
Accelerating Constraint-Based Causal Discovery by Shifting
Speed Bottleneck

Ce Guo
c.guo@imperial.ac.uk

Imperial College London
London, United Kingdom

Wayne Luk
w.luk@imperial.ac.uk

Imperial College London
London, United Kingdom

ABSTRACT
Causal discovery is a technique to find the causal relationship be-
tween variables using data. This technique has many applications
in data mining and knowledge discovery. However, the high data di-
mensionality results in a significant computational efficiency prob-
lem. A common speed bottleneck in conventional causal discovery
methods is the execution of conditional independence (CI) tests.
This paper proposes, analyzes, and evaluates a novel acceleration
strategy for causal discovery, which has low communication costs
and can effectively exploit FPGA on-chip memory and parallelism.
First, we propose an algorithmic method to shift the speed bottle-
neck from CI test execution to CI test generation. Second, we design
a hardware accelerator for CI test generation on FPGAs. Third, we
evaluate the proposed approach by comparing the accuracy-speed
trade-off against four state-of-the-art accelerated causal discovery
tools on CPUs and GPUs. Our accelerated implementation running
on an Intel Arria 10 GX FPGA shows a superior accuracy-speed
trade-off in 12 causal discovery problems. The implementation
achieves up to 8.8 times speedup over the cuPC software running
on an NVIDIA GeForce RTX 2080 Ti GPU. It also achieves up to
155.7 times speedup over the stable.fast software running on an
Intel Xeon Silver 4110 octa-core CPU. To the best of our knowl-
edge, the proposed approach is the first FPGA-based acceleration
approach for constraint-based causal discovery.
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1 INTRODUCTION
Causal discovery [1, 2], also known as casual structural learning
[3], is a technique to find the causal relationship between random
variables. A causal discovery algorithm uses data sampled from
random variables to produce a graph representation for the causal
relationships between these variables.
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Causal discovery has many applications in data mining and
knowledge discovery. For example, causal discovery enables a data-
driven approach to finding genetic causes of diseases, including
cancers [4, 5]. The conventional way to study gene expression is to
conduct controlled experiments. Specifically, to investigate whether
a target gene has an expected effect, one needs to randomly divide
the samples into two groups, knock down the target gene in one
group, and compare the expected effect in both groups. However,
the high experiment cost often makes large-scale controlled exper-
iments impossible. Causal discovery provides an alternative way
to explore gene expression since causal discovery algorithms can
extract promising causal relationships directly from a data set of
multiple genes and effects. It is only necessary to run small-scale
controlled experiments to verify the discovered relationships. This
data-driven approach can significantly improve productivity and
cut down the cost of gene expression analysis.

The long computation time of causal discovery limits its appli-
cations. For instance, an experiment [6] shows that a widely used
software tool for causal discovery, pcalg [7], takes around 73 hours
to produce a causal graph for a gene expression data set [8] with
1643 variables on an Intel Xeon CPU with eight cores running at
2.5 GHz.

In this study, we propose an FPGA-accelerated approach for
constraint-based causal discovery. An experimental implementa-
tion of the proposed approach can finish causal discovery for up to
5000 variables within one minute. The acceleration of constraint-
based causal discovery is a considerable challenge for FPGAs. In
particular, the execution of conditional independence (CI) tests,
which is a common speed bottleneck in conventional causal discov-
ery methods, appears intractable for FPGA-based acceleration. A
critical insight of this study is to shift the speed bottleneck from
the execution of CI tests to their generation process. The shifting
of the bottleneck facilitates the design of accelerated hardware. In
summary, the main contributions of this paper include the follow-
ing:

(1) An acceleration strategy that shifts the speed bottleneck
from CI test execution to a novel FPGA-friendly CI test gen-
eration process (section 3).

(2) An FPGA-accelerated causal discovery design and its imple-
mentation based on the proposed strategy (section 4).

(3) An empirical study comparing the proposed approach against
state-of-the-art accelerated causal discovery tools on CPUs
and GPUs regarding speed and accuracy (section 5).

This study is the first to accelerate constraint-based causal discov-
ery using FPGAs to the best of our knowledge. An open-source
implementation of the FPGA-accelerated design is available at
https://github.com/ceguo/cdcsf.
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Figure 1: Problem setting of causal discovery

The organization of the remainder of this paper is as follows.
Section 2 discusses the background and related work, including the
causal discovery problem, conventional solutions, and acceleration
methods; section 3 presents the proposed FPGA acceleration ap-
proach for constraint-based causal discovery from an algorithmic
perspective; section 4 describes the design and implementation for
the proposed approach using FPGAs; section 5 shows an empirical
evaluation by comparing our FPGA-accelerated implementation
against state-of-the-art causal discovery tools running on CPUs
and GPUs.

2 BACKGROUND AND RELATEDWORK
We briefly introduce the causal discovery problem and its solutions
in this section. Section 2.1 explains the causal discovery problem
and the Peter-Clark (PC) algorithm; section 2.2 gives an overview
of three accelerated causal discovery tools on multi-core CPUs and
GPUs.

2.1 Causal discovery and the Peter-Clark
algorithm

A general problem setting for causal discovery is shown in Figure 1.
A data set contains 𝑛 (𝑛 > 0) samples taken from a set of random
variables 𝑉 . Each sample is a vector of |𝑉 | elements, giving the
values of the variables. The causal discovery algorithm discovers
the causal relationships from data and encodes the relationships
into a graph𝐺 = (𝑉 , 𝐸). The node set 𝑉 is the set of variables; the
edge set 𝐸 is the set of relations between variables. An edge from
node 𝑣𝐴 to 𝑣𝐵 corresponds to the causal relationship that 𝑣𝐴 is a
cause of 𝑣𝐵 .

Two dominating approaches for causal discovery are constraint-
based and score-based methods [9]. We focus on constraint-based
causal discovery methods in this study. A basic constraint-based
causal discovery algorithm is the Peter-Clark (PC) algorithm. The
algorithm works in two steps. The first step is causal skeleton dis-
covery, which extracts an undirected graph from data. The second
step is to determine the directions of the edges to build a completed
partially directed acyclic graph (CPDAG). The first step is the most
computationally demanding part of the algorithm [10].

There are a few variants of the PC algorithm which differ in the
skeleton discovery step. The most widely-used variant is PC-stable
[11]. Given a set of variables 𝑉 , the skeleton discovery procedure
of PC-stable is shown in Algorithm 1. The function ⊥(𝑣𝐴, 𝑣𝐵,𝐶) in

Algorithm 1: Skeleton discovery in PC-stable algorithm
0 𝐸 ← {(𝑣𝐴, 𝑣𝐵) : 𝑣𝐴 ≠ 𝑣𝐵 and 𝑣𝐴 ∈ 𝑉 and 𝑣𝐵 ∈ 𝑉 }
1 𝑙 ← 0
2 𝑓stop ← false
3 while 𝑙 < 𝑙max and 𝑓stop = false do
4 for (𝑣𝐴, 𝑣𝐵) ∈ 𝑉 ×𝑉 do
5 𝑓stop ← true
6 𝑅 ← ∅
7 for 𝐶 ⊆ (neighbor(𝑣𝐴) − {𝑣𝐵}) and |𝐶 | = 𝑙 do
8 if ⊥(𝑣𝐴, 𝑣𝐵,𝐶) then
9 𝑅 ← 𝑅 ∪ (𝑣𝐴, 𝑣𝐵)

10 𝑓stop ← false
11 𝐸 ← 𝐸 − 𝑅
12 𝑙 ← 𝑙 + 1
13 return E

the algorithm (Line 8) is a conditional independence (CI) test. In
this function, 𝑣𝐴 ∈ 𝑉 and 𝑣𝐵 ∈ 𝑉 are two random variables; 𝐶 =

{𝑣𝑐0 , 𝑣𝑐1 , ..., 𝑣𝑐𝐿−1 } is a set of 𝐿 ≥ 0 random variables. The function
determines whether 𝑣𝐴 and 𝑣𝐵 are conditionally independent given
𝐶 . In other words, the function returns ‘true’ if and only if, given
any value combination of 𝐶 , (i) the probability distribution of 𝑣𝐴 is
the same for all values of 𝑣𝐵 , and (ii) the probability distribution
of 𝑣𝐵 is the same for all values of 𝑣𝐴 . The random variable set 𝐶 is
called the conditioning set of the CI test since it serves as the shared
condition in these conditional probability distributions.

The PC-stable algorithm starts from a fully connected graph and
traverses through the edges multiple times. When the algorithm
visits an edge (𝑣𝐴, 𝑣𝐵), it generates a collection of conditioning sets
ℭ = {𝐶0,𝐶1, ...𝐶𝑁ℭ−1} for CI tests. Then, the algorithm decides
whether to remove (𝑣𝐴, 𝑣𝐵) by running CI tests using the condi-
tioning sets in ℭ. If 𝑣𝐴 and 𝑣𝐵 are conditionally independent given
any set 𝐶 ∈ ℭ, the algorithm puts the edge (𝑣𝐴, 𝑣𝐵) which would
be deleted into the set 𝑅. Once the algorithm finishes testing all
𝐶 ∈ ℭ, it removes all edges in 𝑅 from the graph.

2.2 Hardware acceleration
There have been studies on the acceleration of constraint-based
causal discovery methods targeting CPUs and GPUs. This subsec-
tion covers three accelerated tools: ParallelPC, cuPC and gpuPC.

ParallelPC [10, 12] is the first implementation for parallel causal
discovery to the best of our knowledge. The core idea is to execute
CI tests in parallel. In the experiments, ParallelPC is not only faster
but more accurate than pcalg. However, a major problem in this
implementation is that the code is written in R, which does not
support efficient execution.

cuPC [6] is the first approach that accelerates causal discovery
using GPUs. The parallel algorithm is a lossless transformation of
PC-stable. The cuPC accelerator works with two implementation-
level optimizations. First, if the CI test for a pair of variables returns
‘true’, cuPC cancels all remaining tests immediately. Second, the CI
tests sharing the same conditioning set take place in the same local
thread, reducing the thread management cost. The paper claims
that in a challenging data set, cuPC reduces the execution time
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Figure 2: Conventional causal discovery workflow

from 11 hours with ParallelPC to about 4 seconds with an NVIDIA
GTX 1080 GPU, achieving around 10000 times speedup.

gpuPC [13] is a GPU-based accelerator for discrete data. For CI
tests, discrete distributions need auxiliary data structures, e.g., con-
tingency tables. Such data structures occupy so much memory that
the limited capacity of the GPUmemory becomes a major challenge.
Unlike cuPC, the optimization for gpuPC is designed for discrete
data to facilitate parallel computation of marginal probabilities
using contingency tables.

3 ACCELERATION STRATEGY
This section proposes an FPGA acceleration strategy for causal
discovery. Section 3.1 discusses the motivation with an analysis of
challenges and an algorithmic framework to address the challenges;
section 3.2 proposes the conditioning set filtering (CSF) procedure
that consolidates the algorithmic framework to facilitate FPGA
acceleration; section 3.3 analyzes FPGA-related properties of CSF.

3.1 Motivation
Existing acceleration approaches for constraint-based causal dis-
covery follows the workflow shown in Figure 2. This workflow is a
generalized version of the PC-stable algorithm in Algorithm 1. The
speed bottleneck in this workflow is still CI test execution. However,
unlike PC-stable, the workflow does not limit the temporal order
of edge traversing or conditioning set generation. As a result, an
accelerated design can generate and execute multiple CI tests in
parallel to address the speed bottleneck.

Although the conventional acceleration strategy is well studied
with CPUs and GPUs, developing effective acceleration strategies
for FPGAs is challenging. In particular, we face the following three
major challenges:

(1) Challenge of discovery accuracy. We aim to build an FPGA-
accelerated causal discovery design without compromising
accuracy. However, it may not be wise to follow the accel-
eration strategy for CPUs and GPUs for accuracy. Specifi-
cally, conventional acceleration strategies usually employ

low-complexity CI test algorithms to control design com-
plexity, improve execution speed and facilitate optimizations.
However, a low-complexity CI test algorithm can produce
suboptimal causal graphs since it can incur a high error
in edge removal decisions. For instance, the cuPC toolbox
[6] only supports a Gaussian CI test algorithm based on
Pearson’s correlation coefficient. Although easy to imple-
ment, the Gaussian CI test produces less reliable decisions
than state-of-the-art CI tests such as permutation-based and
model-powered tests [14–17].

(2) Challenge of FPGA-unfriendly operations. The numeric op-
erations in CI tests usually lack efficient FPGA implementa-
tions. The problem is significant even for simple CI test algo-
rithms. For instance, a common statistic in CI test algorithms
is partial correlation [18]. Accelerated causal discovery tools,
such as cuPC [6] and bnlearn [19], calculate this statistic us-
ing an efficient routine based on matrix inversion. Although
the routine has low time complexity, fast and numerically
stable matrix inversion is challenging for FPGAs [20, 21].

(3) Challenge of limited generality in parallelization strategies.
Since existing strategies depend highly on the nature of
the specific CI tests, it is difficult to apply the strategy that
works for one CI test algorithm to a different algorithm.
For instance, a critical optimization in cuPC is to share a
pseudo-inverse matrix among all CI tests using the same
conditioning set. However, other CI tests, such as the con-
ditional mutual information test [22], do not involve this
pseudo-inverse operation. Therefore, the optimization in
cuPC is no longer applicable.

The three challenges persist as long as we deal with the speed
bottleneck by accelerating CI test execution. This study aims to
address the speed bottleneck without accelerating CI test execu-
tion. Our key insight is to shift the speed bottleneck from CI test
execution to another calculation to facilitate FPGA acceleration.
Specifically, instead of making the CI test execution faster using
FPGAs, we create an FPGA-friendly CI test generation procedure
that reduces the number of CI tests so that the execution of CI tests
no longer dominates the execution time. The newly introduced cal-
culation is still computationally expensive, but it can be accelerated
on FPGAs. On the other hand, the execution of the reduced set of
CI tests can finish within a reasonable time on CPUs.

In the conventional causal discovery workflow in Figure 2, the
generation and execution procedures for CI tests are tightly coupled.
For instance, the PC-stable algorithm starts to execute a CI test im-
mediately when the conditioning set and the edge become available.
As a result, the generation and execution procedures should take
place on the same hardware platform to minimize latency [6, 23].
However, we hope to run the two procedures on different hard-
ware platforms. Therefore, we propose an algorithmic framework
in Algorithm 2 to decouple the two procedures. In this algorithmic
framework, GenerateCITests() is a CI test generation procedure
that facilitates FPGA acceleration. On the other hand, the execution
of the generated CI tests, 𝑄 , takes place on CPUs. The newly in-
serted CI test generation procedure in Algorithm 2 should cut down



Algorithm 2: Generic algorithm shifting speed bottleneck
0 𝐸 ← {(𝑣𝐴, 𝑣𝐵) : 𝑣𝐴 ≠ 𝑣𝐵 and 𝑣𝐴 ∈ 𝑉 and 𝑣𝐵 ∈ 𝑉 }
1 𝑙 ← 0
2 while not converge do
3 for (𝑣𝐴, 𝑣𝐵) ∈ 𝑉 ×𝑉 do
4 𝑅 ← ∅
5 𝑄 ← GenerateCITests() ⊲ FPGA-accelerated

6 for (𝑣𝐴, 𝑣𝐵, 𝑐) ∈ 𝑄 do
7 𝐼 ← ⊥(𝑣𝐴, 𝑣𝐵, 𝑐) ⊲ CPU

8 if I is true then
9 𝑅 ← 𝑅 ∪ (𝑣𝐴, 𝑣𝐵) ⊲ CPU

10 𝐸 ← 𝐸 − 𝑅
11 return E

Algorithm 3: Conditioning set filtering (CSF)
0 function GenerateCITests()
1 {𝐶0,𝐶1, . . . ,𝐶𝑆−1} ← GenerateShortlist() ⊲ CPU

2 for 𝑖 ← 0 to 𝑆 − 1 do
3 𝑘𝑖 ← ComputeScore(𝐶𝑖 ) ⊲ FPGA

4 𝜃 ← Quantile({𝑘0, 𝑘1, . . . , 𝑘𝑆−1}, 𝛼) ⊲ CPU

5 ℭ ← {𝐶𝑖 : 𝑘𝑖 > 𝜃 } ⊲ CPU

6 return SetOfCITests(ℭ)

the number of CI tests such that CI test execution is no longer com-
putationally demanding. However, the CI test generation procedure
itself may dominate the execution time.

3.2 Conditioning set filtering
Algorithm 2 only serves as a framework rather than a concrete
algorithm. Therefore, we need to design an FPGA-friendly CI test
generation procedure. This section proposes conditioning set filter-
ing (CSF), an FPGA-friendly CI test generation procedure.

Algorithm 3 summarizes the CSF procedure, which involves four
calculations to generate a set of CI tests. First, the CPU generates a
shortlist of conditioning sets {𝐶0,𝐶1, . . . ,𝐶𝑆−1}. Second, the FPGA
computes a score 𝑘𝑖 for each conditioning set in the shortlist and
returns a list of scores {𝑘0, 𝑘1, . . . , 𝑘𝑆−1}. Third, the CPU obtains
the scores from the FPGA and computes a threshold 𝜃 by taking the
𝛼-quantile of the scores. Fourth, the CPU takes a list of conditioning
sets with higher scores than 𝜃 . At this stage, the CPU obtains a set
of CI tests based on the high-score conditioning sets. The numeric
parameter 𝛼 should be a positive real number smaller than one. It
should take a value close to one, such as 0.95 or 0.99, to filter out
most conditioning sets.

The most critical part of CSF is the function ComputeScore(𝐶𝑖 )
since it decides which conditioning sets are filtered out. Also, the
evaluation of the score function can dominate the execution time
of CSF. In this study, we propose the following score function:

𝜌 (𝐶) =
∑
𝑣∈𝑉

𝜌𝐶 (𝑣) (1)
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Figure 3: Proposed workflow for FPGA acceleration

where

𝜌𝐶 (𝑣) = kurt(𝑋𝐶 ×w − x𝑣) · deg𝐺 (𝑣) (2)

kurt(𝑥) = 𝐸 [(𝑥 − 𝑥)4]
(𝐸 [(𝑥 − 𝑥)2])2

(3)

w = arg minw
1
2
| |𝑋𝐶 ×w − x𝑣 | |2 (4)

where deg𝐺 (𝑣) the degree of node 𝑣 in graph 𝐺 ; x𝑣 is the data
vector of variable 𝑣 ; 𝑋𝐶 is the matrix containing the data vectors
of all variables in the conditioning set 𝐶 . In other words, the score
𝜌 (𝐶) for a conditioning set 𝐶 is the sum of sub-scores 𝜌𝐶 (𝑣) for
all 𝑣 ∈ 𝑉 . The sub-score 𝜌𝐶 (𝑣) is the product of (i) the degree of
the node and (ii) the kurtosis of the residual vector obtained from
a least-squares model that predicts x𝑣 using 𝑋𝐶 . We use kurtosis
because it indicates the number of independent components in a
mixture of signals [24, 25].

By substituting Algorithm 3 into Algorithm 2, we obtain the
causal discovery workflow in Figure 3. CI test execution is no longer
the speed bottleneck in this workflow since CSF can control the
number of CI tests by filtering out low-score conditioning sets.
However, the evaluation of the score function in Equation 1 during
CI test generation becomes the new bottleneck. Therefore, we pro-
pose to accelerate the evaluation of the score function using FPGAs.
The proposed approach addresses the three challenges in section 3.1
altogether. The fundamental problem behind all three challenges is
that FPGAs cannot execute accurate CI tests efficiently. The CSF
approach addresses this fundamental problem by shifting the bot-
tleneck from CI test execution to CI test generation. Therefore, it is
no longer necessary to accelerate CI test execution using FPGAs.



3.3 Analysis of FPGA acceleration
We derive a data traffic model for the communication between the
CPU and the FPGA for the evaluation of Equation 1. In each score
evaluation process, the data transmitted from the CPU to the FPGA
are 𝑆 conditioning sets. Each conditioning set contains |𝐶𝑖 | variable
indices. The corresponding data size is:

𝐷CPU→FPGA = 𝑆 · |𝐶 |max · 𝜔index (5)

where |𝐶 |max is the maximum value of |𝐶𝑖 |; 𝜔index is the number of
bits for each variable index. On the other hand, the data transmitted
from the FPGA to the CPU are 𝑆 scores. The corresponding data
size is:

𝐷FPGA→CPU = 𝑆 · 𝜔score (6)

where 𝜔score is the number of bits for a score defined in Equation 1.
Therefore, the total data traffic between CPU and FPGA is

𝐷total = 𝐷CPU→FPGA + 𝐷FPGA→CPU

= 𝑆 · ( |𝐶 |max · 𝜔index + 𝜔score) (7)

Besides data traffic, we can estimate the execution time by mod-
eling the amount of computation on the FPGA. The execution time
of the least-squares solver is algorithm-dependent. However, an
efficient solver should be able to calculate the exact solution of the
least-squares problem with around 𝑛2 · |𝐶 |max FLOPs where 𝑛 is
the number of samples. On the other hand, the calculation of the
kurtosis should take no more than 4 ·𝑛 FLOPs. As a result, the total
number of FLOPs for all the 𝑆 scores is

𝑇total = 𝑆 · |𝑉 | · 𝑛 · (𝑛 · |𝐶 |max + 4) (8)

Considering the above models, we can observe that CSF has the
following three FPGA-friendly properties:

(1) The CPU-FPGA communication time is small compared to
the evaluation time of the score function. The ratio between
the total number of FLOPs and the data traffic 𝑇total

𝐷total
tends

to be large in real-world causal discovery problems. For
example, the most computationally demanding problem in
[26] has the following settings: |𝐶 |max = 3, 𝑛 = 2000, and
|𝑉 | = 441. Taking the most compact representation for node
indices, we have𝜔index = ⌈log2 441⌉ = 9. Also, assuming that
we use single-precision floating point numbers for the scores,
we have𝜔score = 32. The corresponding ratio 𝑇total

𝐷total
≈ 3×107.

The transmission of one bit of data can lead to 30 million
FLOPs. As a result, the communication between the CPU
and the FPGA is unlikely to bottleneck the overall speed.

(2) CSF allows efficient exploitation of on-chipmemory resources
on FPGAs. Specifically, the space complexity of the least-
squares solver can be as low as O( |𝐶 |max). As a result, the
least-squares solver can spare a lot of on-chip memory re-
sources to store data. Practically, we should use the on-chip
memory to store the entire data set to maximize computa-
tional efficiency. In other words, the data scalability depends
on the capacity of the on-chip memory. Fortunately, modern
FPGAs often have sufficient on-chip memory to hold real-
world data sets. For instance, the largest data set in [10] is
only 10332 Kb with the 16-bit unsigned integer representa-
tion. In contrast, an Intel Arria 10 GX 1150 FPGA has 67244

Kb on-chip memory; a Xilinx Virtex UltraScale XCVU 440
FPGA has 88600 Kb on-chip memory.

(3) The evaluation of the score involves a large number of low-
dimensional least-squares problems. Efficient solutions to
these problems require the exploitation of fine-grained par-
allelism. Specifically, the dimensionality of a least-squares
problem in CSF is equal to the size of the corresponding con-
ditioning set, which is usually small. For instance, in the ex-
periments with real-world data in [12], the size of the largest
conditioning set is only 𝐿 = 5. FPGAs can effectively exploit
the fine-grained parallelism in these low-dimensional least-
squares problems with arithmetic operations customized for
low dimensionality [27].

Although we design CSF to facilitate FPGA acceleration, it is
also possible to implement CSF on other processors, including
multi-core CPUs and GPUs. However, CSF may not benefit these
processors for two reasons:

(1) Since the convergence rate of least-squares problems is data-
dependent, the evaluation of the sub-score function for differ-
ent nodes may require different execution times. Therefore,
an efficient design requires a load balancing mechanism for
function evaluation. On the FPGA platform, once a function
evaluation block finishes the evaluation of the sub-score for
a node, it can start processing another node with little thread
management cost. However, since the time to evaluate a sin-
gle sub-score is short, a similar load balancing mechanism on
other processors, especially GPUs, can lead to a significant
thread management cost [28].

(2) CPUs and GPUs may not be efficient for the low-dimensional
least-squares problems in CSF. Unlike FPGAs, hardware fa-
cilities on CPUs and GPUs that support least-square solvers,
such as dot product instructions, cannot be customized to
fit low-dimensional vectors. On the contrary, these facilities
on mainstream CPUs and GPUs are usually optimized for
high-dimensional vectors [29, 30] to improve computational
efficiency for applications such as deep learning and numeri-
cal simulation. However, they are not beneficial to CSF due to
the low dimensionality of the least-squares problems. There
have been studies on parallel least-squares solvers optimized
for low-dimensional problems, e.g., CAQR for multi-core
CPUs [31] and the DFO for GPUs [32]. However, the best-
supported dimensionality of these solvers is still too high
for CSL. For example, the highest dimensionality for CSF
across all real-word data sets in [12] is only 𝐿 = 5. However,
in an evaluation of CAQR [31], the speedup over the serial
implementation decreases as 𝐿 goes down from 105 to 1.
When 𝐿 = 5, CAQR is slower than the serial implementation
regardless of the number of cores. Also, in the evaluation
of DFO for GPUs in [32], the only evaluated dimensionality
is 𝐿 = 500, which is too large for CSF. Moreover, DFO is
unlikely to perform well when 𝐿 = 5 because the parallel QR
decomposition algorithms supported by DFO are similar to
the one used in CAQR.
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Figure 4: Block diagram for proposed FPGA design

Algorithm 4: Sub-score evaluation

0 w← 0𝑙 ; 𝜅old ← +∞; 𝜅new ← 0
1 while |𝜅old − 𝜅new | > 𝜖 do
2 𝜅old ← 𝜅new; 𝜓𝑟 ← 𝜓𝑜 ← 𝜓𝑜2 ← 𝜓𝑜4 ← 0
3 for 𝑖 ∈ [0..(𝑛 − 1)] do
4 𝑟 ← 𝑦𝑖 − x𝑖 ·w
5 g← 𝑟 · x𝑖
6 𝛼 ← 𝑟 2

| |g | |22+𝜖
7 w← w + 𝛼 · g
8 𝜓𝑟 ← 𝜓𝑟 + 𝑟
9 𝑜 ← 𝑟 − 𝑟

10 𝜓𝑜2 ← 𝜓𝑜2 + 𝑜2; 𝜓𝑜4 ← 𝜓𝑜4 + 𝑜4

11 𝑟 ← 𝜓𝑟

𝑛

12 𝜅new ← 𝑛 ·𝜓
𝑜4

𝜓 2
𝑜2+𝜖

13 return 𝜅new · deg(𝑦)

4 DESIGN AND IMPLEMENTATION
This section presents a hardware design on an FPGA platform to
accelerate the conditioning set filtering (CSF) procedure discussed
in section 3. Section 4.1 presents the hardware design; section 4.2
describes our experimental implementation for the design.

4.1 Hardware design
Figure 4 shows a block diagram for the proposed FPGA design.
The FPGA design includes a queue to buffer the conditioning sets
received from the CPU. At the beginning of a score evaluation
process, the queue releases a conditioning set. The conditioning
set data buffer fetches the data vectors for the conditioning set.
Next, the sub-score evaluation modules evaluate the sub-scores
in parallel using Equation 2. The accumulator sums up the sub-
scores according to Equation 1. When the accumulator finishes
accumulating all the sub-scores for the conditioning set, it sends
the final score back to the CPU.

The most critical component in the FPGA design is the sub-score
evaluationmodule since thismodule deals with the speed bottleneck
in CSF. Since this module involves non-trivial numeric operations

and control logic, we present its functionality as a piece of pseudo-
code in Algorithm 4. The constant 𝜖 in the pseudo-code is a small
positive number to avoid divide-by-zero errors. The while-loop in
the algorithm is a first-order optimization routine that solves the
least-squares problem in Equation 4 with a stochastic Polyak step
size [33]. The variables𝜓𝑜2 and𝜓𝑜4 collect statistical information
from the residual 𝑟 to update the kurtosis 𝜅new after the for-loop.

A design with more sub-score evaluation modules can compute
more sub-scores in parallel. Therefore, an effective way to improve
the speed is to deploy more sub-score evaluation modules within
the constraints of resources and timing. For instance, we manage
to deploy 56 sub-score evaluation modules in our experimental
implementation on an Intel Arria 10 GX FPGA. Moreover, each sub-
score evaluation module includes the following two non-obvious
optimizations.

First, instead of using the up-to-date sample mean to calculate
the kurtosis, we use an out-of-date version 𝑟 based on the residuals
in the previous for-loop iteration, as shown in Line 11. Without this
optimization, it is necessary to store the residuals for all the 𝑛 data
points [𝑟0, 𝑟1, . . . , 𝑟𝑛−1] in the on-chip memory to estimate their
central moment. Also, we need to design a separate hardware block
to evaluate this central moment in each iteration of the while-loop.
The proposed optimization avoids such resource usage for residual
storage and central moment evaluation. The price for this optimiza-
tion is that the while-loop can occasionally take one more iteration
than the unoptimized design. Specifically, the while-loop should
terminate when the kurtosis based on the up-to-date sample mean
is approximately equal to the kurtosis in the previous iteration.
However, the out-of-date sample mean can enlarge the difference
between the two kurtosis values, delaying the termination of the
while-loop. Fortunately, if the while-loop fails to terminate in an
iteration due to the out-of-date sample mean, the up-to-date sam-
ple mean must be available at the beginning of the next iteration.
Therefore, the maximum delay is only one iteration.

Second, the conventional exit condition of thewhile-loop is based
on the convergence status of the weight vector w [34]. However,
we set the exit condition based on the kurtosis, as shown in Line 1.
This setting can potentially cut down the number of iterations for
the least-squares solver. In particular, when the least-squares solver
stops due to the convergence of the weight vector w, the kurtosis
must be ready. However, the weight vector may still need updates
when the kurtosis is ready. Since we are only interested in the
kurtosis, we set the while-loop exit condition directly based on the
kurtosis to finish the loop as early as possible.

4.2 Experimental implementation
We use the C programming language to describe both the hardware
and the software. We describe the hardware in section 4.1 following
the OpenCL 1.2 standard which is supported by the Intel FPGA
SDK for OpenCL toolchain. We write the software following the
C99 standard to ensure compiler compatibility.

Besides the hardware design on FPGAs, the proposed approach
has three major routines running on CPUs: Shortlist(𝑆) pro-
duces a shortlist of 𝑆 conditioning sets for the FPGA to evaluate;
Quantile(𝐾, 𝛼) returns the 𝛼-quantile of the score array 𝐾 ob-
tained from the FPGA; ⊥(𝑣𝐴, 𝑣𝐵,𝐶𝑖 ) tests whether two variables



Table 1: Benchmarks used in experiments

Name Type # Nodes # Edges
Hailfinder Real-world 56 66
Hepar2 Real-world 70 123
Win95pts Real-world 76 112
Pathfinder Real-world 109 195
Andes Real-world 223 338
Diabetes Real-world 413 602
Pigs Real-world 441 592
Link Real-world 724 1125
Munin Real-world 1041 1397
Random5kf2 Synthetic 5000 5048
Random5kf3 Synthetic 5000 7492
Random5kf4 Synthetic 5000 10017

𝑣𝐴 and 𝑣𝐵 are conditionally independent given the conditioning set
𝐶𝑖 .

In each iteration, we generate a connected dominating set from
the graph as the conditioning set shortlist and use a sorting-based
approach to calculate the quantiles. Specifically, we sort the list of
scores {𝑘0, 𝑘1, . . . , 𝑘𝑆−1} in ascending order using Quicksort and
return the ⌊𝑆 ·𝛼⌋-th element in the sorted list. The time complexity is
identical to the Quicksort algorithm, which is O(𝑆 log 𝑆) on average
and O(𝑆2) in the worst case. All computation takes place on a single
CPU thread.

We are aware that there are fast parallel algorithms to calculate
quantiles on CPUs [35–37] and GPUs [38]. However, these algo-
rithms do not demonstrate a speed advantage because the array
size 𝑆 for real-world data is small. For example, the experiments
in [38] show that the Quicksort-based quantile algorithm on one
CPU core is three times as fast as an optimized GPU-accelerated
algorithm when 𝑆 < 16000. In contrast, the largest possible 𝑆 across
all the data sets in [6] is only 5361.

We use the residual-based conditional independence test (RCIT)
[39] in our implementation. We cache the residuals during the
execution of CI tests using the thread-local memory. With this
optimization, if the residuals for a variable in the current CI test have
been computed in a previous CI test, the current test can directly
retrieve the residuals from the thread-local memory without re-
computation.

In addition to the above settings, we design an implementation-
level optimization to run additional edge removal on the host CPU
when the FPGA is busy. Specifically, once the FPGA starts to cal-
culate scores for the shortlist, the CPU starts to execute CI tests to
remove edges using the conditioning sets whose scores are below
𝜃 in the previous shortlist. Once the FPGA finishes the calculation,
the CPU immediately stops working on the previous shortlist and
starts to compute the quantile of the current scores.

5 EVALUATION
This section presents an empirical evaluation of the proposed ap-
proach using the experimental implementation described in sec-
tion 4.2. Section 5.1 gives the experiment settings, including soft-
ware tools, hardware environments and data sets; section 5.2 presents

experiments on the trade-off between accuracy and speed; sec-
tion 5.3 describes experiments comparing the speed of causal dis-
covery tools with the same accuracy.

5.1 Experiment settings
Causal graphs used in experiments are shown in Table 1. These
graphs include all benchmarks classified as large or massive graphs
in [19]. We sample a data set from each causal graph following
the settings in [40]. We do not use the gene expression data in
[6] because the underlying causal structure is unknown. Since
there are rarely large causal graphs with ground truths, we include
three synthesized networks in this empirical study to discover the
capability of different causal discovery methods on large causal
graphs.

Table 2 shows the causal discovery tools we compare in the
experiments. We compare these tools since they involve concerns
and optimization for speed. Note that we do not test two types
of causal discovery tools for a fair comparison. First, we do not
test discrete-variable-only systems the discretization of continuous
variables can lead to a big information loss. Second, we do not test
score-based methods. The execution time of score-based methods
is hardly comparable with the constraint-based methods in general.
For example, the FPGA implementation of a score-based method
[41] takes 224 seconds to discover the ‘alarm’ network on a Xilinx
Alveo U200 acceleration card. However, the constraint-based toolkit
stable.fast takes only 0.9 seconds.

Table 3 presents hardware platforms used in this study. The
settings related to code compilation are as follows. We use the Intel
FPGA SDK for OpenCL 20.1 to compile the hardware kernel for CSF.
The resource usage of the implementation is shown in Table 4. We
use GCC 8.2.1 to compile C and C++ code for bnlearn, stable.fast,
and the host code of CSF. The optimization flags for bnlearn and
stable.fast follow their default settings; the optimization flag for
CSF is ‘-O3’. We use the NVIDIA CUDA compiler 11.1 to compile
the GPU code for cuPC with the ‘-O3’ optimization flag following
the compilation guide in [6]. In all experiments, we set 𝛼 = 0.95 to
filter out 95% of conditioning sets in each shortlist.

In addition to the causal discovery tools in Table 2, we develop
CPU and GPU implementations for our CSF-based approach. Specif-
ically, we build the CPU software in the C programming language
using a single CPU thread. The CPU software is over 100 times
slower than the FPGA version. Since the software is mainly for
model-checking, its optimization was not as thorough as other
tools in Table 2. Therefore, we do not include detailed results for
a fair comparison. A multi-threaded implementation with appro-
priate load-balancing is beyond the scope of this paper. Assuming
that the throughput for score evaluation can scale linearly with the
number of physical cores, we estimate that the FPGA implemen-
tation can achieve 14-16 times speedup over the multi-threaded
implementation running on the octa-core CPU in Table 3. In our
GPU implementation, we use each thread to compute the scores
for a subset of nodes for the same conditioning set. This implemen-
tation is 6—9 times slower than the FPGA implementation in the
experiments. Our opinion on the relatively suboptimal GPU speed
is that the proposed approach does not benefit GPUs, as we discuss
in section 3.3. However, we cannot rule out that some new and
non-obvious optimizations can improve GPU performance. As a



Table 2: Compared causal discovery tools

Tool Algorithm Hardware Programming Language Reference
bnlearn Parallel PC-Stable Multi-core CPU C++ with R interface [19]
cuPC GPU-oriented PC-Stable GPU CUDA C with R interface [6]
stable.fast Classic PC-Stable Multi-core CPU C++ with R interface [7]
ParallelPC Parallel PC-Stable Multi-core CPU R [10, 12]
Proposed Conditioning Set Filtering FPGA, Multi-core CPU C and OpenCL This paper

Table 3: Hardware platforms

Platform CPU GPU FPGA
Model Intel Xeon Silver 4110 NVIDIA GeForce RTX 2080 Ti Intel Arria 10 GX 10AX115S2F45I1SG
Lithography 14nm 12nm 20nm
Base frequency 2.1GHz 1545 MHz 240MHz
Cores 8 physical / 16 logical cores 4352 CUDA cores N/A
Memory 192GB DDR4 11GB GDDR6 16GB DDR4 via PCIe 2.0x4

Table 4: Resource usage

Resource ALUT RAM FF DSP
Total 854400 2713 1708800 1518
Used 495233 2421 520650 921

Used(%) 58% 89% 30% 61%

result, we omit detailed results of this GPU implementation since
they provide insufficient evidence to support our opinion.

5.2 Trade-off between accuracy and speed
The accuracy-speed trade-off for skeleton discovery and CPDAG
discovery are respectively shown in Figure 5 and 6. Each sub-figure
contains the accuracy and speed for one data set. The accuracy
measure is the structural Hamming distance (SHD). A lower SHD
means higher discovery accuracy. The speed measure is the total
execution time in seconds. An implementation appears in a sub-
figure if and only if it finishes execution in 7200 seconds. We avoid
using the number of floating-point operations per second (FLOPs/s)
as a speed measure. Due to the difference in algorithm and data,
FLOPs/s does not decide accuracy or efficiency in causal discovery.

The primary conclusion from the results is that the proposed
FPGA-accelerated implementation achieves a superior trade-off
between accuracy and speed. Graphically, the superiority of the
trade-off corresponds to the fact that the points representing CSF
in all sub-figures are close to the origin of the coordinate system.
Also, we have the following observations:

(1) The accuracy of CSF is high in both skeleton discovery and
CPDAG discovery. Specifically, CSF achieves the best accu-
racy in 10 out of 12 data sets in skeleton discovery and 11
out of 12 data sets in CPDAG discovery. The key factor be-
hind the high accuracy is as follows. The number of CI tests
provided by the FPGA-accelerated generator is small. The
small quantity of CI tests allows complex but accurate CI
tests to finish within a reasonable time on CPUs. In contrast,
to pursue high speed, the other four tools only simple but
inaccurate CI tests.

(2) The speed of CSF is outstanding for high-dimensional data
sets. In both discovery tasks, CSF achieves the highest speed
in 7 out of 12 data sets, namely Pathfinder, Diabetes, Pigs,
Mulin, Random5kf2, Random5kf3, Random5kf4. In particular,
CSF is the only approach that finishes within 7200 seconds
for Pathfinder. Using Table 1 as a reference, we find that
the 7 data sets are of high dimensionality. The reason be-
hind the dimensionality–speed correlation is that a higher
dimensionality results in more CI tests for the PC-stable al-
gorithm. In this case, the overhead, including intra-platform
communication and FPGA initialization, becomes negligible.
In contrast, when the dimensionality and the number of CI
tests are low, CSF’s overhead dominates the execution time.
In this case, executing all the CI tests in PC-stable can be less
computationally expensive than the overhead-dominated
CSF.

(3) When CSF does not demonstrate an advantage on speed for
a data set, there is little need for acceleration since software
tools are sufficiently fast. The 5 data sets onwhich CSF fails to
achieve the highest speed are Hailfinder, Hapar2, Win95pts,
Andes, and Link. The causal discovery problems with these
5 data sets are not as computationally demanding as the
other data sets. In particular, the fastest CPU implementation,
stable.fast, takes less than 5 seconds to finish. Practically, it
is unnecessary to invest effort to further improve speed in
such a situation.

In addition, we conduct an experiment to observe whether the
bandwidth of the FPGA interface bottlenecks the speed. The PCIe
2.0x4 interface of the FPGA card provides a total bandwidth of 8
Gb/s. In the experiment, we run the interface in PCIe 1.0 mode to
cut the bandwidth by half. However, we observe no changes in the
speed throughout all experiments.

5.3 Speed comparison at fixed accuracy
We aim to provide a direct speed comparison between our CSF-
based experimental implementation and other causal discovery
tools. However, the experiments on the accuracy-speed trade-off
do not support a fair speed comparison because different tools end
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Figure 5: Skeleton discovery: accuracy (structural Hamming distance, better lower) vs speed (execution time, better lower)

up with different accuracy. We believe that the comparison is fair
only if we can fix a common accuracy level. Fortunately, we can
terminate our experimental CSF implementation early to obtain a
shorter execution time and a less accurate causal graph. In other
words, we can downgrade the accuracy of CSF to the same level of
reference tools for a fair speed comparison.

The comparison between CSF and a reference method is as
follows. First, we measure the execution time 𝑇ref and the corre-
sponding structural Hamming distance (SHD) 𝐷ref of the reference
method. Next, we run CSF and take the execution time 𝑇CSF when
the SHD reduces to 𝐷ref or less. Finally, we calculate the speedup
by taking the ratio 𝑇CSF

𝑇ref
.

We focus on the CPDAG discovery task in this experiment. Re-
garding data, we only use the data sets that meet the following two
conditions. The first condition is that CSF should achieve the high-
est accuracy with the data set. This condition guarantees that CSF
can reach the accuracy of the reference implementation. The sec-
ond condition is that at least one non-FPGA tool can finish within
7200 seconds. Six data sets meet both conditions: Diabetes, Pigs,
Mulin, Random5kf2, Random5kf3, Random5kf4. Regarding causal

discovery tools, we focus on cuPC and stable.fast since they can
finish execution for any of the six data sets within 7200 seconds.

Table 5: Execution time at fixed accuracy level

Reference Network 𝐷ref 𝑇ref (s) 𝑇CSF (s) Speedup
cuPC Diabetes 126 251.10 28.68 8.8
cuPC Pigs 227 88.51 18.87 4.7
cuPC Mulin 1018 5.16 1.80 2.9
cuPC Random5kf2 8132 61.22 12.02 5.1
cuPC Random5kf3 4568 49.83 9.51 5.2
cuPC Random5kf4 3454 58.16 10.08 5.8
stable.fast Diabetes 126 1054.17 28.68 36.8
stable.fast Pigs 504 1100.72 9.51 115.7
stable.fast Mulin 874 277.31 2.29 121.1
stable.fast Random5kf2 8381 1670.96 10.73 155.7
stable.fast Random5kf3 5039 602.94 7.75 77.8
stable.fast Random5kf4 3982 778.35 9.62 80.9

The results are shown in Table 5. In all tests, the proposed FPGA
implementation can reach the accuracy of cuPC and stable.fast
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Figure 6: CPDAG discovery: accuracy (structural Hamming distance, better lower) vs speed (execution time, better lower)

within 30 seconds. The CSF-based implementation achieves 2.9–8.8
times speedup against cuPC and 36.8–155.7 times speedup against
stable.fast.

6 CONCLUSIONS AND FUTUREWORK
Causal discovery is a critical but computationally demanding pro-
cedure in data mining and knowledge discovery. A common speed
bottleneck for constraint-based causal discovery is the execution of
CI tests. Conventional acceleration strategies speed up the execu-
tion of CI tests by running them in parallel. However, it is difficult
to accelerate this calculation using FPGAs.

Instead of accelerating the execution of CI tests using FPGAs, we
propose an acceleration strategy that shifts the speed bottleneck
from the FPGA-unfriendly execution procedure of CI tests to the
FPGA-friendly generation procedure of the tests. The proposed ap-
proach allows the execution of CI tests to finish within a reasonable
time on CPUs. On the other hand, we develop an FPGA-accelerated
design to remove the new speed bottleneck, CI test generation. An

OpenCL implementation on an Intel Arria GX FPGA demonstrates
a superior trade-off between accuracy and speed in 12 causal discov-
ery problems. The implementation achieves up to 8.8 times speedup
over the cuPC software running on an NVIDIA RTX 2080 Ti GPU.
It also shows up to 155.7 times speedup over the stable.fast software
running on an octa-core Intel Xeon Silver 4110 CPU.

Directions of future work for enhancing the proposed approach
include: (i) design-level and implementation-level hardware opti-
mizations, (ii) bottleneck shifting techniques for other computation-
ally demanding problems, (iii) cloud-based designs with multiple
CPUs, GPUs and FPGAs, (iv) tools that automate the proposed ap-
proach, and (v) applications for biomedical science and agent-based
modeling.
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