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ABSTRACT

Continuing advances in heterogeneous and parallel computing en-
able massive performance gains in domains such as AI and HPC.
Such gains often involve using hardware accelerators, such as FP-
GAs and GPUs, to speed up specific workloads. However, to make
effective use of emerging heterogeneous architectures, optimisa-
tion is typically done manually by highly-skilled developers with
in-depth understanding of the target hardware. The process is te-
dious, error-prone, and must be repeated for each new application.
This paper introduces Design-Flow Patterns, which capture modular,
recurring application-agnostic elements involved in mapping and
optimising application descriptions onto efficient CPU and GPU
targets. Our approach is the first to codify and programmatically
coordinate these elements into fully automated, customisable, and
reusable end-to-end design-flows. We implement key design-flow
patterns using the meta-programming tool Artisan, and evaluate
automated design-flows applied to three sequential C++ applica-
tions. Compared to single-threaded implementations, our approach
generates multi-threaded OpenMP CPU designs achieving up to 18
times speedup on a CPU platform with 32-threads, as well as HIP
GPU designs achieving up to 1184 times speedup on an NVIDIA
GeForce RTX 2080 Ti GPU.
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1 INTRODUCTION

The mainstream compute landscape is rapidly evolving, becoming
increasingly parallel and heterogeneous to harness the massive
performance potential of specialised hardware accelerators such
as GPUs and FPGAs. With this shift, the gap between traditional
software application descriptions and optimised designs targeting
heterogeneous platforms is becoming more pronounced. While
device-specific optimising compilers continue to improve their abil-
ity to achieve high performance from high-level source-code, there
is still significant restructuring and transformation required to craft
sequential software application descriptions into designs amenable
for compilation onto specialised hardware.

In this context, developers must identify computationally in-
tensive ‘hotspots’ for acceleration; select a suitable partition and
mapping across different processing elements; identify and expose
concurrent code sections to enable parallelisation by compilers;
apply well-known datatype, memory, and throughput optimisa-
tions; and perform systematic design space exploration (DSE) to
determine optimal runtime configuration parameters. These tasks
are all part of source-level design-flows, performed manually by
human developers, to map unoptimised high-level descriptions into
optimised designs for specific hardware targets.
Automating such design-flows poses the following challenges:

C1. Abstraction: design-flow components should be suitably
abstracted to hide implementation details so they can be
employed by non-expert developers.

C2. Efficiency: automatically optimised code should be as effi-
cient as manually optimised code, which currently requires
expertise and effort from developers with in-depth hardware
knowledge and experience.

C3. Customisability: automated design-flows should be flexi-
ble and extensible to support new search algorithms, optimi-
sation techniques, and emerging technologies in the massive
and evolving design space.

C4. Reusability: design-flows should be built using reusable,
existing components to decrease time and development ef-
fort.

C5. Application-Agnostic: automated design-flows should op-
erate on arbitrary applications, or within a specific applica-
tion domain.

This paper introduces Design-Flow Patterns, which provide a
novel approach that addresses all challenges C1-C5 described above
(see Fig. 1). Design-flow patterns allow common and recurring
elements of a design-flow to be codified as meta-programs, in-
cluding tasks currently performed manually by expert developers.
Codified patterns can then be programmatically coordinated into

https://doi.org/10.1145/3535044.3535050
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Figure 1: Design-Flow Patterns: common, recurring, application-agnostic elements for building, customising, and automating

end-to-end design-flows that optimise high-level descriptions for heterogeneous CPU/GPU/FPGA platforms.

automatic design-flows. Our contributions are: (i) an initial cata-
logue of design-flow patterns for optimising high-level application
descriptions onto multi-threaded CPU and GPU targets (Section 2);
(ii) implementations of patterns and automated design-flows using
the meta-programming tool Artisan (Section 3); (iii) an evaluation
of implemented design-flows applied to three C++ applications
generating optimised OpenMP CPU designs and HIP GPU designs
achieving up to a 18 times speedup on a CPU platform with 32-
threads and up to 1184 times speedup on an NVIDIA GeForce RTX
2080 Ti GPU compared to a single-threaded implementation (Sec-
tion 4). Section 5 discusses related work, and Section 6 concludes
and reports ongoing and future work.

2 DESIGN-FLOW PATTERNS

2.1 Overview

We define a design-flow as the explicit orchestration of manual
and/or automated tasks that map and optimise a high-level soft-
ware description onto a specific hardware platform. Fig. 2(a) illus-
trates the current manual design-flow methodology. Starting with
a high-level implementation, developers perform code analysis
to understand application requirements and bottlenecks, identi-
fying code regions worth accelerating. They manually partition
and map computations onto available processing elements, generat-
ing framework-specific device management and data transfer code.
They apply known optimisation techniques, as documented in tool
vendors’ best practices guides [1][9][18], to tune performance on
each target device. Experienced developers make decisions driven
by insights into the application’s characteristics, as well as knowl-
edge of the target platform, typically involving a combination of
informed trial and error and systematic DSE. This manual effort
must be repeated and modified for each new application.

To automate this process, we propose Design-Flow Patterns as
a means to capture, catalogue, and codify common and recur-
ring design-flow tasks with the purpose of building customised,
reusable, automated design-flows (see Fig. 2(b)). Similar to design
patterns, popularised in the context of object-oriented software
design [5] and extended to cover parallel as well as GPU and FPGA
design [4][14][15][17], Design-Flow Patterns abstract recurring so-
lutions to provide developers with a reusable base of experience

and a common vocabulary. In contrast to design-patterns, which
capture principles for developing application descriptions, design-
flow patterns capture principles for developing automated mapping
and optimisation tasks, addressing the challenges outlined in the
introduction as explained below.

Fig. 2(b) illustrates two specific envisioned roles: (1) the applica-
tion developer whose expertise and primary concern is algorithmic
behaviour; and (2) the design-flow developer who builds design-
flows that automate mapping and optimisation. This is possible
through our meta-programming methodology [21], which allows
programs to be seen as data, and therefore programmatically anal-
ysed and manipulated. This means that all currently manual design-
flow tasks, from analysis to code transforms and DSE, can be poten-
tially codified and coordinated into an end-to-end design-flow that
operates on a high-level unoptimised software description to derive
an optimised design with little intervention from an application
developer.

High-level design-flow pattern descriptions abstract implemen-
tation details, allowing design-flow tasks to be accessible for ex-
perimentation by developers without in-depth hardware knowl-
edge (C1). With our approach, meta-programs operate at the same
level as human developers (source-to-source), hence end-to-end
flows have the potential to achieve performance close to hand-
tuned designs or be further manually fine-tuned (C2). Pattern im-
plementations can be parameterised, replaced, and extended as
plug-and-play building blocks (C3). Moreover, modular end-to-end
design-flows facilitate pattern component reuse (for instance, com-
mon analysis techniques) in order to reduce development time and
effort (C4). Finally, our approach decouples optimisation concerns
from high-level descriptions, supporting design-flows that are ap-
plication agnostic (C5). This way, optimisation effort codified once
can be reapplied across multiple applications.

2.2 Template

To facilitate modular implementations as well as reasoning about
coordination of patterns into end-to-end design-flows, a uniform
template should be used to catalogue them. We propose using a
subset of the form contributed by Gamma et al. [5] for OO design
patterns, including the following fields:
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Figure 2: (a) Current design-flow methodology, (b) Proposed methodology based on design-flow patterns and meta-

programming.

Name: A succinct, descriptive name for the pattern.
Intent: What does the pattern do?
Motivation:Why is the pattern used?
Applicability:What conditions must be met for the pattern
to be applied?
Related Patterns (optional):Are there related patterns?
(e.g. components, often used together)

While a uniform template is important for cataloguing and rea-
soning about design-flow patterns, pattern definitions are still rela-
tively informal and text-based. It is critical to clearly capture the
intent and applicability of each pattern such that design-flow devel-
opers can unambiguously codify expected behaviour, and reason
about how to combine patterns into design-flows, while still leaving
room for flexibility in implementation. The following subsection
poses an initial catalogue of design-flow patterns defined using this
template, focusing on optimising for CPU and GPU targets.

2.3 Catalogue

In our catalogue, we classify design-flow patterns into four types:
i. Analysis patterns cover common static or dynamic appli-
cation analyses. By operating at source-level, design-flow
patterns have a broader scope for analysis than optimising
compilers, including runtime analysis.

ii. Code-Generation patterns inject or generate new source-
code to format the application as necessary for execution
on a new target or to facilitate further analysis and transfor-
mation. For example, generating framework-specific GPU
management code.

iii. Transform patterns perform source-to-source transforma-
tions. For example, replacing mathematical expressions with
specialised built-in operations provided by a target program-
ming model.

iv. Optimisation patterns employ analysis and transform pat-
terns to optimise some aspect of the application, typically
involving DSE driven by a performance objective. For ex-
ample, tuning the number and configuration of threads in
order to minimise execution time. The integration of dif-
ferent patterns (e.g. analysis to support decision making,

and transforms to manipulate code) allow us to build design-
flows that can operate with little or no intervention from
application developers (see Fig. 5).

Patterns can be target- and tool- independent or dependent. For
instance, time all program loops and generate a report (target-
independent analysis), or insert a framework-specific pragma to
indicate to a known vendor’s compiler that it can safely make
an assumption (target-dependent transform). Furthermore, tool-
independent patterns may have tool-dependent implementations -
most GPU vendors support a concept of shared memory, but how
this should be indicated in code varies. Table 1 provides example
patterns of each type defined using the proposed template in our ap-
proach. This catalogue of patterns is a starting point to demonstrate
the scope and value of recurring, application-agnostic design-flow
components - it is not an exhaustive list of all possible patterns.

The following section describes how we codify these patterns
using meta-programs to develop coordinated end-to-end program-
matic design-flows targeting CPU and GPU platforms.

3 CODIFYING DESIGN-FLOW PATTERNS

3.1 The Artisan Meta-Programming

Framework

We implement the design-flow patterns in our catalogue using
the meta-programming tool Artisan [21]. Artisan provides a uni-
fied environment for source-code analysis, instrumentation, and
execution, with support for an array of key features that facili-
tate modular pattern implementation as well as coordination into
end-to-end design-flows. Artisan currently employs the libclang
framework [11] to parse C++ descriptions, so meta-programs oper-
ate at a true source-to-source level with no progressive lowering.
Source-code is represented as an abstract-syntax-tree (AST) closely
reflecting the code as written by a developer without losing in-
formation. Artisan meta-programs are written in Python 3, and
are therefore accessible to design-flow developers with varying
expertise (platform, tool, domain). With a familiar programming en-
vironment in which source-code, tools, and platforms are exposed
as first-class Python objects Artisan meta-programs can seamlessly
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Table 1: Analysis (A1-A6), Code-Generation (G1-G3), Transform (T1-T9) and Optimisation (O1-O2) Design-Flow Patterns

ID

Name

(Related) Intent Motivation Applicability

A1 Hotspot Loop
Detection (A2,A3)

Identify computationally intensive
loops to accelerate.

Loops are often regionswheremost time is spent
during the program’s execution. Application code

A2 Loop Timing Measure execution time for all
loops in the application.

To identify application bottlenecks and regions
worth optimising. Application code

A3 Dep. Analysis Identify dependencies in a program
loop. To parallelise and/or transform loops. Loop

A4 Pointer Analysis
(T1)

Determine if pointer arguments
could alias within a function scope.

Certain compiler optimisations can only be ap-
plied if it is indicated that pointers do not alias. Function definition

A5 Kernel Timing Time all GPU kernels in an exe-
cuted application.

To understand the impact of code changes, iden-
tify bottlenecks, and compare performance.

Application code +
GPU kernel

A6 Calculate GPU
Occupancy

Determine the occupancy for a ker-
nel on a target GPU.

Calculating occupancy helps to understand per-
formance and to tune GPU launch parameters.

Application code +
GPU kernel

G1 Loop-to-Function
Extraction

Extract a program loop into an iso-
lated function.

To enable isolated analysis and annotation to
indicate it should be offloaded to an accelerator. Loop

G2 Multi-Threaded
Code Generation

Insert the framework-specific code
required to multi-thread a loop.

Loop annotation, header file inclusion, and run-
time parameter specification is needed for run-
time system to use multiple parallel threads.

Application code +
loop

G3 GPU Mgmt Code
Generation

Insert the framework-specific code
required to execute a kernel on a
GPU.

Device management code is required to inform
the runtime system what to run on the GPU vs
CPU, and to ensure data is where it needs to be.

Application code +
function

T1 Restrict Pointer
Arguments (A4)

Indicate to the compiler that
pointer arguments do not alias.

Device compilers that cannot determine if point-
ers could alias conservatively assume that they
might, limiting the scope for optimisation.

Non-aliasing function args +
target with restrict keyword

T2 Shared Memory
Buffer

Copy the contents of a pointer ar-
gument into shared memory in a
GPU kernel.

Limited on-chip shared memory has higher
bandwidth and lower latency than global mem-
ory.

Pointer + GPU kernel,
if pointer contents fit in
shared mem

T3 Page-Locked
Memory Allocate memory as page-locked.

Limited page-locked memory has the highest
bandwidth between host and device, but has
heavier weight allocations than regular memory.

App code + GPU kernel
+ target with page-locked
memory

T4 Single-Precision
Math Functions

Use single-precision versions of
math functions. (e.g. sqrtf).

Avoid implicit intermediate rounding to double-
precision operations.

GPU kernel + library math
function call

T5 Single-Precision
FP Literals

Employ single-precision floating
point literals.

Explicitly use single precision literals (e.g. 0.0f)
so compiler does not assume double precision.

Expressions with single-
precision types.

T6 Specialised Math
Operations

Use available specialised math op-
erations.

Framework-provided specialisedmath functions
are more optimised than general equivalents.

Consult tool documentation
(e.g. pow(x,2) to exp2(x))

T7 Remove Loop
Dep (A3)

Remove dependent array accesses
in loops by introducing intermedi-
ate variables.

To ease loop dependency bottlenecks. Loops with dependent array
accesses

T8 Set Blocksize Specify the thread block size for
GPU kernel execution.

Runtime GPU thread configurations must be set
when launching a kernel. GPU kernel

T9 Set Num Threads Set the number of parallel threads
for loop execution.

To control the number of threads used for multi-
threaded execution.

Loop +
multi-threaded target

O1 Tune Number of
Threads (T9,A2)

Determine the number of threads
that minimises loop execution time.

The number of threads can affect performance
depending on available cores and workload size.

Loop(s) +
multi-threaded target

O2
Tune Kernel
Launch

(T8,A5,A6)

Determine the kernel launch pa-
rameters that minimises execution
time and/or maximises occupancy.

Launching kernels with different thread con-
figurations can affect execution time and GPU
occupancy.

Application code +
GPU kernel(s)
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1 __global__ void kernel(int dim_i,int dim_o,float *in,
2  int in_size,float *out,int out_size){
3   unsigned i = blockDim.x*blockIdx.x+threadIdx.x;
4   if (i >= dim_o) return;
5  + extern __shared__ float in_buf[];
6  + unsigned tx=threadIdx.x; unsigned bx=blockDim.x;
7  + for (int i_ = tx; i_<in_size; i_+=bx){
8  +   in_buf[i_] = in[i_];
9  + }
10 + __syncthreads(); 
11  for (int j = 0; j < dim_o; j++){
12     float _out = 0.0f;
13     for (int k = 0; k < dim_i*dim_i; k++){
14 +-     _out += f(in in_buf [k]);
15     }
16     out[i*dim_o+j] =  _out;
17   }
18 }

1  def insert_shared_mem_buf(kernel, var):
      # buffer fill code
2      fill_loop = 
            “““ extern __shared__ $0 $1_buf[];
        unsigned tx=threadIdx.x; unsigned bx=blockDim.x;
        for (int i_=tx; i_<$1_size; i_+=bx){
          $1_buf[i_] = $1[i_];
        }
        __syncThreads();
            ”””.replace(“$0”, var.type).replace(“$1”, var.name)

      # I. inject buffer fill code after bounds check statement
3     bc_stmts = kernel.query("cond{IfStmt} ={1}> r{ReturnStmt}")
4     bc_stmts[0].cond.instrument(Action.after, code=fill_loop) 

      # II. replace original var references with buffer references
5     refs = kernel.query("ref{DeclRefExpr}", 
                     where=lambda ref: (ref.name == var.name))
6     for row in refs:
7           row.ref.instrument(Action.replace, 

  code=“$1_buf".replace(“$1, var.name))

Artisan Meta-Program
(Python)

instrumented HIP kernel (C++)

code replacement

code injection 

Figure 3: Artisan meta-program code (left) and example instrumented HIP kernel (right) for design-flow pattern Shared Mem-
ory Buffer (T2, Table 1). This example demonstrates Artisan’s static code query and instrumentation mechanisms.

integrate with other Python libraries. Note that while Artisan has
proved to be a convenient platform for implementing design-flow
patterns, other frameworks could be used.

3.2 Meta-Program Examples

In this section, we detail two pattern implementations from our cata-
logue, demonstrating four key Artisan mechanisms: (1) source-code
queries, (2) code instrumentation, (3) application execution, and
(4) runtime reporting. These mechanisms are used to implement all
patterns referenced in Table 1. Fig. 3 presents a simplified version
of the shared memory buffer pattern (T2, Table 1), and Fig. 4 illus-
trates the key elements of the hotspot detection pattern (A1, Table 1),
demonstrating their operation on C++ source-code. These patterns
are application-agnostic and do not rely on any specific knowledge
about the original application code. Note that both meta-programs
have been adapted to adjust for space and increase legibility for
readers not familiar with the Python language.

3.2.1 Shared Memory Buffer (Fig. 3). The aim of this meta-
program is to instrument a GPU kernel to use faster shared memory
instead of global memory. Our implementation demonstrates two
key Artisan mechanisms, namely querying (left:3,5) and instrumen-
tation (left:4,7). The meta-program operates as follows:

• The C++ kernel (right-hand side) was derived automatically
by meta-programs G1 and G3 (see Table 1). First, G1 extracts
a loop into an isolated function. In turn, G3 translates this
function into a GPU kernel by (a) associating the outermost
loop index with the global work-item ID (right:3), (b) adding
a bounds check based on the loop exit condition (right:4), and
(c) inserting arguments to the kernel function corresponding
to all pointer sizes (in this example, in_size and out_size).
G3 also generates framework specific host code for managing
the GPU kernel launch (not included in the excerpt shown).

• The Python meta-program (left-hand side) accepts two ar-
guments: (1) kernel, the AST node representing the GPU
kernel function; and (2) var, the AST node representing the
definition for the variable pointing to global memory that
we wish to copy into shared memory (in our example, the
float *in kernel parameter).

• The C++ code that declares, initialises, and fills a shared
memory array is instantiated as a string (left:2), where $0
and $1 are respectively substituted with the variable type
and name stored in the AST representation.

• The meta-program injects (left:4) the above code string into
the kernel (right:5–10) after the bounds_check statement.
We can identify this statement (right:4) since it is automat-
ically generated by G3 for any application (see the above
explanation). Because all kernels will exhibit this exact code
pattern, we query the kernel for the first if-statement that
immediately encloses a return statement (left:3).

• Finally, references to the original global pointer are replaced
with references to the shared memory pointer. The kernel
is queried for variable reference expression nodes with the
original variable name (left:5), and matched references are
instrumented, replacing them with the new buffer variable
name (left:6–7). In the example kernel, there is only one
reference to in, and it is replaced with a reference to in_buf
(right:14).

3.2.2 Hotspot Loop Detection (Fig. 4). The aim of the hotspot
loop detection is to identify computationally intensive regions of
code that when optimised can substantially speedup the overall ex-
ecution time of an application. In this section, we demonstrate how
Artisan can dynamically extract runtime behaviour through code
instrumentation to generate applications that self-report informa-
tion. Our strategy for detecting hotspots is to create an augmented
application that auto-profiles the execution time of (1) the overall
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“loop{ForStmt}"
loop

ast_clone.exec(reports=True)

1  + #include <artisan>
2  + using namespace artisan;
3  + int main(int argc, char *argv[]){
4  +   Report::start();
5  +   int ret;
6  +   { Timer timer_main([](double t){
7  +       Report::write("’main’:%f",t);});
8  +     ret = [](auto argc, auto argv){
9   +        ...
10 +       { Timer timer_ltag([](double t){
11 +         Report::write("’loop0312’,%f",t);});
12 +         for (int i = 0; i < N; i++) {
13 +            z[i] = x[i] * y[i];
14 +          }
15 +        }

16 +       for (int j=0; j<T; j++) {
17 +         z[j] = x[j] * z[j-1];
18+        }
19+         ...
20+        return 0;
21+      }(argc, argv);
22+    }
23+    Report::emit();
23+    return ret;
25+ }{‘main’:404.9,‘loop0312’:306.7}

1  + #include <artisan>
2  + using namespace artisan;
3  + int main(int argc, char *argv[]){
4  +   Report::start();
5  +   int ret;
6  +   { Timer timer_main([](double t){
7  +       Report::write("`main’:%f",t);});
8  +     ret = [](auto argc, auto argv){
9   +        ...
10 +        { Timer timer_ltag1([](double t){
11 +            Report::write("`ltag1’,%f",t);});
12 +          for (int i = 0; i < N; i++) {
13 +            init_data(in[i]);
14 +           }
15 +         }
16 +        for (int j = 0; j < T; j++) {
17 +          { Timer timer_ltag2([](double t){
18 +               Report::write("`ltag2’,%f",t);});
19 +             for (int k = 1; k < N; k++) {
20 +               compute(in[k], out[k], t);
21 +              }
22 +          } 
23  +          t += dt;
24 +         }
25 +         ...
26 +        return 0;
27 +      }(argc, argv);
28 +    }
29 +    Report::emit("profile");
30 +    Report::end();
31 +    return ret;
32  + }

report sent via 
network socket 
to metaprogram

report

Artisan meta-program
(Python)

instrumented app (C++)

This loop is not 
parallel, and 
therefore is 

not instrumented

instrumented
parallel

loop

Figure 4: Artisan meta-program code (left) and instrumented HIP Kernel (right) based on design-flow pattern Hotspot Loop
Detection (A1, Table 1). This example demonstrates Artisan’s runtime execution and reporting mechanisms. Note that in this

example, the function instrument_app_timer (left:4) injects all the lines into the HIP kernel (presented in +green) using the

query and instrumentation mechanisms described in the previous example (Section 3.2.1).

application and (2) every parallel program loop. The meta-program
operates as follows:

• The meta-program accepts two parameters: an ast repre-
senting the full application source-code, and a threshold
which represents the fraction of overall execution time to
be considered a hotspot (left:1). For instance, a 0.5 threshold
indicates that a hotspot must execute for at least half of the
overall execution time.

• We clone the ast (left:2) to avoid modifying the original
code when generating the augmented version;

• We query all for-statements in the application, and filter
the results with the is_par meta-program using polyhe-
dral analysis (A3) to determine statically if a loop is paral-
lel [10] (left:3).

• The instrument_app_timer function instruments the C++
code (left:4) and times the identified parallel loops (right:10–
15), as well as the main function to capture the overall ex-
ecution time (right:6–22). In addition, runtime primitives
are injected to record the elapsed time for each code region
(right:7, 11).

• Once the augmented application is built, it is executed (left:5).
The meta-program waits for a report, sent by the application
(right:23) at the end of its execution. The data received is
translated into a map (dict) data-structure containing code
region keys and corresponding timing values. The "main"
key corresponds to the overall execution time, while the
remaining correspond to uniquely identified loop regions
(e.g. loop0312).

• At this stage, we have the timing report, and the instru-
mented clone can be discarded (left:6).

• The hotspots are now filtered by checking if the loop times
pass the given threshold (left:7–8).

4 EVALUATION

4.1 Experimental Setup

To validate our approach, we implement two automated design-
flows using Artisan which generate multi-threaded OpenMP CPU
and HIP [1] GPU designs, respectively. Both design-flows are il-
lustrated in Fig. 5, comprising of modular Artisan meta-programs
which implement the patterns in our catalogue (Table 1).

Both design-flows operate on a complete unoptimised C++ appli-
cation description, and begin with a common path. This starts with
hotspot loop detection (A1), in which parallel application loops are
identified (A3), timed (A2), and filtered based on a parameterised
threshold of overall execution time (see Fig. 4). The loop with the
longest execution time that meets the threshold is selected and
extracted into an isolated function (G1), then target-independent
pointer analysis and transforms common to both OpenMP and HIP
are applied as applicable (A4, T1, T7). Next, the GPU and CPU
design-flows diverge with target-dependent code generation (G3,
G2), before a series of target-dependent transforms on the GPU de-
sign (T2, T3, T4, T5, T6). Finally, platform-specific DSE is performed
in both design-flows. For OpenMP, the number of threads is tuned
to minimise execution time on a known target (O1, T9, A2). For
HIP, kernel launch parameters are tuned to maximise occupancy
and minimise execution time on a specific GPU (O2, T8, A5, A6).

Our OpenMP designs are executed on a platform with two Intel
Xeon Silver 4110 CPUs@ 2.10GHz, totalling 16 cores and 32 threads
with simultaneousmulti-threading (SMT), and are built with the g++
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Figure 5: Overview of the implemented end-to-end HIP GPU and OpenMP CPU design-flows. Note that this design-flow is

application-agnostic, and is designed to work on any C++ code without user intervention.

compiler using -O2. Our HIP designs target two NVIDIA GeForce
GPUs: GTX 1080 Ti and RTX 2080 Ti, using the hipcc compiler with
-O2. We evaluate our design-flows on three case-study applications
in different domains: N-body particle simulation (physics) [16],
Bezier surface generation (graphics) [6], and a Rush Larsen ODE
solver (mathematics) [7]. These are representative examples of HPC
applications with computationally intensive loops amenable for
parallel acceleration. We choose workloads that require several
minutes of execution time on a single-threaded CPU.

4.2 Reusability and Application-Agnosticity

To validate design-flow pattern reuse and application-agnosticity,
Table 2 outlines the patterns used in each design-flow, and each
pattern’s applicability to our case-studies. Seven patterns are shared
by both design-flows, this is more than half of the multi-threaded
CPU design-flow, and almost half of the HIP GPU design-flow. By
codifying design-flow patterns as modular meta-programs, they
are implemented once then reused for different hardware targets.
Furthermore, the target-dependent patterns in Fig. 5 are common
to devices within a target family (e.g. NVIDIA GTX 1080 Ti and
RTX 2080 Ti).

In addition, both design-flows are application-agnostic, operat-
ing on any high-level C++ description. Unlike manual optimisation
efforts which need to be repeated and modified for every appli-
cation, design-flows are codified once and applicable to multiple
applications. As shown in the bottom row of Table 2, all ten pat-
terns composing the CPU design-flow were applied to all three
case-studies. Of the seventeen patterns composing the GPU design-
flow, fourteen are applicable to all three case-studies. While specific
transforms may not be universally suitable, the design-flows need
not be modified for each application, but rather check individual
pattern applicability and profitability programmatically. For in-
stance, pattern T6 (Table 1), which employs specialised math oper-
ations, was only applied to Rush Larsen, replacing expensive divide
by square-root expressions (1/sqrt(x)) with optimised reciprocal
square-root functions (rsqrt(x)). The other two case studies did
not contain any expressions that could be replaced with specialised
versions, so the design-flow skips the transform automatically.

4.3 Multi-threaded CPU Performance

For our multi-threaded CPU experiments, we consider three sce-
narios where we set a limit of 8, 16, and 32 available threads (see
Fig. 6). In each scenario, the automated DSE (O1, Table 1) uses
hill-climbing to identify the minimum number of CPU threads that
maximises performance.

In general, execution time decreases with increasing threads.
Execution with 8 threads achieves an 8 times speedup for N-Body
Simulation compared to the single-threaded reference, and nearly
doubles to 15 times with 16 threads available. For both Bezier Sur-
face and Rush Larsen, a 7 times speedup is achieved on 8 threads,
increasing to 12 times on 16 threads. The speedup is improved
but not quite doubled, due to thread management and scheduling
overhead.
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Table 2: Design-flow pattern reuse for different design-flows (Multi-Threaded CPU and HIP GPU) and applicability to eval-

uated case-studies. Pattern IDs referenced in Table 1. N /3 case-studies indicates pattern applicability to N of our three case-

studies.

Pattern ID A1 A2 A3 A4 A5 A6 G1 G2 G3 T1 T2 T3 T4 T5 T6 T7 T8 T9 O1 O2
MT-CPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HIP GPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Case-Studies 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 1/3 3/3 3/3 3/3 1/3 1/3 3/3 3/3 3/3 3/3

Further increasing the number of threads from 16 to 32 provides
a more modest speedup, since our CPU platform only contains 16
cores. However with the support of SMT, which allows two threads
to maximise the utilisation of a single core, some performance gain
can be expected. This is the case for N-Body Simulation and for
Bezier Surface, which reach 17 times and 18 times speedup respec-
tively compared to the reference implementation. However, for
Rush Larsen, there is no observed execution time improvement on
32 threads compared to 16 threads, due to the complexmathematical
logic which limits SMT execution.

4.4 HIP GPU Design-Flow Performance

Due to the massive parallelism available on the GPU targets, the
generated GPU designs execute significantly faster than the ref-
erence sequential and multi-threaded CPU implementations. Our
GPU design-flow automatically selects a block-size that maximises
occupancy and minimises execution time for each case-study and
specific GPU (O2, Table 1). In all cases, the observed performance,
as explained below, is better on the RTX 2080 than the GTX 1080
(see Fig. 6). This is expected, as the RTX 2080 has roughly 20%more
CUDA cores and also has wider cores with advanced features.

For N-Body Simulation, RTX 2080 execution is almost twice as
fast as the GTX 1080, achieving, respectively, 1184 times and 646
times speedup compared to a single-threaded implementation. The
HIP kernel requires 33 registers per thread, limiting the maximum
occupancy on the GTX 1080 to 75%, while the RTX 2080 achieves
100% occupancy. Our N-Body Simulation design fully saturates both
GPUs, requiring more work items to complete than concurrently
available. With 1.6 times more active work items on the GTX 2080
Ti, we observe a 1.8 times performance improvement.

The generated Bezier Surface design is only slightly faster on
the RTX 2080 than the GTX 1080 - 87 times vs. 83 times speedup
compared to the reference sequential CPU design. Similar to N-
Body Simulation, the generated Bezier surface HIP kernel requires
33 registers per thread, limiting the GTX 1080 maximum occupancy.
The workload, however, does not saturate either GPU as the number
of work items required is less than that concurrently available on
either device, so the performance of the two devices is comparable.

The generated HIP kernel for Rush Larsen requires 255 registers
per thread due to the complexity of the solver logic. This limits the
occupancy achievable on the GTX 1080 to 12.5% and on the RTX
2080 to 25%. Application execution saturates the GTX 1080 design,
but not the RTX 2080 design, achieving 102 times and 156 times
speedup, respectively.

In all cases, our automatically generated designs achieve equiv-
alent performance to our manually crafted versions. However, it
is expected that a more experienced GPU developer could further

improve performance with extra optimisation techniques, which
could in turn be codified to extend the automatic design-flow. The
presented performance gains for both CPU and GPU are achieved
automatically and derived from unoptimised high-level descrip-
tions. The performance comes free with little or no intervention
from the application developer. Furthermore, the code generated
is human-readable at the same level of abstraction as the original
code, so developers can further fine-tune if necessary.

5 RELATEDWORK

It is established that there are well-known, recurring methods for
optimising heterogeneous applications. Several domain specific
languages (DSLs) and libraries embed optimising transformations
to abstract low-level GPU details and separate optimisation from
behavioural application concerns [3][8][19][20]. These solutions en-
able efficient and customisable optimisation, but require effort and
expertise. For instance, developers need to learn new programming
models, DSL syntax, and/or familiarise themselves with available
library functions, employing insight into target platforms to make
design decisions. This effort needs to be repeated for each new
application. With the proposed design-flow patterns, well-known
optimisation methods can be captured, codified and coordinated
into automated design-flows that can be reused across multiple ap-
plications by developers with or without in-depth hardware knowl-
edge.

Various projects tackle programmatic mapping and/or optimisa-
tion. The approaches in both [12] and [24] generate OpenCL GPU
code from data-parallel software inputs, profiling to map compu-
tations onto CPU or GPU targets. In [22], Haskell meta-programs
tune GPU kernel launch parameters for designs expressed in an
embedded DSL. In [23] automatic source-to-source transformations
optimise CUDA stencil computations. Work under the ParaPhrase
project uses pattern-based development and code refactoring tech-
niques to transform sequential applications into parallel equiva-
lents [2]. Togpu [13] similarly parallelises sequential code by per-
forming C++ to CUDA transformations to generate GPU designs,
with intermediate lowering based on Clang and LLVM. These au-
tomatic approaches effectively parallelise and/or optimise input
computations and can be reused across applications. However, their
design-flows are tightly coupled to an implementation based on a
particular tool and/or framework, limiting customisability. In most
cases, applications must be described in a way that explicitly ex-
poses parallelism, requiring expertise from application developers
and an effort that must be repeated for each application. Where
sequential input applications are supported, lowering to an IR limits
the scope for analysis and auto-generated source-code may lose
the original structure, becoming difficult to maintain.
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The Artisan meta-programming framework has previously been
used to programmatically optimise FPGA designs starting from
sequential C++ source-code [21], with efficient, customisable, and
reusable optimisation strategies automated using meta-programs
in order to decouple behavioural application descriptions from op-
timisation descriptions. In this paper, we employ this framework
to support design-flow patterns, while providing a higher-level of
abstraction above meta-program implementations, broadening the
scope for reasoning about modular components and their coordina-
tion into design-flows for different targets, not tied to a particular
implementation.

6 CONCLUSION

This paper introduces design-flow patterns as a means to capture
common and recurring elements of design-flows for optimising
C++ high-level application descriptions onto CPU and GPU tar-
gets. We report an initial catalogue of patterns that have known
to be effective in accelerating CPU and GPU designs, and codify
modular patterns using the meta-programming tool Artisan. Target-
independent patterns are combined with target-dependent patterns
to automate end-to-end programmatic design-flows that map un-
modified sequential C++ application descriptions into optimised
CPU and GPU designs. We apply our programmatic design-flows
to three case-study HPC applications in different domains (physics,
graphics, mathematics), and evaluate the performance of automati-
cally generated OpenMP and HIP designs on three multi-core CPU
and two GPU target platforms. We reuse the same design-flows
for all three case-studies, and achieve up to 18 times speedup on
a CPU platform with 32-threads and up to 1184 times speedup on
an NVIDIA GeForce RTX 2080 Ti GPU compared to a sequential
single-threaded reference implementation.

Ongoing and future work includes extending our pattern cata-
logue and programmatic design-flow strategies to support more
advanced GPU optimisations leveraging the HIP programming
model, incorporating FPGAs using OneAPI [9], as well as covering
patterns which are specific to particular application domains.
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