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Abstract—Bayesian neural networks (BayesNNs) have demonstrated their advantages in various safety-critical applications, such as
autonomous driving or healthcare, due to their ability to capture and represent model uncertainty. However, standard BayesNNs
require to be repeatedly run because of Monte Carlo sampling to quantify their uncertainty, which puts a burden on their real-world
hardware performance. To address this performance issue, this paper systematically exploits the extensive structured sparsity and
redundant computation in BayesNNs. Different from the unstructured or structured sparsity in standard convolutional NNs, the
structured sparsity of BayesNNs is introduced by Monte Carlo Dropout and its associated sampling required during uncertainty
estimation and prediction, which can be exploited through both algorithmic and hardware optimizations. We first classify the observed
sparsity patterns into three categories: channel sparsity, layer sparsity and sample sparsity. On the algorithmic side, a framework is
proposed to automatically explore these three sparsity categories without sacrificing algorithmic performance. We demonstrated that
structured sparsity can be exploited to accelerate CPU designs by up to 49 times, and GPU designs by up to 40 times. On the
hardware side, a novel hardware architecture is proposed to accelerate BayesNNs, which achieves a high hardware performance using
the runtime adaptable hardware engines and the intelligent skipping support. Upon implementing the proposed hardware design on an
FPGA, our experiments demonstrated that the algorithm-optimized BayesNNs can achieve up to 56 times speedup when compared
with unoptimized Bayesian nets. Comparing with the optimized GPU implementation, our FPGA design achieved up to 7.6 times
speedup and up to 39.3 times higher energy efficiency.

Index Terms—Bayesian neural network (BayesNN), Structured sparsity, Field-programmable gate array (FPGA), Deep learning
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1 INTRODUCTION

Neural networks (NNs) have become one of the most effec-
tive algorithms in computer vision. They have been widely
deployed in various artificial intelligence (AI) applications
such as in object detection [1] or scene segmentation [2].
However, standard NNs are incapable of quantifying their
uncertainty [3], so they are unsuitable for safety-critical ap-
plications such as those in autonomous driving, medicine or
chemistry [1], [4], [5], [6], [7]. For instance, physicians or self-
driving systems can be deceived by a standard NN which
does not quantify the level of uncertainty in its output.

As a variant of NNs, a Bayesian NN (BayesNN) [4],
[8], [9] has become an appealing solution for safety-critical
applications since it can quantify the uncertainty of its out-
put. Gal et al. [4] demonstrated a BayesNN can be obtained
by applying the Monte Carlo Dropout (MCD) after every
convolutional layer. Figure 1 shows a comparison between a
BayesNN and a standard NN for image classification, with
confidence reflected by the predictive probability of class
labels. While feeding a previously seen input image into
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Fig. 1. Standard NN is overconfident on random inputs, when compared
with a BayesNN.

the networks, both networks make the correct prediction
and their confidence is justifiable. However, given random
noise input, the standard NN is completely overconfident
and wrong, while the BayesNN can make use of its uncer-
tainty estimation capability to lower its confidence. Hence
BayesNNs, along with their robustness to overfitting [10],
have become popular in applications where uncertainty
quantification is essential [1], [5], [6], [7], [11].

Nevertheless, the proper uncertainty estimation proce-
dure introduces a large overhead on the hardware perfor-
mance of BayesNNs, which hinders their deployment in
commercial applications [4]. The uncertainty is quantified
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by performing Ns Monte Carlo (MC) samples that are
obtained by repeatedly running the same input through
the whole network, introducing a large computational
overhead. In addition to increased computation, memory
consumption and memory accesses also rapidly increase
as BayesNN can require Ns sets of model parameters to
perform the prediction as well as uncertainty quantifica-
tion [8], [9]. Therefore, the computational and memory-
intensive properties of BayesNNs significantly degrade their
hardware performance.

In this paper, we observe that an extensive amount
of structured sparsity exists in BayesNNs which can be
exploited to improve the hardware performance. Different
from unstructured sparsity which involves irregular ze-
ros generated, for example, through ReLU activations [12]
or pruning techniques [13], structured sparsity does not
require complex hardware implementations and can be
carefully exploited by proper algorithmic and hardware
optimizations. We summarize the difference between struc-
tured sparsity in BayesNNs and other types of sparsity
observed in standard NNs in Section 6.1. According to their
characteristics, we first categorize the structured sparsity in
BayesNNs into three classes: channel sparsity, layer sparsity
and sample sparsity. These three categories of sparsity are
controlled by three algorithmic parameters of BayesNNs
respectively, i.e., the dropout rate, the number of Bayesian
layers and the number of samples. Higher sparsity can
reduce the amount of computation, but it may also affect
various properties of BayesNNs such as their accuracy
and their quality of uncertainty estimation. Therefore, we
propose an automatic framework to explore the structured
sparsity of BayesNNs without sacrificing their algorithmic
performance. To fully exploit these three types of structured
sparsity at the hardware level, a novel hardware architec-
ture is proposed to accelerate BayesNNs, which achieves
a high hardware performance using the runtime adaptable
hardware engines and the intelligent skipping support. The
runtime adaptability is supported by dedicated control and
multiplexers, which are different from the reconfigurability
provided by FPGAs. Note that the automatic framework
is not limited to our proposed hardware design, but it
is sufficiently general to be applicable to other hardware
platforms, such as CPUs and GPUs.

A summary of our contributions is as follows.

• Exploiting structured sparsity in BayesNNs to achieve
high performance. We categorize it into three classes, i.e.,
channel, layer and sample sparsity (Section 2.3).

• A framework that automatically explores channel, layer
and sample sparsity in BayesNNs, while maintaining al-
gorithmic performance, which improves the performance
of BayesNNs on different hardware platforms (Section 3).

• A novel hardware architecture for BayesNNs with run-
time adaptability and intelligent skipping optimization to
achieve high performance (Section 4).

• Extensive experiments evaluating four distinct BayesNNs
on four different datasets, which demonstrate the ef-
fectiveness of our hardware architecture, algorithm and
optimizations (Section 5).

2 BACKGROUND AND MOTIVATION

2.1 Bayesian Neural Networks
BayesNNs are making significant progress in many research
areas where decision-making needs to be accompanied by
uncertainty estimation [4]. By augmenting NNs with the
capability of Bayesian inference, they become more robust
against overfitting, even when dealing with datasets with
fewer samples [10]. The principle of Bayesian inference is in
learning a distribution over the weights of the NN, instead
of pointwise constant estimates. The learning is performed
by employing the Bayes rule and setting a prior distribution
over the model class and a corresponding likelihood. Given
the high-dimensionality of modern NNs [14], employing the
Bayes rule to obtain the true posterior distribution over the
weights or models of the NN is analytically intractable.

To address this challenge, Gal and Ghahramani [4]
proposed a variational approximation, called Monte Carlo
Dropout (MCD), to the true posterior which enables the
use of the Bayes rule in practice. The method is built on
enabling dropout [15] during evaluation as well as train-
ing with L2 regularisation resulting in Bayesian inference.
Dropout randomly disconnects nodes [4] or channels [16] in
an NN through a random channel-wise mask M i ∈ RCi

to the output feature maps Y i of layer ith with Ci chan-
nels. The mask M i follows a Bernoulli distribution p(M i)
which generates binary random variables (0 or 1) with the
probability given by the dropout rate pi. The dropout rate
can be different for different layers in the Bayesian NN.
After dropout removes the output feature maps with zeros.
The computation for output Oi for the ith layer can be
formulated as Oi = Y iM i. Kendall et al. [17] demonstrated
that the Bayesian NN does not need to be Bayesian in every
layer to obtain good algorithmic performance.

The uncertainty estimation and prediction are obtained
by running the same input through a BayesNN Ns times,
each time with a different set of sampled masks M which
translate into sampling the weights from the learnt varia-
tional distribution for each layer ith where dropout is ap-
plied, and averaging the outputs with respect to Ns. Hence
the overall compute scales by O(Ns).

2.2 Structured Sparsity
Extensive research interests have been expressed in exploit-
ing sparsity in standard NNs to improve their hardware per-
formance. Nevertheless, most research efforts have focused
on exploiting the irregular activation sparsity generated
by ReLU (Rectified Linear Unit) [18] activation or weight
sparsity introduced by pruning [13], [19]. An example of
activation and weight sparsity is presented in Figure 2,
where a large number of zeros exists in input feature
maps, weights and output feature maps. To skip the redun-
dant computation and data transfer of zeros, various hard-
ware architectures have been proposed to support sparse
convolution (SpCONV) [20], [21], [22] and sparse general
matrix-matrix multiplication (SpGEMM) [23], [24], [25], [26].
However, most of them require complicated control and
encoding-decoding hardware modules to manipulate and
transform the compressed sparse matrix. Also, these accel-
erators are only effective for NNs constructed using ReLU
activations, which limits their deployment in real-world
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Fig. 2. Irregular activation and weights sparsity existing in 2D convolu-
tion, channel dimension is ignored for simplicity.

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

N
-th Conv Layer

(N
+1)-th Conv Layer

M
C-Dropout (p=0.5)

Fig. 3. Channel sparsity introduced by MCD in BayesNNs.

applications. Given that other activation functions such as
leaky ReLU [27], [28] have been widely adopted in various
NNs due to the continuous development of deep learning,
there is a need for other techniques to improve the hardware
performance of general NNs.

Different from the standard sparse NNs that only contain
the irregular activation and weight sparsity, we observe that
extensive structured sparsity exists in BayesNNs. This paper
categorizes the structured sparsity of BayesNN into three
classes: channel sparsity, layer sparsity and sample sparsity.

2.2.1 Channel Sparsity
The channel sparsity in this paper refers to the channels
dropped out by the MCD in both input and output feature
maps [16]. Figure 3 presents an example of the channel
sparsity in BayesNNs. Receiving the output feature maps
from the previous convolutional (CONV) layer, the MCD
randomly drops out half of channels with a dropout rate
p = 0.5. As a result, there is 50% channel sparsity existing
in the input feature maps for the next CONV layer. The
dropout rate decides the channel sparsity, which further
affects both algorithmic and hardware performance. Al-
though a higher dropout rate exhibits the higher channel
sparsity that can be exploited during hardware acceleration
for better hardware performance, it may also degrade the
algorithmic performance. In this paper, we systematically
explore this algorithmic and hardware performance trade-
off by optimizing the dropout rate for each layer by a
thorough design space exploration, introduced in Section 3.

2.2.2 Layer Sparsity
In BayesNN, it requires running the Bayesian layers, i.e.,
the layers followed by MCD, multiple times to make the
uncertainty estimation. One question raised during this
process is how many Bayesian layers are required to ob-
tain the uncertainty estimation. Previous work has partially
addressed this question [17], [29], indicating that making
different parts of the network Bayesian can improve un-
certainty estimation and prediction accuracy. In this paper,
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Fig. 4. Layer and sample sparsity in BayesNNs.

we refer to the non-Bayesian layers as the layer sparsity in
BayesNNs, which is illustrated in Figure 4. In contrast to
the regular fully-BayesNNs, the optimized BayesNN only
has the last CONV layer as Bayesian, which eliminates the
requirement of running the first and second CONV layers
with other samples. The redundant computation of the first
and second CONV layers is the layer sparsity that we are
going to exploit in this paper.

2.2.3 Sample Sparsity

Another question raised is: how many MC samples Ns are
required to achieve satisfactory algorithmic performance? In
our experiments, we observe diminishing returns in terms of
the observed algorithmic performance while increasing Ns.
Limiting the Ns to the lowest number is denoted as sample
sparsity in our paper. Figure 4 illustrates the sample sparsity
in BayesNNs. In the optimized three-layer BayesNN, it
only requires two samples to achieve the same algorithmic
performance as the fully-BayesNN with three samples. The
redundant third sample in the regular fully-BayesNN is
referred to as the sample sparsity.

2.3 Motivation

To quantitatively analyze the effect of the channel, layer and
sample sparsity, a sparsity breakdown of Bayes-AlexNet and
Bayes-VGG11 is presented in Figure 5. We used MNIST [30]
and SVHN [31] datasets for Bayes-AlexNet and Bayes-VGG11
respectively. For each model, we evaluated both vanilla and
sparse versions for comparison. Their algorithmic settings
and performance are summarized in Table 1. We refer to
the vanilla version to be the fully-Bayesian NN with MCD
applied after every CONV layer, which reflects the original
settings [4]. For the sparse version, we randomly chose
the one with similar algorithmic performance while using
optimized dropout rates, fewer Bayesian layers and MC
samples for demonstration. Apart from the classification
accuracy (Acc), we also measured the predictive uncertainty
and confidence. We measured the uncertainty expressive-
ness of the Bayesian architectures through observing the
average predictive entropy (aPE) over a dataset of size
E as: aPE = 1

E

∑E
e=1−

∑K
k=1 p(y

k
e |xe) log p(y

k
e |xe). The

K is the number of output classes, whereas x and y
represent the input output pairs. We measured aPE with
respect to random Gaussian noise with mean and stan-
dard deviation of the training data that should rightfully
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Fig. 5. Breakdown of three classes of structured sparsity in BayesNNs.

TABLE 1
Breakdown of three classes of structured sparsity in BayesNNs.

Model
# of # of Dropout Error aPE ECEBayes

Layers Samples rate (%) (nats) (%)

Baseline 7 100 0.125 0.88 1.374 0.149Bayes-AlexNet

Sparse 4 20 0.5 0.78 1.592 0.127Bayes-AlexNet

Baseline 10 100 0.125 3.51 2.001 0.410Bayes-VGG11

Sparse 7 20 0.375 3.81 2.100 0.348Bayes-VGG11

confuse the net and result in high value of entropy. Ad-
ditionally, we measured the confidence of the Bayesian
architectures on the test data using the expected calibration
error (ECE) [32]. ECE computes a weighted average of a
mismatch between confidence and error rate across bins
as: ECE =

∑B
b=1

nB

E |accuracy(b) − confidence(b)|, where
nb is the number of predictions in bin b and accuracy(b)
and confidence(b) are the accuracy and confidence of bin b,
respectively. We set B = 10.

As we can see from Figure 5, both Bayes-AlexNet and
Bayes-VGG11 encompass over 93% of sparsity compared to
their vanilla counterparts with similar or better algorith-
mic performance. Specifically, channel, layer and sample
sparsity provides 2×, 3.4× and 4.2× reduction in the total
amount of calculation for Bayes-AlexNet, and 1.6×, 2× and
4.7× less computation for Bayes-VGG11. As higher sparsity
leads to better performance for our design, an automatic
framework (Section 3) is proposed to increase the structured
sparsity of BayesNNs while maintaining the algorithmic
performance. Our framework can be also applied on other
hardware platforms such as CPU and GPU to improve their
hardware performance. To exploit the extensive sparsity in
BayesNNs, this paper proposes a novel hardware architec-
ture to effectively skip the structured zeros caused by chan-
nel sparsity, layer sparsity and sample sparsity (Section 4).

3 OPTIMIZATION FRAMEWORK

3.1 Framework Overview
An overview of our proposed framework is presented
in Figure 6. The input search space, bounded by the user, is
defined by the algorithmic network design space. Given an
user-supplied network structure, the network design space
contains all potential BayesNN architectures with different
dropout rates and number of Bayesian layers that can be
obtained by modifying the user-supplied architecture.

The inputs also contain the input dataset and the de-
scription of the target application and the device. Given the
specification of the input constraints, the framework aims at
exploring the structured sparsity of BayesNNs to improve
both algorithmic and hardware performance. Note that, the
optimized BayesNN will also be trained during this process.
The outputs of the framework are the optimized algorithmic
parameters, which includes the number of Bayesian layers,
dropout rate of each Bayesian layer and the number of
MC samples Ns. The final optimized BayesNN can then
be deployed for the target applications such as medical
imaging or self-driving.

Optimizer

Network Design Space

…

Outputs
1. # of Bayesian Layers

2. Dropout Rate
3. # of Samples

…

Exploring Structured Sparsity & 
Training BayesNNs

Inputs:
1. Network Architecture

2. Target Application and Dataset
3. Target Device 

…

Deployment

Self-Driving or
Medical Imaging ……

Fig. 6. Overview of the optimization framework.

3.2 Algorithm for Exploring Structured Sparsity
Due to the large design space and expensive training cost,
we present an algorithm for exploring structured sparsity.
The proposed algorithm contains four phases: obtaining
the performance baseline, exploring layer sparsity, increas-
ing channel sparsity and exploiting sample sparsity. Algo-
rithm 1 presents the pseudocode.

In the first phase, we train the vanilla BayesNNs with
MCD applied after every convolutional layer with an uni-
form dropout rate, which adheres to the same practice as
in [4]. We iterate through different dropout rates {0.125,
0.25, 0.375, 0.5} and choose the one with the best algo-
rithmic performance, getting Acc

′
, ECE

′
and aPE

′
(Sec-

tion 2.3) as the algorithmic performance baselines. The
goal of the next three phases is to explore the structured
sparsity for a higher hardware performance while achieving
a similar algorithmic performance as the baseline.

In the second phase, we explore the layer sparsity by
optimizing the number of Bayesian layers. We train the
BayesNNs with different number of Bayesian layers and
then choose the one with the best algorithmic performance.
After getting the optimized number of Bayesian layers nopt,
we then explore the channel sparsity in the third phase.

As higher dropout rates have a higher channel spar-
sity, the third phase attempts to increase the dropout rate
while not sacrificing the algorithmic performance. The hill-
climbing algorithm is adopted, which increases the dropout
rate by 0.125 in each step until the performance converges.
An optimized dropout list dr listopt is obtained after the
third phase.

The last phase exploits the sample sparsity by decreas-
ing the number of samples Ns. This phase evaluates the
BayesNN using nopt, dr listopt with different Ns. The
measured performance is compared against the baseline
performance Acc

′
, ECE

′
and aPE

′
. We set the accuracy

threshold δ as 0.3% to allow negligible accuracy loss.
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Algorithm 1 Algorithm for Exploring Structured Sparsity.
1: Phase 1: Getting the performance baseline
2: N l = {N l

1, N l
2, N l

3, N l
4} . Number of Bayesian layers

3: dropout rates = {0.125, 0.25, 0.375, 0.5}
4: Acc

′
= 0.0, ECE

′
= 0.0, aPE

′
= 0.0 . Algorithmic metrics

5: For dr in dropout rates:
6: Acc, ECE, aPE = Train Full Bayes(dr)
7: If (Acc > Acc

′
and ECE > ECE

′
and aPE > aPE

′
):

8: Acc
′
= Acc, ECE

′
= ECE, aPE

′
= aPE

9: Phase 2: Exploring layer sparsity
10: Accopt = 0.0, ECEopt = 0.0, aPEopt = 0.0
11: nopt = N l

1, dropt = 0.125
12: For dr in dropout rates:
13: For n in N l:
14: Acc, ECE, aPE = Train Uniform Bayes(dr, n)
15: If (Acc > Accopt and ECE > ECEopt and aPE > aPEopt):
16: nopt = n, dropt = dr
17: Accopt = Acc, ECEopt = ECE, aPEopt = aPE
18: Phase 3: Increasing channel sparsity
19: dr list[nopt] = [dropt]× nopt . Dropout rate of each layer
20: While(True): . Hill climbing optimization
21: j = 0
22: For i in (1, nopt):
23: dr list[i]+ = 0.125
24: Acc, ECE, aPE = Train Bayes(dr list, nopt)
25: If (Acc > Accopt and ECE > ECEopt and aPE > aPEopt):
26: j = i
27: Accopt = Acc, ECEopt = ECE, aPEopt = aPE
28: dr list[i]− = 0.125
29: if (j == 0): break
30: Phase 4: Exploiting sample sparsity
31: S = {s1, s2, s3, s4}, sopt =∞
32: For s in S:
33: Acc, ECE, aPE = Eval Bayes(dr list, s)
34: If (Acc > (Acc

′
+ δ) and ECE > ECE

′
and aPE > aPE

′
):

35: If (sopt > s): sopt = s

4 HARDWARE ACCELERATOR

4.1 Hardware Architecture

4.1.1 Architecture Overview
A design overview of our FPGA-based hardware accelerator
is presented in Figure 7(a). The core computational module
is a stack of processing engines (PEs) in the bottom right
corner, shown in gray. To feed the inputs and weights
into PEs and control the overall dataflow, the design uses
different managers. The input and weight Bernoulli sam-
plers are designated to implement MCD. To avoid a large
on-chip memory consumption, all the intermediate results
between layers are transferred back to the off-chip memory
through DMA in parallel. Only the inputs and weights of
the current processing layer are cached in the on-chip mem-
ory to improve the data locality and ease the bandwidth
requirement. The computation of the whole BayesNNs is
performed layer-by-layer using the same PEs. In this paper,
we design both PEs and Bernoulli samplers with runtime
adaptability to achieve a higher hardware performance.

4.1.2 PE with Adaptable Connectivity
The computation of convolution is essentially carried out
by six nested loops in H (height of input feature maps), W
(width of input feature maps), F (number of output feature
maps), C (number of input feature maps), I (kernel height)
and J (kernel width) dimensions. Therefore, loop unrolling
can be applied in six dimensions, which leads to six un-
rolling factors: 〈Tw, Th, Tf , Tc, Ti, Tj〉. Different unrolling
and parallelism strategies have been proposed in previous

work, such as synapse parallelism with 〈Ti, Tj〉, neuron
parallelism with 〈Th, Tw〉 and feature map parallelism with
〈Tf , Tc〉 [12]. In this paper, we propose a hybrid parallelism
strategy to leverage the different parallelism combinations
with an adaptable PE design.

To eliminate the memory consumption of caching the
intermediate outputs of the current processing layer, we
perform the nested loops of convolution in a sequence
〈F → H → W → I → J → C〉 such that the intermediate
results after the accumulation can be transferred back to
the off-chip memory directly without caching on-chip. As
most convolutional layers exhibit a higher concurrency in F
and C dimensions, we exploit the parallelism in these two
dimensions with 〈Tf , Tc〉. Therefore, we deploy Npe PEs to
process multiple filters in parallel, i.e., making Tf = Npe.
Within each PE, there are Nmult multipliers followed by
a log2Nmult-level adder tree, which are used to compute
multiple channels in parallel, i.e., making Tc = Nmult.

However, we observe that many channels are dropped
out by MCD in BayesNNs, which leads to insufficient chan-
nel concurrency in some layers. For instance, the second
convolutional layer in ResNet50 has only 32 valid channels
after the MCD is applied using a p = 0.5 dropout rate.
Therefore, the computational resources allocated for channel
parallelism may not be fully utilized in these cases. To
address this issue, we propose a hybrid parallelism strategy
for BayesNNs.

When the channel concurrency is insufficient, we reuse
the computational resources to exploit parallelism in W
dimension, which leads to 〈Tw, Tf , Tc〉 parallelism. To
support that, we design the MAC unit in our PE with a
runtime adaptation using multiplexers and demultiplexers
as shown in Figure 7(b). While processing some layers with
small number of valid channels, the MAC unit is grouped as
Tw sub-trees to process multiple data points along the W di-
mension, which adopts a new parallelism strategy 〈Tw, T

′

f ,
Tc〉 with T

′

f =
Tf

Tw
. With the hybrid parallelism strategy, our

design is able to achieve a better resource efficiency while
processing different BayesNNs with different algorithmic
features, mainly the dropout rates on a per-layer granularity.

4.1.3 Adaptable Bernoulli Sampler

There are two Bernoulli samplers in our design, which are
used to perform MCD on inputs and outputs respectively.
As mentioned in Section 2.1, instead of using a uniform
dropout rate across the entire Bayesian NN, this paper
optimizes the dropout rate for each layer, i.e., the layer-
wise dropout rate. Therefore, the target design is required to
perform Bernoulli sampling with arbitrary dropout rates. As
the common dropout rates for MCD are 0.125, 0.25, 0.375
and 0.5 [4], [15], [17], we propose an adaptable Bernoulli
sampler supporting four different probabilities using one
unified hardware design.

Figure 7(c) presents the hardware design of the adapt-
able Bernoulli sampler. A 4-tap linear feedback shift register
(LFSR) module is used to generate a single bit pseudo
random variable. Three independent LFSR modules are
concatenated together to generate a 3-bit random variable v,
which follows a discrete uniform distribution P (v = i) = 1

23

for v ∈ {000, 001, . . . , 111}. Then, a comparator is placed
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Fig. 7. Overview and the individual modules of the hardware design.

after LFSRs to produce Bernoulli variables by comparing
the generated 3-bit random variable with a threshold. Note
that, the threshold is held in a register and can be config-
ured according to the required probability, which makes
our Bernoulli sampler adaptable for different dropout rates.
For instance, while performing the Bernoulli sampling with
probability 0.375, the threshold is set as 010 to compare with
the generated 3-bit random variables.

4.1.4 Inputs Control
The input dataflow is controlled by an input manager and
an input buffer. The input manager is composed of an
address generator and a register file that receives Bernoulli
variables from the Bernoulli sampler indicating the dropped
out channels. The input buffer mainly consists of a dropout
mask and Tc RAM banks. The dropout mask includes
Tc multiplexers, which sets the corresponding channels to
zeros when the MCD is enabled. Each RAM uses separate
read and write addresses generated from the input address
generator. The Tc data points generated from the RAM
banks are duplicated Npe copies which then flow into PEs.

The input data in the RAM banks are stored in a 〈W ,
H , C〉 sequence, which is illustrated in Figure 8. Different
channels that belong to the same spatial position, i.e., the
same height and weight, are first stored evenly among Tc
RAM banks. Since Tc is less thanC , it takesC/Tc columns to
store all different channels. Then, the data are stored along
the width dimension from H1W1 to H1Wn. The inputs
along the height dimension are stored in last. When Tc is
less than the number of channels, the data from different
width will be stored first, which facilitates the data access
of our hybrid parallelism strategy 〈Tw/Tf , Tc〉. Since each
RAM bank has separate read and write addresses, the data
address generator is designed to support sequential and

….…..
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Fig. 8. The storage of input data in RAM banks.

line-buffer modes. The sequential mode reads and writes
sequentially from and into RAM banks, which is required by
some layers such as the fully connected (FC) layer. The line-
buffer mode allows the reading and writing to be performed
in a sliding window manner, which captures the data access
pattern of 2D convolutions.

4.1.5 Weight Control

The weights are controlled by a weight manager and a
weight buffer. The weight buffer contains Tf RAM banks to
cache weights from different filters. To reduce the on-chip
memory consumption, we only cache Tf filters of weights
on-chip for the current processing layer. The double buffer
technique is adopted to overlap the weights transfer with
the computation [33]. The bit width of each RAM bank in
weight buffer is Tf ×DW with DW denoted as data width,
which is used to store weights from different channels in the
same filter. The weights are stored in the RAM banks in a
〈F , I , J , C〉 sequence as shown in Figure 9, which facilitates
the weight access for the 〈F → H → W → I → J → C〉
computational order.

The weight manager contains a register file and a weight
address generator. While processing the non-Bayesian lay-
ers, the weight address generator produces the read ad-
dresses sequentially. When the design is processing the
Bayesian layers, the read address is generated according
to the valid channel and filters in the register file. The
generated addresses are then fed into the DMA controller
to transfer the required weights from off-chip memory to
the on-chip weight buffer. In off-chip memory, the weights
are also stored in a 〈F , I , J , C〉 sequence layer-by-layer.

F1K11C1 ~ F1K11CTc

I
J
C
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F
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Fig. 9. The storage of weights in RAM banks.
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4.2 Intelligent Skipping Optimization
To exploit the extensive structured sparsity in BayesNNs,
we design our hardware to skip unnecessary samples, layers
and channels.

4.2.1 Skip Samples
Skipping MC samples is straightforward to implement in
our hardware. In both data and weight register files, we
design a register storing the number of MC samples Ns for
the current processing layer. Together with the optimization
framework, introduced in Section 3, our design can effi-
ciently reduce the overall latency of BayesNNs. For instance,
after the framework decreases the number of samples from
100 to 5, we set the number of samples in both data and
weight register files as 5. Then the design only needs to run
each layer for 5 times to produce the uncertainty estimate.

4.2.2 Skip Layers
To estimate uncertainty and obtain the prediction, it is re-
quired to run the whole BayesNN multiple times. However,
as the intermediate results of the non-Bayesian layer in
different samples are the same, the redundant computation
related to these non-Bayesian layers can be skipped [1], [34].
To achieve this, our proposed design supports three modes,
i.e., non-dropout, dual-dropout and output-dropout modes,
to run different layers in BayesNNs.

While running the non-Bayesian layers, the design
adopts the non-dropout mode, which disables the dropout
mask and both input and weight Bernoulli samplers as
illustrated in Figure 10(a). To further avoid redundant com-
putation, we also apply non-dropout mode on the first
Bayesian layer, which generates the dense results so that
the output can be reused in the second Bayesian layer. Note
that, the MCD of the first Bayesian layer will be performed
together with the second Bayesian layer using dual-dropout
mode. All the computation under the non-dropout mode

Dense OutputDense Input

Processing 
Engines

Weight Manager

Dense Input

1st Sample Sparse Output

(a) Non-dropout mode for Non-Bayesian layers and the first Bayesian layers

(b) Dual-dropout mode for the second Bayesian layer

(c) output-dropout mode for the rest of Bayesian layers
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Fig. 10. Hardware execution under different modes.

will be only performed once, which significantly reduces
the overall latency.

The design keeps the non-dropout mode to process the
network layer-by-layer until the second Bayesian layer, and
then turns into dual-dropout mode by enabling the dropout
mask, input and weight Bernoulli samplers as shown in Fig-
ure 10(b). In the dual-dropout mode, the inputs will be
cached in the input buffer and reused to perform the compu-
tation required by different samples. The sample results are
produced sequentially and transferred back to the off-chip
memory. The dual-dropout mode also applies the MCD in
both inputs and outputs as the MCD of the previous, i.e.,
the first, Bayesian layer is not performed yet. The MCD
of the inputs is implemented by a dropout mask in the
input buffer, while the MCD on the outputs is performed
using the weight Bernoulli sampler and the weight manager.
For the rest of Bayesian layers, the design is configured as
an output-dropout mode with only the weight Bernoulli
sampler enabled, which is illustrated in Figure 10(c). The
output-dropout mode will only apply MCD on the outputs
by using the weight Bernoulli sampler and weight manager.
By executing different modes for different layers, our design
can effectively skip the redundant computation of non-
Bayesian layers, while keeping the ability to produce the
uncertainty estimate.

(a) Skip Chanels in dual-dropout mode
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4.2.3 Skip Channels

We design our hardware to support channel skipping in
both dual-dropout and output-dropout modes by dedicated
controls and a set of registers in the register file. Figure 11
illustrates an example of running a Bayesian layer with
4 channels and 0.5 dropout rate on our design. In dual-
dropout mode, the design receives a dense input with
four channels (Cin

1∼4). We then apply the MCD on inputs
using the dropout mask, which sets some channels as ze-
ros according to the invalid channel indexes in the input
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register file. The channel skipping is then implemented by
the weight manager and the weight register file. Given
a register with a 4-bit value {1, 1, 0, 0} indicating the
valid filters, the weight address generator produces the
read address to transfer only the first and second filters of
weights from off-chip memory into on-chip weight buffer.
Therefore, the computation for the third and fourth output
filters can be avoided. Note that, as the inputs are dense, the
addressing of weights from the weight address generator is
only based on the valid filters. In output-dropout mode as
shown in Figure 11, the weight addressing is based on both
valid channels and filters. For instance, given the registers
of valid channels and filters to be {1, 1, 0, 0} and {0, 0,
1, 1}, only the first and second channels in the third and
fourth filters (F3C

weight
1∼2 and F4C

weight
1∼2 ) will be loaded into

on-chip memory instead of all the channels, which further
eases the bandwidth requirement.

5 EVALUATION

5.1 Experimental Setup

We implemented our hardware design using Verilog on an
Intel Arria 10 SX660 platform with a 1GB DDR4 SDRAM
installed as an off-chip memory. Quartus 17 Prime Pro
was used for synthesis and implementation and the final
design was clocked at 222 MHz. The 8-bit linear quanti-
zation [35], [36] was adopted in our design to improve
the hardware performance. We used one DSP with some
extra logic resources to implement two multipliers to save
DSP resources. We optimized Tf , Tw, Tc and the PE
mode introduced in Section 4 according to the total amount
of available resources in the underlying hardware plat-
form and the available concurrency exhibited in running
BayesNNs. The final optimized FPGA design consumed
1, 492 DSPs, 2, 432 M20Ks, 303, 913 ALMs and 889, 869
registers. To demonstrate the effectiveness and generality
of our hardware design and automatic framework for ac-
celerating BayesNNs, we evaluated four BayesNNs, includ-
ing Bayes-VGG11, Bayes-AlexNet, Bayes-ResNet18 and Bayes-
ResNet50, on four different datasets for image classification,
i.e., SVHN [31], MNIST [30], CIFAR-10 and CIFAR-100 [37].
The dropout rate was selected from {0.125, 0.25, 0.375, 0.5}.
We chose the number of Bayesian layers for Bayes-VGG11
from {10, 7, 5, 3, 1}, Bayes-AlexNet from {7, 5, 3, 2, 1}, Bayes-
ResNet18 from {21, 16, 11, 6, 1}, Bayes-ResNet50 from {54,
44, 25, 12, 1}. The number of samples Ns was selected from
{5, 10, 20, 50, 100}. The hardware performance was eval-
uated in terms of latency, energy consumption and energy
efficiency. We measured the algorithmic performance using
classification error, ECE and aPE as detailed in Section 2.3.

5.2 Framework Effectiveness and Exploiting Sparsity

Following the detailed procedures for exploring the struc-
tured sparsity in Section 3.2, we evaluated the improvement
brought by each type of sparsity in our FPGA design. While
optimizing a single BayesNN, the training settings stay the
same during the whole process as different variants of the
same BayesNN have similar convergence time. The whole
optimization process took 30∼150 GPU hours to complete
depending on the neural architectures and datasets.

5.2.1 Exploiting Layer and Channel Sparsity

We obtained the baseline performance for all BayesNNs by
following the first phase of Algorithm 1. The baseline perfor-
mance was derived using the maximum Ns = 100 MC sam-
ples to get the best approximation to the achievable algorith-
mic performance. Table 2 presents the baseline performance
of Bayes-VGG11, Bayes-AlexNet, Bayes-ResNet18 and Bayes-
ResNet50 with their corresponding configurations. As it can
be seen, all the BayesNNs adopted 0.125 as the uniform
dropout rate to achieve higher algorithmic performance.

TABLE 2
The resultant configurations of BNNs.

Model Version
# of Dropout Error aPE ECEBayes

Layers Rate (%) (nats) (%)

Bayes- Baseline 10 0.1251∼10 3.511 2.004 0.410

VGG11 Optimized 7 0.3754∼7,9∼10 3.776 2.217 0.297
0.58

Bayes- Baseline 7 0.1251∼7 0.880 1.374 0.149

AlexNet Optimized 5 0.53∼7 0.889 1.837 0.138

Bayes- Baseline 21 0.1251∼21 6.63 1.093 3.058

ResNet18 Optimized 16 0.1257∼9,11∼16,18∼21 6.580 1.580 1.202
0.256,10,17

Bayes- Baseline 54 0.1251∼54 23.700 1.405 2.109

ResNet50 Optimized 44 0.12512∼31,35∼54 21.520 1.481 0.904
0.2532∼34

Then, to evaluate the effect of exploiting layer and
channel sparsity, we applied the second and third phases
of Algorithm 1 to the BayesNNs. The optimized number of
layers and dropout rates of each BayesNN are presented
in Table 2. The subscript of the dropout rate denotes the
position of the Bayesian layers. We also evaluated the algo-
rithmic performance of these optimized BayesNNs, which
is shown again in Table 2. To eliminate the influence of
sample sparsity, the performance was measured again with
respect to Ns = 100 MC samples. As it can be observed, the
optimized BayesNNs achieved better classification accuracy,
ECE and aPE than the baseline versions. Even though there
is nearly a 0.25% accuracy loss on Bayes-VGG11, aPE was
improved by 0.213 and the ECE decreased by 0.113. We
also present the normalized layer and channel sparsity for
the four BayesNNs in a bar chart in Figure 12. As it can be
seen, the BayesNNs achieved 18 ∼ 49% layer sparsity and
9 ∼ 26% channel sparsity.

To demonstrate the effectiveness of our hardware ar-
chitecture in exploiting the layer and channel sparsity by
supporting layer and channel skipping, we evaluated the
optimized BayesNNs on our design. The speedup break-
down of the four BayesNNs is presented in Figure 12. It can
be clearly seen from the bar chart on the right of each model
that our design achieved 1.2∼2× speedup by exploiting the
layer sparsity across different BayesNNs. Furthermore, by
using the dedicated hardware design for layer skipping,
another 1.9× speedup can be obtained and 2× speedup
can be gained by exploiting the channel sparsity, specifically
in Bayes-VGG11 and Bayes-AlexNet respectively. Because of
the limited channel sparsity in Bayes-ResNet18 and Bayes-
ResNet50, skipping channels can only reduce the latency by
1.15 and 1.16 times.
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5.2.2 Exploiting Sample Sparsity
After determining the optimized Bayesian layers and
dropout rates, we further exploited the sample sparsity
using the last phase of Algorithm 1. To visualize the effect of
the number of samples on the algorithmic performance, we
evaluated the four different optimized BayesNNs by setting
Ns to 5, 10, 20, 50 and 100 MC samples. The evaluation
was repeated 5 times using different random seeds. We
present the results in Figure 13 with both mean and standard
deviation. As it can be seen, the aPE shows an increasing
trend when the number of samples becomes larger. The clas-
sification error shows a steady decrease when the number of
samples increases. By comparing the measured performance
of optimized BayesNNs against the baseline performance,
we choose the number of samples to be 10, 5, 20 and 10
for Bayes-VGG11, Bayes-AlexNet, Bayes-ResNet18 and Bayes-
ResNet50 respectively. To quantitatively evaluate the effect of
sample sparsity, Figure 12 presents the normalized sample
sparsity and the corresponding speedup achieved on our
design. By using Algorithm 1 to explore structure sparsity,
it can achieve 24%∼63% sample sparsity varying from
different BayesNNs. Our design also reduced the latency by
4.9∼14.7× on different BayesNNs. Together with layer and
channel sparsity, the overall structured sparsity addressed
by our framework ranges from 87% to 97%. At the same
time, optimized BayesNNs on our FPGA design can achieve
6.5∼56× speedup.

5.3 Improvement on CPU and GPU
The algorithm optimization in our framework can also be
applied to other hardware platforms to improve perfor-
mance. We applied our framework on an Intel Xeon E5-2680
v2 CPU and a Nvidia GeForce RTX 2080 Ti GPU. We used
PyTorch [38] for both CPU and GPU implementations as it
is an Nvidia-optimized deep learning framework adopted
by the MLPerf benchmark [39]. To provide a fair compar-
ison, various optimization techniques were enabled, such
as cuDNN and OpenMP1. As PyTorch did not support

1. https://pytorch.org/tutorials/recipes/recipes/tuning guide.
html

skipping channels, we only enabled the skipping of samples
and layers on CPU and GPU. The skipping of samples was
implemented by controlling the loop variables during eval-
uation and the skipping of layers was supported by caching
the intermediate results of non-Bayesian layers [1], [40]. The
results are presented in Figure 14. As it can be observed, the
optimized BayesNNs reduce the latency by 6.3∼49.3 times
on the CPU implementation and 6.1∼40.4 times on the GPU
implementation, which demonstrates the generality of our
framework. Note that, our framework can be applied to any
hardware accelerator with the support of layer, channel and
sample skipping to improve the hardware performance.

5.4 Comparison of FPGA and GPU
To demonstrate the advantages of our hardware design in
accelerating BayesNNs, we compared the performance of
our FPGA design against the GPU implementation. The
performance metrics of GPU implementations were kept the
same as in the previous work [12], [40], [41]. Bayes-VGG11
was selected for comparison as it represents the type of
NN constructed by using common regular 2D convolutions
with small kernel sizes. We also evaluated Bayes-ResNet50 as
it contains residual connections. The GPU implementation
was the same as in Section 5.3 with sample skipping (Opt-
S) and layer skipping (Opt-L) enabled. On FPGA designs,
apart from using both sample and layer skipping, we also
implemented with and without channel skipping (Opt-C).
The results are presented in Table 3. As we can see from
the table, our hardware architecture on an FPGA with all
optimization applied can achieve 7.6 and 7.1 times speedup
on Bayes-VGG11 and Bayes-ResNet50 compared with the
GPU implementation. Besides, we were also able to achieve
39.3 and 37.1 times higher energy efficiency on the Bayes-
VGG11 and Bayes-ResNet50 respectively. These gains of our
design were mainly achieved through:
• A deep pipelined design with channel skipping, which

decreases the memory traffic between consecutive layers.
• The algorithm optimization of the layer-wise dropout

rates, which maximally increases the structured sparsity
while maintaining the hardware performance.

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
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Fig. 13. Effect of the number of samples.

TABLE 3
Performance comparison of FPGA design versus GPU implementation.

S: sample skipping, L: layer skipping, C: channel skipping.

GPU Our Work

Platform GeForce RTX 2080 Ti Intel Arria 10 GX1150

Frequency 1.545GHz 220MHz

Technology 12nm 20nm

Acceleration
Library CuDNN, PyTorch 1.9.0 -

Power (W) 236 45

Model Bayes-VGG11 Bayes-ResNet50 Bayes-VGG11 Bayes-ResNet50

Version (ms) Naive Opt
(S&L) Naive Opt

(S&L)
Opt

(S&L)
Opt

(S&L&C)
Opt

(S&L)
Opt

(S&L&C)

Latency (ms) 591.1 45.132 2966 267.23 9.45 5.9 43.73 37.70

Energy Eff.
(J/Frame) 138.9 10.61 700.1 63.07 0.42 0.27 1.97 1.70

• The hardware optimization that carefully chooses the
parallelism strategies for different BayesNNs.

• Multiple consecutive layers are performed in a fused
manner based on an integrated hardware engine, which
significantly decreases the memory traffic.
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Fig. 14. Effect of our framework on CPU and GPU.

5.5 Comparison with the Existing Design

To demonstrate the benefits of our hardware architecture
and optimization framework as a whole, we compared our
work against the existing designs in Table 4. Both Cai et
al. [42] and Awano et al. [41] only accelerated Bayes-FC
that only consisted of FC layers. The hardware designed
by Wan et al. [12] was not able to accelerate BayesNNs
with residual connections. Also, Fan et al. [40] only evalu-
ated their accelerator with small BayesNNs such as Bayes-
VGG11 and Bayes-ResNet18 they and did not support
layer-wise dropout rate. Therefore, our accelerator is more
versatile than the existing designs. As these designs were
evaluated on different BayesNNs, it was unfair to com-
pare them in terms of the latency, hence, we focused on
throughput, energy efficiency by GOP/s per Watt. The total
number of operations was obtained by accumulating the
computation required by every layer and MC sample. The
original input image size was 224×224 with 3 channels. We
quote the hardware performance from the original papers
for [42], [41] and [40]. In [40], as the authors presented
several designs with different optimization objectives, we
choose the one with the highest hardware performance.
Compared with [40], we can achieve nearly 1.6 and 1.2 times
speedup on Bayes-VGG11 and Bayes-ResNet18 respectively.
There are two reasons for the improvement of throughput
compared with [40]: a) our proposed hardware was able
to intelligently skip redundant channels; b) the proposed
framework systematically explored three types of structured
sparsity. In [12], since the authors only reported the normal-
ized speedup without mentioning the real processing speed
in the original paper, we were not able to compare against
it directly. Since they also focused on exploiting sparsity to
accelerate BayesNNs, we compared with [12] in terms of
the speedup brought by exploiting sparsity. As it can be
observed, [12] achieved 2.4∼3.1× speedup, while our work
improved the performance by 7.8∼27.9 times. We achieved
better performance than [12] by exploiting three categories
of structured sparsity with a dedicated hardware design.
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TABLE 4
Performance comparison of our final FPGA designs with the related work.

ASPLOS’18 [42] DATE’20 [41] DAC’21 [40] Micro’20 [12] Our Work

Platform Altera Cyclone V Zynq XC7Z020 Arria 10 GX1150 Virtex-7 VC709 Arria 10 GX1150

Frequency (MHz) 213 200 225 100 220

Technology 28 nm 28 nm 20 nm 28 nm 20 nm

Used DSPs 342 220 1518 3600 1606

Power (W) 6.11 2.76 45.00 - 43.6

Model Bayes-FC Bayes-FC Bayes-
VGG11

Bayes-
ResNet18

Bayes-
LeNet5

Bayes-
GoogLeNet

Bayes-
VGG11

Bayes-
ResNet18

Bayes-
ResNet50

Throughput (GOP/s) 59.6 24.22 534 1590 - - 854.4 1812.6 1489.8

Speedup by Exploiting Sparsity - - - - 2.4 × 3.1× 27.9× 7.8× 12.8×

Energy Efficiency (GOP/s/W) 9.75 8.77 11.9 33.3 - - 19.6 41.57 34.2

6 RELATED WORK

6.1 Exploiting Sparsity in NN Accelerators

Various hardware architectures have been proposed to ac-
celerate sparse convolution (SpCONV) and sparse general
matrix-matrix multiplication (SpGEMM). Both Sparten [21]
and Extensor [22] proposed dedicated hardware architec-
tures to accelerate inner-product-based SpCONV. Target-
ing on accelerating SpGEMM [23], Zhang et al. [24] also
proposed outer-product-based methods to achieve a high
hardware performance. Wang et al. [26] leveraged an outer-
product-based approach to accelerate both SpGEMM and
SpCONV. Apart from accelerating standard convolutional
NNs (CNNs), various accelerators have been proposed to
accelerate graph neural networks (GNNs) by exploiting
their sparsity [43], [44], [45]. However, these accelerators for
CNNs and GNNs mainly focused on exploiting unstruc-
tured sparsity: the irregular zeros in both activation and
weights introduced by pruning or ReLU activation, which
often require complicated and costly hardware design to
achieve performance benefits. As unstructured sparsity only
occupies a small portion of computation in Bayesian convo-
lutional NNs (BayesCNNs) [12] compared with structured
sparsity, the speedup they can achieve is limited.

Along with hardware architecture support, various
pruning techniques [46] have been proposed to compress
the standard NNs, which introduced extensive levels of
unstructured sparsity (point-wise pruning [13]) or struc-
tured sparsity (channel pruning [47] and filter pruning [48]).
Orthogonal to the sparsity in standard NNs, the struc-
tured sparsity utilized in our paper is introduced by MCD
and subsequent MC sampling in BayesNNs. Therefore, the
traditional sparsity in standard NNs is orthogonal to the
presented structured sparsity, so both can be used together
to further improve the hardware performance of BayesNNs.

6.2 Accelerators for BayesNNs

Although various accelerators have been proposed to ac-
celerate NNs [49], accelerating BayesNNs has not attained
a similar level of research interests. VIBNN [42] was the
first work to accelerate FC Bayesian NNs. BYNQNet [41]
improved the hardware performance by exploring the
sampling-free Bayesian NNs. However, these works only

considered the accuracy without including uncertainty es-
timation performance during their evaluation. Additionally,
their designs only support BayesNNs consisting only of FCs,
which prevents them from generalising to modern convolu-
tional architectures [14]. Fan et al. [40] proposed an FPGA-
based hardware architecture for MCD-based BayesCNNs.
In parallel to this work, Rock et al. [34], while extending [1],
discuss algorithmic optimizations consisting of exploiting
layer and channel sparsity and different dropout rates dur-
ing training and evaluation to achieve gains in hardware
performance. Fast-BCNN [12] accelerated BayesCNNs by
skipping the zeros produced by the element-wise ReLU
activation. Given that other activation functions such as
leaky ReLU have been widely adopted, the generality and
efficiency of their design is again limited.

In contrast to the previous work, this paper system-
atically and jointly exploits three categories of structured
sparsity per layer, to improve the hardware performance
of BayesNNs without sacrificing their algorithmic perfor-
mance through the proposed optimization framework. Our
proposed hardware architecture is designed to intelligently
skip redundant layers, channels and samples to exploit
structured sparsity in BayesNNs.

7 CONCLUSION

This paper proposes to accelerate Bayesian NNs by ex-
ploiting the structured sparsity from both algorithmic and
hardware perspectives. We observe and categorise struc-
tured sparsity in BayesNNs as channel sparsity, layer spar-
sity and sample sparsity. A novel hardware architecture is
proposed to skip the redundant computation introduced
by three types of structured sparsity. As higher sparsity
leads to better hardware performance on our design, we
propose a framework to automatically explore structured
sparsity in Bayesian NNs without sacrificing algorithmic
performance. Extensive experiments on four BayesNNs and
datasets demonstrated that our design, together with the op-
timization framework, can achieve up to 39.3 times higher
energy efficiency than the GPU implementation and up
to 1.6 times speedup compared with the state-of-the-art
designs.
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