simulator is presented in Algorithm 1. Receiving Satec,r and
Action as inputs, the QCP simulator obtains the swapping qubits
based on Action and the pre-defined E. Since each row in the state
matrix represents a qubit, we update the state matrix by exchanging
the rows according to the action taken by the DRL agent. Then, a
loop is performed to execute quantum gates level by level, with
Reward accumulated during the whole process. The state matrix is
updated by left shifting and padding when quantum gates are exe-
cuted. The loop terminates until there are no executable quantum
gates in the current level. The QCP simulator returns the updated
state matrix Statepex; and step reward Reward as the output.

3.3 Evolutionary Algorithm

Our adopted EA contains five operations, i.e., population initial-
ization, evaluation, crossover, mutation and selection. They are
defined as follows:

o Population initialization: We randomly generate Npopy numbers
of initial mappings as the original population.

e Evaluation: The trained DRL agent is used to generate SWAP
strategies for each initial mapping. The cumulative rewards are
then evaluated using the QCP simulator.

o Selection: Probge; X Npopy mappings with the higher reward are
selected as the parent population.

e Mutation: We mutate mappings with a probability Probmuyzate
using a legal qubit swap provided by the underlying qubit device.
The mutation will be skipped if the swap is not allowed.

o Crossover: We combine two mappings from the parent popula-
tion with a probability Prob¢,oss. The crossover will be skipped
if the mapping after crossover is invalid.
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Algorithm 1 QCP Simulator.

: Inputs: Statecy,, Action

: Outputs: Statepexs, Reward
: Row;, Row, = Edge (Action)
: Tmp = Statecy, [Row][:]

1

2

3 > Get swapped qubit
4

5: Statecy, [Row; | = Statecy, [Row, |

6

7

8

> Update state by action

: Statecyr [Rowy] = Tmp
: while (True)
Column = Statecy, [:][0]
9:  if Executable (Column)

> Update state if executable

10: Reward+ = Rewardexe > Executable reward
11: Statecyr[:][: —=1] = Statecy, [:]1[1 1] > Shift Left
12: Statecyr [:]1[-1] = [-2] * Neotumn > Pad using —2
13: if Done (Statecy,):

14: Reward+ = Rewardgone > Done reward
15: break

16:  else

17: if (Reward == 0)

18: Reward— = Penalt ynonexe > Non-Executable penalty
19: break

20: Statepext = Statecyr

21: Reward— = Penaltysyap > Swap reward

During the population initialization, we apply several rules to
eliminate the invalid initial mapping to speed up the runtime: i)
The mapped physical qubits are connected, which means there are
at least Nj — 1 edges existed in the initial mapping. ii) All the gates
in the first level of the dependency tree are executable under the
initial mapping. The objective of EA is defined as the cumulative
reward generated from the QCP simulator and the DRL agent.

4 EXPERIMENTS

4.1 Experimental Setup

We implemented our QCP simulator using OpenAI Gym toolkit.
The RL platform Tianshou [33] was used to implement our DRL
agent. All the codes were implemented using Python with version
3.7.11. A comprehensive set of benchmarks was collected from [2,
8, 19, 29, 30], which contained 18 quantum circuits with different
logical qubits ranging from 3 ~ 16. We selected three quantum
devices: IBM QX2 with 5 qubits, IBM Melbourne with 14 qubits and
Rigetti Aspen-4 with 16 qubits. All our evaluations were run on an
Ubuntu 16.04 server which had an Intel Xeon E5-2680 v2 CPU (196
GB memory) with 8 CPU cores clocked at 2.4 GHz and a TITAN X
Pascal with 3, 840 CUDA cores clocked at 1.4 GHz. Note that the
GPU was only used for training. For a fair comparison, we evaluated
the runtime cost of all different methods using the same CPU. In
terms of EA setting, we set Probge; = 0.25, Probmytate = 0.5 and
Probcross = 0.5. The population size Nppy is 40 for IBM QX2 and
Npopu = 800 for IBM Melbourne and Rigetti Aspen-4.

Table 1: Knowledge Transfer

Train (Seen) Unseen
Circuits Circuits
Circuit mod5 dd 4mod5 | 4mod5 | 4mod5 | 4mod5 | mod5
treut mils 65 | 2““T | vo_18 | v0_19 | v0.20 | vi 22 | di_63
Orig SWAP Cost | 12 | 13 | 3 | 22 | 35 | 19 | 26
Train Time (GPU) | 2125 | - | - | | | | -
Opt SWAP Cost | ) [ v | 5 | 2 | 1 | 1 ] 2
Eval Time (CPU) | - | 03s | 07s | 03s | 03s | 03s | 02s
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4.2 Knowledge Transfer

The key advantage of our DRL-based framework is the knowledge
transfer: the experience learnt from the previously-seen circuits
can be used to optimize the unseen circuits. To demonstrate this,
we evaluated six different quantum circuits on IBM QX2 using an
untrained DRL agent. The results are treated as the original (Orig)
SWAP cost presented in Table 1. Then, we set mod5mils_65 as the
training quantum circuits with the rest as test circuits. As we can
see, after training mod5mils_65 for 21.2 seconds, our framework de-
creases the SWAP cost significantly on all other unseen circuits. The
reduction in the SWAP cost demonstrates the ability of knowledge
transfer provided by our framework. In the subsequent experi-
ments, we used mod_mult_55, rc_adder_6 and barenco_tof_5 as
the training circuits for IBM Melbourne and Rigetti Aspen-4.

4.3 Comparison with Heuristic & Exact Methods

As demonstrated in [30], Qiskit [3] and t|ket) [28] are the leading
heuristic approaches for QCP. Therefore, we included both Qiskit
and t|ket) to demonstrate the advantages of our approach over the
heuristic methods. We used t|ket) 0.16 and Qiskit 0.18 for evaluation.
While using Qiskit, SabreLayout and SabreSWAP optimizations [13]
were enabled to achieve better results. However, we found these
optimizations introduced runtime error on some quantum circuits.
On the rest of circuits, we chose the DenseLayout, LookaheadSWAP
and StochasticSWAP. For circuits optimized by StochasticSWAP, we
ran five times to obtain the best results for Qiskit.

Table 2 shows the numbers of SWAP gates required by each
quantum circuit under different approaches. For the most of quan-
tum circuits on IBM QX2, Qiskit with Sabre optimization performs
better than t|ket). However, while targeting on IBM Melbourne and
Rigetti Aspend-4, t|ket) costed less number of SWAP gates than
Qiskit did on our benchmarks. In comparison with both t|ket) and
Qiskit, our ML-based approach outperforms in all our benchmarks
on different quantum devices. Compared with Qiskit when IBM
QX2 was set as backend quantum device, our method reduced the

Table 2: Comparison with Heuristic Methods

No. of SWAP gates

Program Np | Architecture Qiskit | t|ket) | Our work
[3] [28] | (ML-based)
or 3 IBM QX2 0 0 0
adder 4 IBM QX2 1 4 1
qaoa5s 5 IBM QX2 0 1 0
mod5mils 65 | 5 IBM QX2 3 4 2
mod5d1_63 5 IBM QX2 10 6 2
4gt13_92 5 IBM QX2 0 7 0
4mod5-v0_18 5 IBM QX2 25 6 5
4mod5-v0_19 5 IBM QX2 10 2 2
4mod5-v0_20 5 IBM QX2 5 4 1
4mod5-v1_22 5 IBM QX2 3 4 1
barenco_tof 4 | 7 Melbourne 16 9 5*
tof 4 7 Melbourne 11 1 1
mod_mult 55 | 9 Melbourne 35 12 9*
tof 5 9 Melbourne 16 7 1
vbe_adder 3 | 10 Melbourne 24 16 8*
queko_05_0 | 16 Aspen-4 24 1 0
queko_10_3 | 14 Aspen-4 42 15 0
queko_15_1 | 14 Aspen-4 61 38 0

* Results varied by random seeds and population sizes.

Table 3: Comparison with OLSQ-SWAP

| OLSQ-SWAP [29] | Our Work

Program No. of Time Cost (s) No. of Time Cost (s)
SWAP gates (CPU) SWAP gates (CPU)

or 0 0.6 0 0.2
adder 1 0.5 1 0.3
qaoab 0 0.5 0 0.2
mod5mils_65 2 1.3 2 0.3
mod5d1_63 2 0.7 2 0.2
4gt13_92 0 0.3 0 0.3
4mod5-v0_18 5 28.2 5 0.7
4mod5-v0_19 2 1.1 2 0.3
4mod5-v0_20 1 0.2 1 0.3
4mod5-v1_22 1 0.3 1 0.3
barenco_tof 4 5 312.3 5 51.6
tof 4 1 3.6 1 0.3
mod_mult_55 8 1963.8 9 62.8
tof_5 1 6.6 1 0.4
vbe_adder_3 8 2183.6 8 65.7
queko_05_0 0 1.1 0 0.1
queko_10_3 0 15.3 0 0.5
queko_15_1 0 38.2 0 1.7

® ML-based (Our work) Exact (OLSQ-SWAP) ® Heuristic (t|ket>)
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Figure 4: Optimality versus runtime cost on IBM Melbourne.

the number of SWAP gates by 20 on 4mod5-v0_18. Comparing with
t|ket) on IBM Melbourne, our approach decreased the SWAP cost
of vbe_adder_3 by at most 8. For queko_15_1 on Rigetti Aspend-4,
we reduced the SWAP from 38 to 0, which improved the optimal-
ity by 100%. Therefore, our ML-based method can achieve higher
optimiality on QCP than the leading heuristic approaches.

Among various exact approaches [5, 25, 34, 35], OLQS-SWAP [29]
outperforms in terms of the number of SWAP gates and the runtime
cost. Therefore, we chose OLQS to represent the leading exact ap-
proach in our comparison. In Table 3, we compared our ML-based
approach again OLQS in terms of SWAP and runtime costs. Except
for mod_mult_55 where our approach required one more SWAP
gate, we achieved the same optimality as the exact search on the
rest of the circuits. In terms of runtime cost, our approach achieved
up to 40, 33 and 30 times speedup on IBM QX 2, IBM Melbourne
and Rigetti Aspen-4 respectively. Therefore, our work can achieve
the same level of SWAP cost as the best exact approach does while
significantly reducing the runtime cost.

To visualize the advantages of our framework over both heuristic
and exact methods, Figure 4 presents the runtime cost and opti-
mality of five different quantum circuits on IBM Melbourne using
different approaches. We measured the optimality by dividing the
required SWAP cost from the optimal SWAP cost. Our ML-based
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framework achieved 85% higher optimality than t|ket) on tof_5.
Compared with OLSQ-SWAP, we achieved the same optimality
while decreasing the runtime cost by 33% on vbe_adder_3.

4.4 Flexibility of Exploring Trade-off

While achieving the higher optimality than heuristic methods and
the shorter runtime than the exact approaches, our ML-based frame-
work also enables users to explore optimality-runtime trade-off. To
demonstrate this, we evaluated three quantum circuits on IBM Mel-
bourne, i.e., barenco_tof_4, mod_mult_55 and vbe_adder_3. We
set different population sizes while performing the EA optimiza-
tion: 400, 600, 800 and 1200. Figure 5 presents the SWAP and time
costs of three different quantum circuits under different population
sizes. A decreasing trend was shown in the SWAP cost when the
population size and runtime cost increased. It can also be observed
that the optimality and runtime trade-off varies circuit by circuit.
For instance, barenco_tof_4 and vbe_adder_3 achieved the lowest
SWAP cost when the population size was 1200 and 800 respectively.
By defining these customizable parameters, users are able to explore
the trade-off on their own quantum circuits and devices.

5 CONCLUSION

This work proposes a novel machine learning (ML)-based frame-
work for quantum circuit placement (QCP). We adopt a policy-based
deep reinforcement learning algorithm to optimize the mapping
strategy. Then, an evolutionary algorithm is proposed to optimize
the initial mapping. Compared with the leading heuristic industrial
approaches, our ML-based method is able to achieve up to 100%
higher optimality. In comparison with exact search, we reduce the
runtime by up to 40 times while keeping the same level of opti-
mality. In future, we aim to evaluate our method on large-scale
quantum circuits, consider quantum fidelity into our framework
and explore noise-adaptive method for QCP.
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