
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

High-Performance Acceleration of 2-D and 3-D
CNNs on FPGAs Using Static Block Floating Point

Hongxiang Fan , Shuanglong Liu , Zhiqiang Que, Xinyu Niu, and Wayne Luk, Fellow, IEEE

Abstract— Over the past few years, 2-D convolutional neural
networks (CNNs) have demonstrated their great success in a
wide range of 2-D computer vision applications, such as image
classification and object detection. At the same time, 3-D CNNs,
as a variant of 2-D CNNs, have shown their excellent ability to
analyze 3-D data, such as video and geometric data. However,
the heavy algorithmic complexity of 2-D and 3-D CNNs imposes
a substantial overhead over the speed of these networks, which
limits their deployment in real-life applications. Although various
domain-specific accelerators have been proposed to address this
challenge, most of them only focus on accelerating 2-D CNNs,
without considering their computational efficiency on 3-D CNNs.
In this article, we propose a unified hardware architecture to
accelerate both 2-D and 3-D CNNs with high hardware efficiency.
Our experiments demonstrate that the proposed accelerator can
achieve up to 92.4% and 85.2% multiply-accumulate efficiency on
2-D and 3-D CNNs, respectively. To improve the hardware perfor-
mance, we propose a hardware-friendly quantization approach
called static block floating point (BFP), which eliminates the fre-
quent representation conversions required in traditional dynamic
BFP arithmetic. Comparing with the integer linear quantization
using zero-point, the static BFP quantization can decrease the
logic resource consumption of the convolutional kernel design by
nearly 50% on a field-programmable gate array (FPGA). Without
time-consuming retraining, the proposed static BFP quantization
is able to quantize the precision to 8-bit mantissa with negligible
accuracy loss. As different CNNs on our reconfigurable system
require different hardware and software parameters to achieve
optimal hardware performance and accuracy, we also propose
an automatic tool for parameter optimization. Based on our
hardware design and optimization, we demonstrate that the
proposed accelerator can achieve 3.8–5.6 times higher energy
efficiency than graphics processing unit (GPU) implementation.
Comparing with the state-of-the-art FPGA-based accelerators,
our design achieves higher generality and up to 1.4–2.2 times
higher resource efficiency on both 2-D and 3-D CNNs.

Manuscript received February 5, 2021; revised June 14, 2021; accepted
September 17, 2021. This work was supported in part by the U.K. EPSRC
under Grant EP/L016796/1, Grant EP/N031768/1, Grant EP/P010040/1, Grant
EP/V028251/1, and Grant EP/S030069/1; in part by the National Natural
Science Foundation of China under Grant 62001165; in part by the Hunan
Provincial Natural Science Foundation of China under Grant 2021JJ40357;
in part by the Changsha Municipal Natural Science Foundation under Grant
kq2014079; and in part by the funds from Corerain, Maxeler, Intel, Xilinx, and
the State Key Laboratory of Space-Ground Integrated Information Technology
(SGIIT). (Corresponding author: Shuanglong Liu.)

Hongxiang Fan, Zhiqiang Que, and Wayne Luk are with the Department of
Computing, Imperial College London, London SW7 2AZ, U.K.

Shuanglong Liu is with the School of Physics and Electronics, Hunan
Normal University, Changsha 410081, China (e-mail: liu.shuanglong@
hunnu.edu.cn).

Xinyu Niu is with Shenzhen Corerain Technologies Company Ltd.,
Shenzhen 518048, China.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3116302.

Digital Object Identifier 10.1109/TNNLS.2021.3116302

Index Terms— Field-programmable gate array (FPGA), sta-
tic block floating point (BFP), three-dimensional convolutional
neural network (3-D CNN).

I. INTRODUCTION

IN RECENT years, deep neural networks (DNNs), espe-
cially convolutional neural networks (CNNs), have demon-

strated their great potential in various computer vision (CV)
applications. In particular, 2-D CNNs, which perform 2-D
convolution in the spatial domain to extract 2-D features, have
achieved state-of-the-art accuracy in a wide range of CV tasks,
including image classification [1] and object detection [2].
Besides 2-D CNNs, 3-D CNNs [3], due to their ability to
incorporate the 3-D information based on 3-D convolution,
have been also adopted in various 3-D CV scenarios, such
as human action recognition [4] and 3-D medical imaging
segmentation [5].

Nevertheless, the memory and computational complex-
ity of 2-D and 3-D convolutions put a heavy burden on
their hardware performance on general-purpose processors,
which restrains their application in real-life scenarios [6]. For
instance, a classical 3-D CNN designed for human action
recognition called C3D requires nearly 78 GOPs, and thus,
achieves only 951 ms per inference for a 16-frame video
on an Intel i5 CPU, which cannot meet the requirement of
real-time processing [7]. Therefore, there is a great demand
for domain-specific accelerators for both 2-D and 3-D CNNs.
Different hardware platforms, including graphics processing
units (GPUs), application-specific integrated circuits (ASICs),
and field-programmable gate arrays (FPGAs), have been used
to accelerate both 2-D and 3-D CNNs. Among all these
hardware platforms, FPGAs are gaining popularity because of
their better flexibility than ASICs and higher energy efficiency
than GPUs [8], [9]. In spite of these advantages, there are
several challenges when accelerating both 2-D and 3-D CNNs
on FPGA:

1) To improve the hardware performance, most FPGA-
based accelerators tend to utilize low-precision weights
or activations [8]. However, previous work either shows
significant accuracy loss, such as fixed-point [10] and
logarithm arithmetic [11], or requires a large amount of
hardware resource on implementing quantization mod-
ules, such as linear quantization [12] and dynamic BPF
quantization [13].

2) Convolution operations, especially 3-D convolution, are
highly memory and computation-intensive, making it

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2387-5611
https://orcid.org/0000-0002-1513-1981

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

hard to achieve high performance on FPGAs with lim-
ited memory and computational resources [7].

3) Unifying 2-D and 3-D CNNs onto one hardware archi-
tecture is challenging since they have different data
locality, and improper design may cause a high degree
of data replication [14].

To address these challenges, this article proposes a high-
performance reconfigurable architecture for accelerating 2-D
and 3-D CNNs. To improve hardware efficiency, the design
unifies both 2-D and 3-D convolution onto one computational
engine and supports three different types of parallelism for
different CNNs. To reduce the computational complexity,
we propose a novel hardware-friendly quantization method
called static block floating-point (BFP) quantization. The
proposed static BFP quantization consumes fewer hardware
resources than both linear integer quantization and traditional
dynamic BFP quantization while achieving the same level of
accuracy. Furthermore, as different CNNs on our proposed
reconfigurable system require different software and hardware
parameters to achieve optimal performance, an automatic tool
is proposed to optimize these parameters given the running
CNN and dataset. Therefore, our contributions in this article
include the following.

1) A hardware-friendly quantization method called static
BFP quantization. Without retraining, it can quantize
both the weights and activations in 2-D and 3-D CNNs
to 8-bit mantissa while maintaining the same level
of accuracy. By using fixed shared exponents during
inference, the proposed method eliminates the expo-
nent calculation and the frequent FP-BFP and BFP-
FP conversions required in traditional BFP arithmetic.
Comparing with the integer linear quantization using
zero point, our quantization can decrease the logic
resource consumption of the convolutional kernel design
by nearly 50% on an FPGA (Section III).

2) A uniform FPGA-based accelerator for both 2-D and
3-D CNNs with high hardware performance. By uni-
fying the 2-D and 3-D CNNs into one computational
pattern and providing different types of parallelism for
different CNNs, the design is able to achieve high
hardware efficiency (Section IV). An automatic tool
optimizes the accuracy and hardware performance by
determining the proper software and hardware parame-
ters. On an Intel Xeon Silver 4110 CPU, the tool only
consumes a few minutes for the whole optimization
process (Section V).

3) Extensive experiments evaluating a wide range of 2-D
and 3-D CNNs on the proposed design in terms of
accuracy and hardware performance. Compared with
the other state-of-the-art FPGA-based designs and GPU
implementation, our design shows higher generality,
power efficiency, and resource efficiency (Section VI).

II. BACKGROUND

This Section introduces the basic operations used in both
2-D and 3-D CNNs. Then, a brief review of FPGA-based
accelerators for 2-D and 3-D CNNs is presented. The basic
knowledge and applications of BFP will be also illustrated.

TABLE I

NOTATION OF PARAMETERS USED IN THIS ARTICLE

Fig. 1. 2-D and 3-D convolution, channel dimension is not shown for
simplicity.

A. Operations in 2-D and 3-D CNNs

In modern 2-D and 3-D CNNs, the commonly used opera-
tions include 2-D and 3-D convolution, 2-D and 3-D pool-
ing [3], batch normalization (BN) [15], shortcut addition
(SC) [16] and rectified linear unit (ReLU). This part introduces
the difference between 2-D and 3-D operations.

1) 2-D and 3-D Convolution: Fig. 1 shows the basic oper-
ation of 2-D and 3-D convolution. For each input frame,
2-D CNNs apply one 2-D convolution to generate one output
frame without considering the information that existed in
the time dimension. However, in order to incorporate the
third-dimension information, 3-D convolution applies con-
volution on multiple frames simultaneously and aggregates
the results from different frames to generate one output
frame. Therefore, 3-D convolution is more memory and
computation-intensive compared with 2-D convolution. Accel-
erating both 2-D and 3-D convolutions on one uniform
accelerator is challenging since their different degrees of
data locality require well-designed architecture to avoid data
replication [14].

2) 2-D and 3-D Pooling: As shown in Fig. 1, 2-D pooling
is applied on one single frame, which is used to decrease the
activation in height and width dimensions. Different from 2-D
pooling, 3-D pooling is performed in totally 3-D with another
dimension as a time dimension. Therefore, for a 3-D pooling

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 3

with Ks×Ks×Kt kernel size, it receives Kt consecutive frames
as input and generates only one output frame. The spatial
dimension of this generated output frame is also reduced by
Ks × Ks .

Note that, since 2-D convolution is one special case of 3-D
convolution with Kt = 1, we denote the convolution men-
tioned in this article to have a kernel size Ks × Ks × Kt to
represent both 2-D and 3-D convolution. The same meaning
is applied to pooling, where the kernel size is Ks × Ks × Kt

to represent both 2-D and 3-D pooling.

B. Block Floating Point

1) Arithmetic Representation: A BFP number is represented
by mantissa bits, exponent bits, and a sign bit. Unlike FP
representation which assigns a separate exponent to each
number, BFP shares a common exponent in one block of
BFP numbers. There are two benefits of BFP in comparison
with FP. First, as different BFP numbers belonging to one
block share a common exponent, the memory consumption
of storing the BFP numbers can be significantly decreased.
Second, since BFP-based addition is implemented using the
exponent alignment with the fixed-point addition [6], [17], and
BFP-based multiplication is implemented using fixed-point
multiplication and addition, the computational complexity of
BFP is significantly reduced [17].

However, the benefits of BFP also come with burdens.
Because the BFP numbers within one block share a common
exponent and different layers may use different block sizes
and shared exponents, their mantissa parts need to be aligned.
During this process, the precision loss may occur, which
introduces a decrease in inference accuracy. The situation is
getting worse when the variance of BFP numbers increases.
In the worst case, the shifting bits required by the exponent
alignment may be larger than the mantissa bits, which causes
severe precision loss [6].

2) Dynamic BFP Quantization Approach: According to the
BFP arithmetic, previous work has proposed a dynamic BFP
quantization technique to accelerate both CNN inference [18],
[19] and training [8]. The operation of the convolutional
layer using the dynamic BFP quantization scheme is shown
in Fig. 2(a). As we can see, the dynamic BFP quantization uses
the maximal exponent as the shared exponent. Because the
maximal exponents may vary for different iterations of infer-
ence, the shared exponents need to be determined during the
runtime. However, this runtime process requires frequent FP-
BFP and BFP-FP conversions, which puts a heavy overhead
on both resource consumption and hardware performance.
In addition, dynamic BFP quantization requires extra hardware
resources for the computation and storage of exponent parts,
which further hinders its application in hardware platforms
with limited resources.

C. Related Work

1) FPGA-Based CNN Accelerator: Due to the reconfig-
urability and high energy efficiency, FPGAs have become a
popular platform in accelerating CNNs [20]. Various hardware
architectures have been proposed, and the initial research effort

Fig. 2. Operation of convolutions with dynamic and static BFP quantization.
(a) Convolution using dynamic BFP quantization. (b) Convolution using static
BFP quantization.

focuses on accelerating 2-D CNNs. Venieris and Bouganis [21]
proposed a synchronous dataflow (SDF) model for mapping
2-D CNNs to FPGAs based on a streaming architecture.
However, the resource consumption of a streaming architecture
can become very large when the number of layers increases,
which makes it impossible to map large 2-D and 3-D CNNs
onto a single FPGA device. Another design methodology
is to deploy a single processing engine (PE) for CNN-like
operations on the FPGA and accelerate the CNN layer-
by-layer sequentially using the same hardware engine [22].
Based on this design methodology, Ma et al. [23] further
improved the performance by exploring the convolution loop
optimization for 2-D CNNs. However, the BFP used in their
design requires retraining to recover accuracy. Xing et al. [24]
also proposed a high-performance FPGA-based design and
compiler to accelerate 2-D CNNs. The common drawback in
these 2-D CNNs accelerators is that they cannot be used to
accelerate 3-D CNNs with high performance [4]. For example,
the ordinary convolutional approach adopted in these 2-D
CNNs accelerators will cause higher computation complexity
when they are used to accelerate 3-D CNNs [14].

Although accelerating 3-D CNNs on FPGA is challenging,
several previous works have been proposed to address this
problem. Fan et al. [4] proposed an FPGA-based architec-
ture called F-C3D to accelerate 3-D CNNs. Sun et al. [25]
adopted hardware-aware pruning to decrease the memory
and computational required by 3-D CNNs, which achieved
2.3 times speedup and 2.3 times power efficiency compared
with other FPGA implementations. Yang et al. [26] proposed
a unified dynamically reconfigurable accelerator using a novel
Winograd decomposition algorithm to accelerate 2-D CNNs,
but its support for 3-D CNNs is unknown. Shen et al. [14] first
attempted to provide a uniform template-based architecture for
both 2-D and 3-D CNNs based on the Winograd algorithm.
However, the use of the Winograd algorithm consumes a large
number of logical resources on transforming the input and out-

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

put matrices. Liu et al. [10] proposed a uniform architecture
based on 2-D multiply-accumulate (MAC) array. Nevertheless,
the design uses low-bitwdith fixed-point arithmetic and the
accuracy result cannot be guaranteed.

2) Low-Bitwidth Quantization: Quantization [27] and spar-
sity exploiting [28] are two main-streaming techniques to
reduce the algorithmic complexity of CNNs. Since this article
mainly focuses on quantization, we refer the reader to a review
of the sparsity exploiting by Wang et al. [8].

A comprehensive survey on quantization methods for DNNs
has been summarized in [29]. There are three main-streaming
quantization approaches, i.e., fixed-point, logarithm, and linear
quantization. Courbariaux et al. [30] explore the use of fixed-
point arithmetic on CNNs for both training and inference.
However, it is only validated on small datasets and may
introduce significant accuracy loss on large datasets such
ImageNet [31]. Miyashita et al. [11] proposed a logarithmic
quantization method which decreased the precision of the
VGG-16 [32] and AlexNet [1] to low bitwidth without signif-
icant accuracy loss. Nevertheless, this quantization approach
has not been evaluated on InceptionV4 and MobileNetv2,
which cannot demonstrate its effectiveness on these light-
weight models. Jacob et al. [12] proposed an integer-only
quantization using zero-point to maintain accuracy. They
demonstrated in their experiments that the integer quantization
with zero-point only introduced negligible accuracy loss on
a wide range of CNN models. However, the use of zero-
point also introduces a heavy burden on the memory and
computational resources, which limits the overall hardware
performance. Jain et al. [33] proposed a power-of-two scaling
quantization with trainable quantization thresholds. However,
the process requires time-consuming retraining and its perfor-
mance on 3-D CNNs is unknown.

The dynamic BFP quantization mentioned in Section II-B
is first proposed in [17] and applied for CNN inference.
It is able to compress both the activations and weights to
8 bits for ResNet-50 [16] with only negligible accuracy loss
on small datasets. Based on the dynamic BFP quantization,
Lian et al. [13] proposed a high-performance CNN accelera-
tor on FPGA. Although the design uses 8-bit mantissa BFP
for the main computation, the precision used in the on-chip
and off-chip communication is still 16-bit and it requires
frequent conversion between BFP and FP, which brings a
heavy burden on the memory usage and bandwidth resource.
Different from these works, our proposed quantization scheme
uses a fixed shared exponent for different inputs to eliminate
the frequent conversion between BFP and FP. The shared
exponent is determined before CNN inference by minimizing
the KL divergence. We also introduce an automatic tool that
optimizes the shared exponents, the bitwidth of mantissa,
and the exponent by balancing the tradeoff between accuracy
and hardware performance. Our prior work [34] explored the
application of static BFP quantization on 2-D CNNs. However,
its accuracy performance on 3-D CNNs was unknown. In addi-
tion, this article only evaluated the kernel design for 2-D
convolution without running the actual CNN models, and it did
not study the unified hardware architecture for both 2-D and
3-D CNNs.

III. STATIC BLOCK FLOATING-POINT QUANTIZATION

In this Section, we first introduce the quantization approach
and blocking strategy of our static BFP quantization. The
operations of 2-D and 3-D CNNs under static BFP will then
be presented.

A. Quantization Approach

The quantization approach should consider not only the
accuracy performance but also the hardware implementation
and performance. As mentioned in Section II-B2, the frequent
FP-BFP and BFP-FP conversions required by the dynamic
BFP quantization put a heavy overhead on its resource con-
sumption and hardware performance. In order to eliminate
the process of finding the shared exponents at runtime like
dynamic BFP quantization, our static quantization scheme
fixes the shared exponent for different inputs and determines
the shared exponents before CNN inference. To achieve this,
it is required to collect certain amounts of intermediate results
by running the CNNs on different inputs and find the properly
shared exponents by minimizing the precision loss. Although
simply using the maximal exponents in the collected inter-
mediate statistics is one approach to determine the shared
exponents, we found that, on the ImageNet dataset [31],
this maximal strategy will cause significant accuracy drop
on the CNN models using depthwise convolution, such as
MobileNetv2 [35]. To address this issue, we propose another
strategy that determines the shared exponent by minimizing the
KL divergence [36], which describes the difference between
two distributions.

Algorithm 1 Static BFP Quantization Using KL Divergence
1: Run the FP-based CNNs using different inputs
2: for Each block b do
3: Fetch FP statistics and build the target distribution Dt

4: Find the maximum exponent emax

5: Use maximal exponent, eb
opt = emax

6: Initialize Dmax as the maximal FP value
7: for eof f set = 0 to i do
8: ecur = emax − eof f set

9: Apply BFP quantization using ecur

10: Build the BFP-quantized distribution Dq

11: Compute the KL divergence between Dt and Dq

12: if Dt < Dmax then
13: eb

opt = ecur , Dmax = Dt

As illustrated in Algorithm 1, in the beginning, we separate
the intermediate results into several blocks according to the
block size. Note that the block size is a hyperparameter in our
static BFP quantization and we will discuss it in Section III-B.
For each block, a histogram can be drawn based on the col-
lected intermediate FP statistics by running CNNs on example
inputs, which are used to record the original distribution. Then,
the BFP quantization is applied on i blocks based on i different
exponents, emax to emax−i + 1, which produces i different
BFP-quantized distributions. Our experiments demonstrate that
i = 3 is enough to find the proper exponents in most cases.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 5

When the BFP quantization is done, we compute the KL
divergence between the BFP-quantized distribution and FP dis-
tribution for i different exponents. Then, the shared exponent
is set to be the exponent with the minimal KL divergence.
We iteratively perform this process on each layer to obtain
the shared exponents for the whole network. In our experi-
ments later, we found that different CNNs require different
strategies to achieve higher accuracy. Therefore, an automatic
tool will be proposed in Section V, which determines different
strategies of finding shared exponent for different CNNs and
models.

B. Blocking Strategy

The block size decides the tradeoff between the precision
loss and hardware performance. Although a large block size
can decrease the number of shared exponents and the memory
consumption, it may also increase the precision loss since
the variance within one block becomes large. Therefore,
our proposed blocking strategy aims at achieving a balance
between precision loss and hardware performance.

In a typical convolutional layer, the shape of the weight
tensor is Nc × N f × Ks × Ks × Kt and the activation tensor
has the size Nl × Nc × H × W . In terms of activations,
we can block the tensor along the spatial (H × W), channel
(Nc) and temporal (Nl) dimensions. However, the convolution
needs to accumulate data from different spatial positions
and channels, which means different exponents in these two
dimensions may cause frequent exponent realignment, and
thus, degrades the hardware performance. Since the spatial and
channel dimensions are not suitable for blocking, this article
blocks the activations along the temporal dimension, which
generates Nl shared exponents for each activation tensor. For
weights, the blocking can be performed along the kernel
(Ks×Ks×Kt), channel (Nc), and filter (N f) dimensions. Since
the weights from different kernel positions and channels need
to be accumulated together, we only block the weights along
the filter dimension, which produces N f shared exponents for
every weight tensor. Using our proposed blocking strategy,
there is no need to perform exponent realignment for a single
convolutional layer.

To visualize the effect of static BFP quantization while
using the proposed exponent strategies (Section III-A) and
blocking strategy, Fig. 3 presents the normalized histograms
of the output activations of the ninth and 29th convolutional
layers in ResNet–50 using original FP data and quantized data.
To compare two different exponent strategies, we quantize
the activations using the maximal exponent (max) and shared
exponents obtained by minimizing the KL divergence (kl).
As we can see, naively using the maximum exponents causes
significant precision loss in the output activations of the ninth
convolutional layer, making it a different distribution from the
original FP data. However, while using the KL divergence
to determine the shared exponents, the quantized activations
follow a similar distribution as the FP data.

C. CNNs With Static BFP Quantization

Most operations in modern CNNs, such as SC, 2-D, and
3-D convolutions, have different BFP-based implementations

Fig. 3. Normalized histogram of original FP and quantized data in the ninth
and 29th convolutional layers of ResNet–50 on ImageNet dataset.

from their FP counterparts. This section introduces how these
operations are implemented using the static BFP quantization
scheme.

1) Convolution: Fig. 2(b) shows the basic operations of both
2-D and 3-D convolutions when the static BFP quantization is
applied. There are two improvements in comparison with the
dynamic BFP quantization.

1) Because the proposed quantization scheme determines
the shared exponents before the runtime, the frequent
FP-BFP and BFP-FP conversions can be replaced by a
simple shift operation. For instance, given two consec-
utive convolutional layers with the shared exponents a
and b, it only needs to perform the exponent realignment
that shifts the mantissa parts by a −b bits, which avoids
the trivial data conversions.

2) Since the shared exponents are already known,
the required shifting bits for each layer can be precom-
puted before runtime. Therefore, the need of calculating
exponents can be eliminated under the static BFP quan-
tization scheme, which significantly decreases the usage
of the memory and computational resources.

2) Shortcut Addition: In modern CNNs, such as ResNet,
SC [16], [37] has been widely used for residual learning. The
computation of a typical ResNet-like block with FP arithmetic
is presented in Fig. 4. The SC adds the outputs of the second
convolution and the original inputs together to obtain the
final results. However, since the exponents of both inputs
and outputs are different under the static BFP quantization
scheme, the addition cannot be simply performed in an original
way. To implement SC under static BFP quantization, a shift
operation is required before the SC to align the exponents of
the two tensors, which is presented in Fig. 4.

To find the properly shared exponents for BFP-based SC,
one straightforward approach is to simply use the maximal
exponents in the output tensor. However, we found that it will
bring a significant accuracy drop on the CNN models using
the depthwise convolution, such as MobileNetv2. To address
this issue, we observe that the shared exponents of the SC
should be determined based on the output tensor as well as
the original input tensor. Therefore, both inputs and outputs
are concatenated into one tensor, and the shared exponents
are determined by minimizing the KL divergence of this
concatenated tensor.

3) Batch Normalization, Pooling, and ReLU: BN has been
widely used in modern CNNs to address the internal covariate

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. SC using FP and BFP. (a) SC using floating point. (b) SC using BFP.

shift issue caused during training [15]. However, as the
parameters of BN are fixed during inference, we adopt the
fused BN optimization [38] to merge the BN parameters into
the weights and biases of convolution, which saves a lot of
resources for designing the BN module in hardware.

The ReLU and pooling, including both 2-D and 3-D
pooling, are mainly composed of addition and comparison
which operate along the spatial and temporal dimensions.
As mentioned in Section III-B, since our blocking is only
performed along the filter dimension, the activations belonging
to the same spatial and temporal dimensions share the same
exponents. Therefore, ReLU and pooling under static BFP
quantization can still be simply performed in a fixed-point
manner on their mantissa parts.

IV. HARDWARE IMPLEMENTATION

In this section, we first explore a uniform computational
pattern for both 2-D and 3-D CNNs. Then, a unified hardware
architecture is proposed based on static BFP. Several hardware
optimization techniques will be also presented to improve the
hardware performance and efficiency.

A. Uniform Computational Pattern

The pseudocode of 2-D and 3-D convolution is presented
in Algorithm 2, where 2-D convolution is one special case
of 3-D convolution when Kt equals 1. The key problem in
accelerating CNNs is how to allocate hardware resources on
FPGA spatially and how to temporally assign the required
computation to each hardware module. For instance, the design
proposed in [4] and [6] contains W numbers of MAC units
and each MAC unit is composed of Kt × Ks × Ks multipliers
followed by an adder tree. Therefore, the computation of
the four innermost loops is mapped into the computational
engine spatially and the rest of the calculation in the other
loops is performed temporally by running on the same engine
sequentially. However, the main drawback in these designs is
that Kt and Ks vary in different layers and networks, which
significantly reduces the generality and performance of these
accelerators.

Fig. 5 visualizes the computation of convolution as matrix
multiplication in two different manners. Previous work adopts

Algorithm 2 Pseudocode of 2-D and 3-D Convolution
1: for (f r = 0; f r < Nl; f r + +)
2: for (f i = 0; f i < N f ; f i + +)
3: for (c = 0; c < Nc; c + +)
4: for (h = 0; h < H ; h + +)
5: for (w = 0; w < W ; w + +)
6: for (kt = 0; kh < Kt; kt + +)
7: for (kh = 0; kh < Ks; kh + +)
8: for (kw = 0; kw < Ks; kw + +)
9: O[f r][f i][h][w]+=

10: W[kt][f i][c][kh][kw] ×
11: I[f r + kt][f i][c][h + kh][w + kw]

Fig. 5. 2-D convolution in different sequence. (a) Convolution. (b) Kernel-
major MM. (c) Channel-major MM.

kernel-first matrix multiplication which performs the calcu-
lation belonging to one kernel first [4], [6]. To improve the
generality of the accelerator for 2-D and 3-D CNNs with
different kernel sizes, we rearrange the data and computational
sequence to perform the matrix multiplication in a channel-first
manner where the computation along the channel dimension is
calculated first. Based on this computational manner, our hard-
ware is designed to exploit channel and filter parallelisms by
computing multiple channels PC and filters PF spatially, and
mapping the computation in kt , kh , and kw loops temporally,
which brings two benefits: 1) the proposed design is general
enough for convolutions with different kernel sizes.2) Both

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 7

Fig. 6. Design overview of the proposed FPGA-based accelerator.

2-D and 3-D convolution are unified onto the one hardware
design as all the computation related to the third dimension is
performed temporally.

B. Hardware Design

1) Architecture Overview: An overview of our proposed
accelerator is presented in Fig. 6. It is mainly composed
of off-chip memory, an input buffer, a weight buffer, and
PF numbers of PEs which compute PF filters in parallel
as mentioned in Section IV-A. The PF is a reconfigurable
hardware parameter, which is optimized for different CNN
models by the automatic tool introduced in Section V. The
input data are shared among different PEs, cached in the input
buffer, and controlled by a data manager. The weight manager
transfers the weights of different filters from the weight buffer
to each PE accordingly to perform convolution. The outputs
generated by PEs are transferred back to the off-chip memory
directly in order to decrease the on-chip memory consumption.
In this manner, the weights and intermediate results of each
layer only require to be loaded from off-chip memory to on-
chip buffer once to perform one feedforward pass. To overlap
the time spent on loading the weights of each layer, the double
buffer technique is used in the weight buffer. The PE is
designed to perform a sequence of layers in a pipeline, which
is shown in Fig. 6. It mainly consists of a MAC, ReLU, BFP
quantization (BFP Quant), pooling, and shortcut (SC) modules
and one buffer.

2) 2-D and 3-D Convolution: The computation of 2-D
and 3-D convolution is performed in MAC units. Each MAC
contains PC numbers of multipliers followed by a log2 PC -
level adder tree. As mentioned in Section IV-A, the PC is a
hardware parameter similar to PF, which can be reconfigured
for different CNN models. Because the static BFP quantization
uses the fixed shared exponents during runtime, we only
need to perform computation on the corresponding mantissa
parts. In addition, as the weights are blocked along the filter

Fig. 7. Data storage in input buffer and data access pattern.

dimension according to our blocking strategy mentioned in
Section III-B, the intermediate results coming from different
spatial positions and channels can be accumulated together.
Therefore, after the last level of the adder tree, there is a
fixed-point accumulator designed for channel accumulation.
To avoid overflow, the precision of the accumulator is 32 bits
with the 1-bit sign bit, 16-bit fractional bit, and 15-bit integer
bit. Note that the bitwidth of inputs, weights, and outputs
are reconfigurable to meet different users’ needs. A control
signal is connected to the accumulator, which is used to
indicate when the results are ready. To keep the bitwidth of
the next layer’s inputs as 8-bit, we design a BFP quantization
module (BFP-Quant) before applying the pooling operation,
which maps the 32-bit accumulated outputs to 8 bits. The
implementation details of the BFP-Quant module will be
shown in Section IV-B4.

As each PE receives PC numbers of pixels from different
channels and all PEs share the same inputs, the data are stored
in the input buffer in the manner as shown in Fig. 7. For
input data with 2 frames, 3 channels, and 3 × 3 spatial size,
the first-frame data belonging to the same spatial position from
different channels are first stored sequentially, followed by the
data from the next spatial position in the same frame. The
data of the second frame are stored in the same manner after
the storage of the first frame. Therefore, the input buffer can
output PC number of pixels from different PC channels each
time to PEs as required by our computation pattern.

3) 2-D and 3-D Pooling: The pooling operations include
max pooling and average pooling, which are implemented
using comparators and adders followed by a 16-bit divider.
Because 2-D pooling is applied on spatial dimension and the
data belonging to the same channel share one exponent under
our blocking scheme, there is no need for exponent alignment.
Therefore, 2-D pooling can be simply performed in the corre-
sponding mantissa part without using extra operations. When it
comes to 3-D pooling, the buffer in the PE is utilized to cache
the data from adjacent frames. An example of 3-D pooling
with Kt = 3 is shown in Fig. 8. In the beginning, the result
of the first pooling is cached in the buffer. While processing
the second frame, the 3-D pooling is performed between the
newly generated second-frame results and the first-pooled data
cached in the buffer. The pooling results are then flown back
to the buffer again and overwrite the first-pooled data in the
buffer. In the end, the pooling is performed between the third
frame results and the second-pooling data, and the results are
transferred to the off-chip memory.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Data flow of 3-D Pooling when Kt is 3.

Fig. 9. Hardware design of BFP quantization module.

Fig. 10. BFP shortcut.

4) BFP Quantization: Fig. 9 presents the hardware design
of our BFP quantization module. Because the shared exponents
may vary in different layers, we need to align the outputs
generated from the current convolutional layer using the shared
exponents belonging to the next layer. In addition, since the
shared exponents of the current layer may be greater or smaller
than the one used in the next layer, our BFP quantization
module needs to support both right and left shifting operations.
In this article, we adopt the mask-based data-reversal barrel
shifter design [39] to support both right and left shift with any
given shift amounts parsed by a decoder. To truncate the 32-
bit shifted results to 8 bits, we put a cast-down module at the
end of the BFP quantization module to generate 8-bit results.
The cast-down module simply extracts the higher 8 bits from
the 32-bit shifted results.

5) Shortcut Addition: The SC is first proposed in [16]. Since
the exponents of the second convolutional layer’s outputs
may be different from the original inputs as introduced in
Section III-C2, it is required to perform the bit shifting in
the shortcut module. Therefore, we design a barrel shifter to
perform the required exponent alignment after the data buffer,
which is shown in Fig. 10. When both of the tensors are
aligned, the fixed-point SC can be simply performed on their
mantissa parts.

C. Hardware Optimization

To improve the hardware efficiency, it is important to keep
the computational resources as busy as possible for useful
calculation. However, we observed that when the channel
number is small, especially in the very initial layers where the
channel number is 3, most of the multipliers and adders are
idle because PC is always set as a relatively large value, such
as 32 or 64. To address the hardware inefficiency caused by
small channel concurrence in some layers, we design our MAC

Fig. 11. MAC design with different two modes. (a) M AC under PC mode.
(b) M AC under PC&P S mode.

in each PE to support two modes with different combinations
of parallelism, which is shown in Fig. 11.

In each PE, we partition the MAC design into several
subtrees and put a DEMUX module at the tail of each subtree.
When the channel number Nc is greater and divisible by
PC , the MAC is configured as PC mode where the results
from each subtree are aggregated together by controlling the
DEMUX modules. When the channel number is smaller than
PC , we exploit the parallelism in spatial dimension by feed-
ing the data from different positions into different subtrees.
Then, the MAC design is configured as PC&PS mode using
DEMUXs and the results from each subtree are outputted
directly without going through the adder at the tail of the MAC
unit. By switching between two different modes for different
layers, the hardware efficiency is improved even when the
number of channels is small in some very initial layers
of CNNs.

V. AUTOMATIC TOOL

This section proposes a tool that automatically optimizes
software and hardware hyperparameters for different CNNs
and datasets. Several techniques, such as fake quantization,
resource model, and latency model, will be presented to speed
up the optimization process.

A. Overview of Tool

As mentioned in Section-III, there are different software and
hardware hyperparameters in our static BFP quantization and
hardware design. These hyperparameters can be reconfigured
for different CNNs to improve the accuracy and hardware
performance. Therefore, an automatic tool is proposed in
this article to perform the hardware and software optimiza-
tions, which is shown in Fig. 12. The inputs of the tool
include the network architecture of the target CNN model,
the resource information of the underlying hardware platform,
and the validation dataset used for evaluation. Since the main
optimization is implemented using PyTorch [40], we use
ONNX [41] tool at the beginning to convert the models gen-
erated from other frameworks, such as TensorFlow [42] and
MXNet [43], to PyTorch models. There are two optimizations
included in our automatic tool: 1) hardware optimization,
which determines the hardware parameters, such as parallelism
level including PC and PF, according to the resource model,
latency model, and the available resources of the hardware
platform. 2) Software optimization, which determines the

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 9

Fig. 12. Overview of automatic tool.

software parameters, such as the shared exponents, for each
layer to optimize the accuracy of the given dataset.

B. Hardware Optimization

For a given CNN model, we optimize the hardware perfor-
mance a by iterating all the possible hardware parameters A
and use greedy algorithm to determine the optimal hardware
design, which can be formulated as

min
a

LAT(a), {a ∈ A | RES(a) ≤ RESavl}. (1)

The LAT(a) and RES(a) represent the latency model and
resource model, respectively, which are described as follows.

1) Resource Model: To estimate the resource consumption
of the proposed FPGA-based accelerator, we introduce a
resource model for the logic and memory resources. Table I
summarizes the notation used in this article.

The logic resources include digital signal processor (DSP)
blocks and other logic elements, such as LUTs or ALMs.
In our design, we use one DSP together with some logic
elements to implement two 8-bit multipliers. To save DSP
resources, the adders are implemented using only logic ele-
ments. Since DSPs are the limiting resource for FPGA-based
CNN accelerator [9], we only consider DSP consumption in
this article. The DSP consumption can be described by

DSPtotal = (PC ∗ PF)/2. (2)

The memory resources are mainly consumed by the input
buffer and weight buffer. As the input buffer needs to cache
the input feature maps from Kt frames in the current i th layer,
its usage can be represented as

MEMin = max
i=1,...,l

(
Ni

c ∗ H i ∗ W i ∗ K i
t

) ∗ DW. (3)

In terms of the weight buffer, it only needs to cache
the current PF filters with PC channels, so the memory
consumption can be formulated as

MEMweight = max
i=1,...,l

(
Ni

c ∗ PF ∗ PC ∗ K i
s ∗ K i

s ∗ K i
t

) ∗ DW. (4)

As the use of ping-pong buffer technique, the total memory
consumption is

MEMtotal = 2 ∗ (
MEMin + MEMweight

)
. (5)

2) Latency Model: Since we run the network on the pro-
posed accelerator layer-by-layer, the total latency LATtotal can
be calculated using

∑N
i=0 LATi , where N represents the total

number of layers and LATi denotes the latency consumed in
the i th layer. Based on the computational pattern introduced
in Section IV-A, it takes totally BF = N f /PF batches for
the accelerator to finish the computation, and each batch
produces PF× Hout × Wout output pixels. Therefore, LATi can
be formulated as

∑BF
j=0 LATi, j , where j denotes the j th batch.

The latency LATi, j is composed of three parts: 1) LATload
i, j —

time of loading the activations and weights from off-chip
memory to the on-chip buffers. 2) LATcomp

i, j —time used for the
computation required by the j th batch in layer i . 3) LATstore

i, j —
time spent in storing the outputs back to the off-chip memory.
We calculate the latency in terms of clock cycles to achieve a
more accurate estimation. These three parts can be formulated
as follows.

1) Loading time, which consists of the weights loading
time LATweight

i, j and the input data loading time LATinput
i, j

LATinput
i, j = Ni

l × Ni
c × W i × H i

BW × EFFio × CLKio
(6)

LATweight
i, j = K i

s × K i
s × K i

t × Ni
c × PF

BW × E F Fio × CLKio
. (7)

Because we cache the input data in the on-chip buffer for
data reuse, the input data loading time only exists when
considering the first batch, which can be formulated as

LATload
i, j =

{
LATload

j=1,i = LATinput
i, j + LATweight

i, j

LATload
j �=1,i = LATweight

i, j

into. (8)

2) Computational time. Since most of the computational
time is occupied by the convolution operation (>99%),
and the other operations (BN, Pool, ReLU, Pool, and
SC) only consume a negligible portion of the total time,
the computational time can be formulated as

LATcomp
i, j = K i

s ×K i
s ×K i

t × Ni
c × PF × W i+1 × H i+1

PF × PC × CLKpe
.

(9)

3) Storing time, which is spent on transferring the outputs
to the off-chip memory

LATstore
i, j = PF × W i+1 × H i+1

BW × EFFio × CLKio
. (10)

Since our accelerator is designed in the fully pipelined
manner, these three parts are overlapped with each other, and
the time spent on i th layer can be formulated as

LATi =
BF∑
j=0

max
(

LATload
i, j , LATstore

i, j , LATcomp
i, j

)
. (11)

C. Software Optimization

As the design is based on static BFP arithmetic, the software
optimization aims at finding the optimally shared exponent for
each block to improve the accuracy. We perform the software
optimization using a quantization tool, which is based on a
fake BFP quantization technique.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 13. Fake BFP quantization technique.

1) Fake BFP Quantization: PyTorch [40] is a machine
learning framework, which provides high flexibility and gen-
erality. However, it cannot be directly used for our BFP
calculation since most of the core operations, including both
2-D and 3-D convolutions, are implemented in floating-point
arithmetic. In order to simulate the accuracy loss brought by
the static BFP quantization using Pytorch, we propose a fake
BFP quantization technique, which is shown in Fig. 13.

For a CNN model using static BFP quantization, the preci-
sion loss exists in both weights and activations. To capture the
precision loss that existed in quantized activations, a fake BFP
quantization layer, which contains two data type conversion
operations, is placed between every two adjacent convolutional
layers. The first conversion operation converts the FP data into
BFP numbers, where the quantization error of activations is
generated. Then, to output the results in FP format, the second
conversion operation maps BFP numbers back to FP outputs
such that the FP operations provided by the PyTorch library
can be still used in the rest of the CNN layers. Note that the
quantization error simulated in the first conversion layer will
be kept because the FP numbers after the second conversion
only represent the FP values quantized by BFP. The same
fake quantization layers will be applied on weights to simulate
quantization error. However, unlike activations that change
over time, the weights are fixed during the inference. There-
fore, it only requires applying fake quantization on weights
once before the inference. Then the BFP quantized weights
will be stored in off-chip memory and loaded to on-chip
buffers during runtime. Note that these fake BFP quantization
layers, for both activations and weights, are only applied
during the software simulation. In the real hardware design
and execution, these layers will be removed.

2) Quantization Tool: The workflow of our automatic tool1

is presented in Fig. 14. The main computation is implemented
using the high-performance FP functions provided by PyTorch,
which guarantees the speed of the tool. The inputs of the
tool include example images, the pretrained CNN models,
the basic BFP configurations (exponent and mantissa bits), and
the validation dataset. Then, the tool uses maximum and KL
divergence strategies to find two sets of shared exponents as
mentioned in Section III. According to these shared exponents,
we construct the BFP quantized models by inserting the
fake BFP quantization layers between every two adjacent

1Our quantization tool is publicly available at: https://github.com/os-
hxfan/Static_BFP_CNN

Fig. 14. Workflow of the BFP quantization tool.

TABLE II

BENCHMARK 2-D AND 3-D CNN MODELS

convolutions in the FP models. By performing the inference
using the BFP-quantized CNN models based on two sets of
shared exponents, the final accuracy is obtained and the shared
exponents with higher accuracy will be produced as outputs
for the user.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the accuracy and hardware performance, various
2-D and 3-D CNNs are used as benchmark models in our
experiments, which are listed in Table II. We evaluate 2-D
CNNs on ImageNet [31] dataset with 1000 object categories
for image classification and 3-D CNNs on UCF101 [44]
dataset with 101 human action classes for video recognition.
Intel Arria 10 GX1150 is used as a platform for hardware
implementation and Quartus 17 Prime Pro is used for syn-
thesis. All the design space explorations are performed at the
software level using our automatic framework, while the final
accuracy and hardware performance are evaluated at board
level.

A. Accuracy Comparison

We conduct four experiments in this part for accuracy com-
parison. We first evaluate the accuracy of our static BFP quan-
tization with different exponent and mantissa bits. The second

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 11

Fig. 15. Accuracy of 2-D (the first row) and 3-D (the second row) CNNs
under different mantissa and exponent bitwidth.

experiment explores the effectiveness of different strategies
while finding the shared exponents. Then, we demonstrate
the software efficiency of our automatic tool. In the fourth
experiment, we compare the dynamic BFP quantization [13]
and the integer linear quantization [12] with our proposed
static BFP quantization.

1) Bitwidth Exploration: This experiment is used to explore
the relationship between the bitwidth and the accuracy perfor-
mance. We first evaluate our benchmark 2-D and 3-D CNNs
using different mantissa bitwidths ranging from 4 to 13. To
eliminate the effect of exponent bits, the bitwidth of the
exponent is set to be 8 for controlling variates. It can be clearly
seen from Fig. 15 that the accuracy keeps steady when the
mantissa bits are greater than 8-bit. A significant accuracy drop
can be observed when the bitwidth of the mantissa is smaller
than 6-bit. On MobileNetV2 and InceptionV4, the accuracy
reduces remarkably by 15% and 20% when the mantissa bits
are decreased from 8 to 6. Therefore, to maintain the accuracy,
we set the bitwidth of mantissa as 8.

To find the proper bitwidth of exponents, the benchmark
CNN models are evaluated using different exponent bitwidths.
The mantissa bits are set to be 8 for controlling variates.
According to the results shown in Fig. 15, the accuracy almost
keeps the same when the exponent bits are greater than 3.
Therefore, based on the experimental results shown in this
part, we set the exponent and mantissa bits to be 4 and 8,
respectively, like the tradeoff between hardware performance
and accuracy in the rest of the experiments.

2) Maximum Versus KL Divergence: We evaluate our
benchmark CNNs using different strategies while determining
shared exponents, and the results are shown in Table III. It can
be clearly seen that the KL divergence strategy shows higher
accuracy on all the 2-D CNNs. In particular, it shows sig-
nificant accuracy improvement on MobileNetV2 (+3.406%)
of using the KL divergence strategy. However, maximum
strategy shows higher accuracy on C3D and R3D-34. There-
fore, the optimal strategies of achieving higher accuracy vary

TABLE III

ACCURACY OF THE STAIC BFP QUANTIZATION USING
DIFFERENT STRATEGIES AND TIME COST OF TOOL

on different CNNs and it will be optimized by our tool
(Section V).

3) Software Efficiency: On an Intel Xeon Silver 4110 CPU,
we measure the time cost of the quantization process. The
results are shown in Table III. Since it does not require
any time-consuming retraining or finetuning, our tool only
consumes a few minutes to finish the whole optimization
process, which demonstrates the high software efficiency.

4) Comparison With Other Quantization Approaches: We
compare our approach against three state-of-the-art quanti-
zation methods, i.e., dynamic BFP quantization [13], inte-
ger linear quantization [12], and logarithm quantization [11].
To demonstrate our quantization scheme is also applicable on
complex artificial intelligence tasks, we evaluate the object
detection using a more complicated CNN model named single
shot detector [2] (SSD) on the FDDB [47] dataset with
5171 human faces. We set the bitwidths of exponent and
mantissa as 4 and 8 for both static and dynamic BFP quanti-
zation. For a fair comparison, all the quantization methods use
8 bits on activations. Table IV presents the accuracy results.2

Among these quantization schemes, only logarithm quantiza-
tion requires time-consuming retraining to recover its accuracy
performance. Except for MobileNetV2, the accuracy loss of our
static BFP quantization on all these models is less than 0.5%.
Although the static BFP quantization on MobileNetV2 suffers
nearly 2% accuracy loss, it still performs better than the integer
linear quantization and BFP dynamic quantization. On Incep-
tionV4, VGG-16, and ResNet-50, dynamic BFP quantization
shows higher accuracy than static BFP quantization. However,
the frequent FP-BFP and BFP-FP conversions in dynamic
BFP quantization place a heavy burden on the hardware
performance and resources consumption, which is not suitable
for FPGA implementation. Comparing with the integer linear
quantization [12], our static BFP quantization demonstrates the
higher accuracy on all the 2-D CNN models. However, since
the accuracy of the integer linear quantization on 3-D CNNs
is not reported [12], we are not able to compare our method
with integer linear quantization on 3-D CNNs. Compared with
the logarithm quantization [11], our approach achieves higher

2The per-class accuracy is available at: https://github.com/os-
hxfan/Static_BFP_CNN

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV

ACCURACY OF CNN MODELS UNDER DIFFERENT QUANTIZATION SCHEMES

TABLE V

RESOURCE CONSUMPTION OF THE CONVOLUTIONAL KERNEL MODULE
USING DIFFERENT QUANTIZATION ON INTEL ARRIA 10 GX1150

accuracy on both ResNet-50 and VGG–16. In addition, our
approach shows higher generality since logarithm quantization
does not evaluate on 3-D CNNs and lightweight models, such
as MobileNetV2.

B. Resource Efficiency

To demonstrate the kernel design based on the static BFP
quantization has high hardware efficiency, we implement
the BFP-based convolutional kernel (Section IV) using Ver-
ilog on an Intel Arria 10 GX1150 FPGA. As presented
in Section IV, only dynamic BFP quantization [13] and integer
linear quantization [12] can achieve comparable accuracy with
our approach. Therefore, the analysis in this part only con-
siders dynamic BFP and linear quantization. Compared with
dynamic BFP quantization, since our static BFP quantization
eliminates the frequent data conversion between BFP and
FP, it saves a large number of resources in implementing
BFP-FP convertors. To compare with [12], we implement a
convolutional kernel based on integer linear quantization on
the same hardware platform. The PC and PF are set as
64 on both of the designs. We implement the adders using
ALMs and multipliers by both DSPs and ALMs as mentioned
in Section V.

Table V presents the synthesis results of both kernel
designs. In comparison with the integer linear quantization,
our approach saves the DSP usage by 5.8%. The savings
come from the implementation of the barrel shifter module
which uses logic resources to quantize the accumulated 32-bit
results into 8-bit outputs. At the same time, our static BFP
quantization uses nearly two times fewer ALMs than the
integer linear quantization. The large ALMs savings come
from nonzero-point representation in static BFP quantization.
Therefore, our quantization is more hardware-friendly than
integer linear quantization.

To measure the hardware performance and resource usage of
the whole system, we implement all hardware modules on the

TABLE VI

RESOURCE CONSUMPTION OF THE WHOLE
DESIGN ON ARRIA 10 GX1150

same FPGA (Intel Arria 10 GX1150) using Verilog with both
PC and PF being 64. The hardware is clocked at 220 MHz.
A dual-core ARM Cortex-A9 processor (1.5 GHz) is installed
on the platform, which is used to configure the parameters of
each layer while running the network. A 2-GB DDR4 memory
is installed as the off-chip memory to store the weights and
intermediate results of CNNs. Quartus 17 Prime Pro is used
for synthesis and implementation. The resource utilization of
the final design is presented in Table VI. The DSP and memory
resources become the limiting resources in our design, which
consume over 80% of the total resources.

C. Hardware Performance

We evaluate benchmark CNN models on our accelerator
with respect to latency, energy consumption, and hardware
efficiency, which is presented in Table VII. The parallelism
levels, PC and PF, are optimized for different models using
our tool introduced in Section V. Since MobileNetV2 contains
depthwise convolution which does not exhibit concurrence in
the channel dimension, the design chooses a relatively small
PC and large PF for higher performance. We also measure
the computational efficiency using MAC efficiency and the
energy efficiency using giga-operations per second per watt
(GOP/s/W).

As shown in Table VII, in most of models which do not use
depthwise convolutions, the throughput of our accelerator is
1.33∼1.66 TOP/s (tera-operations per second) and MAC effi-
ciency is 78.5%∼92.4% depending on different CNN models.
The high computational efficiency comes from several factors.

1) Without frequent BFP and FP conversions, the proposed
static BFP quantization uses low-precision data in both
computation and storage, which efficiently utilizes the
computational, bandwidth, and memory resources.

2) The hardware architecture supports four categories of
fine-grained parallelisms, including PS, PK, PC , and
PF, which fully utilize the extensive concurrence exhib-
ited by both 2-D and 3-D CNNs.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 13

TABLE VII

HARDWARE PERFORMANCE OF OUR DESIGN ON DIFFERENT 2-D AND 3-D CNN MODELS

TABLE VIII

PERFORMANCE COMPARISON OF OUR FINAL FPGA DESIGN VERSUS CPU AND GPU PLATFORMS

TABLE IX

PERFORMANCE COMPARISON OF OUR FINAL FPGA DESIGN VERSUS OTHER FPGA DESIGNS

3) By analyzing the computation of a variety of 2-D and
3-D CNNs, the unified computational pattern proposed
in this article to improve the resource efficiency.

4) By utilizing the reconfigurability of our accelerator,
the automatic tool is able to deeply optimize the
hardware designs for different CNN models case by
case.

D. Performance Comparison
1) Comparison With CPU and GPU: We also compare

our FPGA-based design with CPU and GPU implementations,

which is shown in Table VIII. ResNet–50 and R3D-18 are cho-
sen as our benchmark models to represent 2-D and 3-D CNNs,
respectively. The batch size on all three implementations is
set to be one for a fair comparison. Compared with the CPU
implementation, our accelerator achieves 6–70 times higher
throughput on both 2-D and 3-D CNNs. Comparing with the
GPU implementation, our design is 1.5 times more energy
efficient. Although GPU is faster on R3D-18 using the 16-nm
technology, our FPGA design (20 nm) can also achieve 45.57
ms when we scale the performance to the 16-nm technology
by 16/20 times.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

2) Comparison With Other FPGA Designs: Table IX
presents the comparison results between our accelerator with
the state-of-the-art FPGA designs in terms of latency and
throughput. Because these designs are implemented on dif-
ferent platforms with different hardware resources, their DSP
consumption may vary from each one. Therefore, we measure
the GOP/s/DSP of these designs for a fair comparison. The
GOP/s/DSP is the platform-independent metric to evaluate
the quality of hardware architecture, which represents the
computing ability provided by one DSP. Compared with
previous designs, our accelerator supports a wider range of
benchmark models, including different 2-D and 3-D CNNs,
which demonstrates its higher generality. At the same time,
our accelerator also shows higher throughput and resource
efficiency than all these state-of-the-art designs. In comparison
with [24] which has the highest performance on ResNet-50,
our design can achieve higher throughput and nearly 1.4
times higher resource efficiency. Note that [24] can only
support 2-D CNNs and its performance for 3-D CNNs is
unknown. Comparing with the unified accelerator which sup-
ports both 2-D and 3-D CNNs, we can achieve 1.6–2 and
1.9–2.2 times higher throughput and resource efficiency
depending on different CNN models.

VII. CONCLUSION

This work proposes a uniform hardware architecture to
accelerate both 2-D and 3-D CNNs with high hardware
efficiency. The design is based on a hardware-friendly quan-
tization method call static BFP. The proposed static BFP
eliminates the frequent representation conversions required in
traditional dynamic BFP arithmetic. Without using zero point,
static BFP can achieve up to 50% logic resources saving on
an FPGA compared with conventional integer linear quanti-
zation. Extensive experiments on various 2-D and 3-D CNNs
demonstrate that the static BFP can decrease the bitwidth of
mantissa to 8 with negligible accuracy loss. An automatic
tool is also proposed to optimize the accuracy and hardware
performance by determining the proper software and hardware
parameters. Our hardware design together with optimizations
achieves 3.8–5.6 times higher energy efficiency than GPU
implementation. Compared with the state-of-the-art FPGA-
based accelerators, our design can also achieve up to 1.4–2.2
times higher resource efficiency and higher generality on both
2-D and 3-D CNNs. Further work includes extending our
hardware design to support the transformer and other neural
networks and exploring the mixed-precision BFP on these
networks to further improve the performance.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[3] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

[4] H. Fan, X. Niu, Q. Liu, and W. Luk, “F-C3D: FPGA-based 3-
dimensional convolutional neural network,” in Proc. 27th Int. Conf. Field
Program. Log. Appl. (FPL), Sep. 2017, pp. 1–4.

[5] H. Lu, H. Wang, Q. Zhang, S. W. Yoon, and D. Won, “A 3D convo-
lutional neural network for volumetric image semantic segmentation,”
Proc. Manuf., vol. 39, pp. 422–428, Jan. 2019.

[6] H. Fan, H.-C. Ng, S. Liu, Z. Que, X. Niu, and W. Luk, “Reconfigurable
acceleration of 3D-CNNs for human action recognition with block
floating-point representation,” in Proc. 28th Int. Conf. Field Program.
Log. Appl. (FPL), Aug. 2018, pp. 287–2877.

[7] H. Fan et al., “F-E3D: FPGA-based acceleration of an efficient 3D
convolutional neural network for human action recognition,” in Proc.
IEEE 30th Int. Conf. Appl.-Specific Syst., Architectures Processors
(ASAP), Jul. 2019, pp. 1–8.

[8] E. Wang et al., “Deep neural network approximation for custom hard-
ware: Where we’ve been, where We’re going,” 2019, arXiv:1901.06955.
[Online]. Available: https://arxiv.org/abs/1901.06955

[9] S. Liu, H. Fan, X. Niu, H.-C. Ng, Y. Chu, and W. Luk, “Optimizing
CNN-based segmentation with deeply customized convolutional and
deconvolutional architectures on FPGA,” ACM Trans. Reconfigurable
Technol. Syst., vol. 11, no. 3, pp. 1–22, Dec. 2018.

[10] Z. Liu, P. Chow, J. Xu, J. Jiang, Y. Dou, and J. Zhou, “A uniform
architecture design for accelerating 2D and 3D CNNs on FPGAs,”
Electronics, vol. 8, no. 1, p. 65, Jan. 2019.

[11] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural net-
works using logarithmic data representation,” 2016, arXiv:1603.01025.
[Online]. Available: https://arxiv.org/abs/1603.01025

[12] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[13] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance
FPGA-based CNN accelerator with block-floating-point arithmetic,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1874–1885, Aug. 2019.

[14] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards
a uniform template-based architecture for accelerating 2D and 3D
CNNs on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2018, pp. 97–106.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167. [Online]. Available: https://arxiv.org/abs/1502.
03167

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[17] Z. Song, Z. Liu, and D. Wang, “Computation error analysis of
block floating point arithmetic oriented convolution neural network
accelerator design,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1–8.

[18] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer,
“Mixed precision quantization of ConvNets via differentiable neural
architecture search,” 2018, arXiv:1812.00090. [Online]. Available:
https://arxiv.org/abs/1812.00090

[19] G. Lacey, G. W. Taylor, and S. Areibi, “Stochastic layer-wise precision
in deep neural networks,” 2018, arXiv:1807.00942. [Online]. Available:
https://arxiv.org/abs/1807.00942

[20] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network accelerator,” 2017, arXiv:1712.08934. [Online].
Available: https://arxiv.org/abs/1712.08934

[21] S. I. Venieris and C.-S. Bouganis, “FPGAConvNet: Mapping regular and
irregular convolutional neural networks on FPGAs,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 2, pp. 326–342, Jul. 2018.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. 2015 ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
2015, pp. 161–170.

[23] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on FPGA,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367,
Jul. 2018.

[24] Y. Xing et al., “DNNVM: End-to-end compiler leveraging heterogeneous
optimizations on FPGA-based CNN accelerators,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp. 2668–2681,
Oct. 2020.

[25] M. Sun, P. Zhao, M. Gungor, M. Pedram, M. Leeser, and X. Lin,
“3D CNN acceleration on FPGA using hardware-aware pruning,”
in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020,
pp. 1–6.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: HIGH-PERFORMANCE ACCELERATION OF 2-D AND 3-D CNNs ON FPGAs USING STATIC BFP 15

[26] C. Yang, Y. Wang, X. Wang, and L. Geng, “WRA: A 2.2-to-6.3 TOPS
highly unified dynamically reconfigurable accelerator using a novel
Winograd decomposition algorithm for convolutional neural networks,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 9, pp. 3480–3493,
Sep. 2019.

[27] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
https://arxiv.org/abs/1510.00149

[28] A. Aimar et al., “NullHop: A flexible convolutional neural network
accelerator based on sparse representations of feature maps,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 644–656, Mar. 2018.

[29] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and
quantization for deep neural network acceleration: A survey,” 2021,
arXiv:2101.09671. [Online]. Available: https://arxiv.org/abs/2101.09671

[30] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” 2014, arXiv:1412.7024.
[Online]. Available: https://arxiv.org/abs/1412.7024

[31] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[33] S. R. Jain, A. Gural, M. Wu, and C. H. Dick, “Trained quanti-
zation thresholds for accurate and efficient fixed-point inference of
deep neural networks,” 2019, arXiv:1903.08066. [Online]. Available:
https://arxiv.org/abs/1903.08066

[34] H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, “Static block floating-
point quantization for convolutional neural networks on FPGA,” in Proc.
Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2019, pp. 28–35.

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[36] Wikipedia Contributors. (2020). Kullback-Leibler Diver-
gence. [Online]. Available: https://en.wikipedia.org/wiki/Kull
back%E2%80%93Leibler_divergence

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 630–645.

[38] H. Fan et al., “A real-time object detection accelerator with compressed
SSDLite on FPGA,” in Proc. Int. Conf. Field-Program. Technol. (FPT),
Dec. 2018, pp. 14–21.

[39] M. R. Pillmeier, M. J. Schulte, and E. G. Walters III, “Design alternatives
for barrel shifters,” Proc. SPIE, vol. 4791, pp. 436–447, Dec. 2002.

[40] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8024–8035.

[41] ONNX Framework. Accessed: Feb. 1, 2021. [Online]. Available:
https://github.com/onnx/onnx

[42] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[43] T. Chen et al., “MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems,” 2015, arXiv:1512.01274.
[Online]. Available: https://arxiv.org/abs/1512.01274

[44] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012, arXiv:1212.0402.
[Online]. Available: https://arxiv.org/abs/1212.0402

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–7.

[46] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6546–6555.

[47] V. Jain and E. Learned-Miller, “FDDB: A benchmark for face detection
in unconstrained settings,” Univ. Massachusetts, Amherst, MA, USA,
Tech. Rep. UM-CS-2010-009, 2010.

[48] Y. Ma, T. Zheng, Y. Cao, S. Vrudhula, and J.-S. Seo, “Algorithm-
hardware co-design of single shot detector for fast object detection
on FPGAs,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2018, pp. 1–8.

[49] X. Zhang et al., “DNNBuilder: An automated tool for building high-
performance dnn hardware accelerators for FPGAs,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2018, pp. 1–8.

Hongxiang Fan received the B.S. degree in elec-
tronic engineering from Tianjin University, Tianjin,
China, in 2017, and the master’s degree from the
Department of Computing, Imperial College Lon-
don, London, U.K., in 2018, where he is currently
pursuing the Ph.D. degree in machine learning and
high-performance computing.

His current research interests include efficient
algorithms and acceleration for machine learning
applications.

Shuanglong Liu received the B.Sc. and M.Sc.
degrees from the Department of Electronic
Engineering, Tsinghua University, Beijing, China,
in 2010 and 2013, respectively, and the Ph.D.
degree in electric engineering from the Imperial
College London, London, U.K, in 2017.

From 2017 to 2020, he was a Research Associate
with the Department of Computing, Imperial College
London. He is currently a Distinguished Professor
with the School of Physics and Electronics, Hunan
Normal University, Changsha, China. His current

research interests include reconfigurable and high-performance computing
for deep neural networks.

Zhiqiang Que received the B.S. degree in micro-
electronics and the M.S. degree in computing
science from Shanghai Jiao Tong University, Shang-
hai, China, in 2008 and 2011, respectively. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Computing, Imperial College London,
London, U.K.

From 2011 to 2016, he worked on the microachi-
tecture design and verification of ARM CPUs with
Marvell Semiconductor Ltd., Shanghai. He is cur-
rently a Research Assistant with the Department of

Computing, Imperial College London. His research interests include computer
architectures, high-performance computing, and computer-aided design tools
for hardware design optimization.

Xinyu Niu received the B.A. degree from Fudan
University, Shanghai, China, in 2010, and the M.Sc.
and D.Phil. degrees in computing science from
Imperial College London, London, U.K., in 2011
and 2015, respectively.

He is currently a Co-Founder and the CEO
of Shenzhen Corerain Technologies Company,
Ltd., Shenzhen, China. His current research inter-
ests include developing applications and tools
for reconfigurable computing that involve runtime
reconfiguration.

Wayne Luk (Fellow, IEEE) received the B.A.,
M.Sc., and D.Phil. degrees in engineering and
computing science from the University of Oxford,
Oxford, U.K., in 1984, 1985, and 1989, respectively.

He founded and currently leads the Custom Com-
puting Group, Department of Computing, Imperial
College London, London, U.K., where he is also a
Professor of computer engineering. He was a Vis-
iting Professor with Stanford University, Stanford,
CA, USA.

Dr. Luk is a fellow of the Royal Academy of
Engineering and the British Computer Society (BCS). He had 15 papers that
received awards from international conferences. He has been a member of the
steering committee and the program committee of various international con-
ferences. He received a Research Excellence Award from the Imperial College
London. He was the Founding Editor-in-Chief of the ACM Transactions on
Reconfigurable Technology and Systems.

Authorized licensed use limited to: Imperial College London. Downloaded on March 21,2022 at 23:15:10 UTC from IEEE Xplore. Restrictions apply.

