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Abstract— This article presents a reconfigurable accelerator
for REcurrent Neural networks with fine-grained cOlumn-
Wise matrix–vector multiplicatioN (RENOWN). We propose a
novel latency-hiding architecture for recurrent neural network
(RNN) acceleration using column-wise matrix–vector multipli-
cation (MVM) instead of the state-of-the-art row-wise oper-
ation. This hardware (HW) architecture can eliminate data
dependencies to improve the throughput of RNN inference
systems. Besides, we introduce a configurable checkerboard tiling
strategy which allows large weight matrices, while incorporat-
ing various configurations of element-based parallelism (EP)
and vector-based parallelism (VP). These optimizations improve
the exploitation of parallelism to increase HW utilization and
enhance system throughput. Evaluation results show that our
design can achieve over 29.6 tera operations per second (TOPS)
which would be among the highest for field-programmable gate
array (FPGA)-based RNN designs. Compared to state-of-the-art
accelerators on FPGAs, our design achieves 3.7–14.8 times better
performance and has the highest HW utilization.

Index Terms— Hardware Accelerator, long short-term
(LSTM), recurrent neural network (RNN).

I. INTRODUCTION

RECURRENT neural networks (RNNs) have shown
remarkable successes in sequence-to-sequence process-

ing applications such as natural language processing
(NLP) [1], speech-to-text [2], and video analysis [3]. Since
low latency is key for a seamless user experience in such
applications, efficient and real-time RNN acceleration is
required. There are many RNN variants. Long short-term
memory (LSTM) and gated recurrent unit (GRU) are the
two most popular ones. To speed up RNN inferences, field-
programmable gate arrays (FPGAs) have been utilized in
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Fig. 1. HW utilization of various LSTM implementations.

various scenarios [4]–[7], achieving lower latency and power
consumption compared to CPUs and GPUs.

However, the recurrent nature and data dependency in the
RNN computation results in undesired system stall until the
required hidden vectors return from the full pipeline to start
the next time-step (TS) calculation [6]. Besides, while deep
pipelining can be utilized to enhance operating frequency,
it increases stall penalty due to longer drain time. Moreover,
inefficient tiling can leave hardware (HW) resources idle,
resulting in low utilization. For example, the Brainwave [6]
has six matrix–vector multiplication (MVM) “tile engines,”
each processing 400 × 40 matrices, so they have a peak
capability of processing a 400 × 240 matrix in parallel. Any
MVM that does not map to this dimension will leave some
resources idle. Fig. 1 shows that Brainwave’s HW utilization
ranges from less than 1% to only about 50% for various LSTM
models. Another implementation, Google’s TPU, also suffers
from low HW utilization and achieves an average utilization of
3.5% for LSTMs [8]. The Brainwave-like neural processor unit
(NPU) [7] with a fine-grained zero-padding scheme achieves
around 75% for a large LSTM. However, it still suffers
from low utilization, especially from medium- to small-sized
LSTMs which are commonly used in many applications [3],
[4], [9]. LSTM models with small-to-medium sizes that have
a large number of TSs are the most tangible examples that
require dealing with lots of dependencies as well as the parallel
task of MVMs [10]. With the need for high-performance
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Fig. 2. MVMs. (a) Row-wise MVM. (b) Column-wise MVM.

Fig. 3. EP and VP with tiles shaded in red or blue. Two sets of (EP, VP)
are shown in this example.

systems, it is essential to maximize the HW utilization to
achieve the highest possible effective performance and energy
efficiency.

This article proposes a novel latency-hiding HW archi-
tecture and a configurable checkerboard tiling strategy for
RNN/LSTM models to increase HW utilization and enhance
the throughput of RNN inference. First, we propose column-
wise MVM for RNN/LSTM gates, which is able to elimi-
nate their data dependencies. The column-wise block-striped
decomposition of a matrix in MVM, as shown in Fig. 2(b),
is an effective outer-product-based parallel method for process-
ing MVM in high-performance computing. Recently, there
are also some outer-product-based matrix–matrix multiplica-
tion accelerators [11], [12]. However, most of the previous
FPGA-based RNN implementations focus on row-wise MVM
as shown in Fig. 2(a). The proposed architecture can start
the calculation of the next TS without waiting for the system
pipeline to be drained, which means that the system can be
fully pipelined without stalling.

Moreover, a novel configurable checkerboard tiling strat-
egy is proposed which incorporates element-based paral-
lelism (EP) and vector-based parallelism (VP) to boost
inference throughput, as shown in Fig. 3. To support EP
and VP, a new HW architecture that supports hybrid ker-
nels is proposed, which combines multiplier–adder-tree and
multiply–accumulate architectures. The architecture deploy-
ing many parallel multipliers followed by a large balanced
adder tree is commonly used in FPGA-based RNN/LSTM
accelerators [4], [6], [7], [13]. These designs are based on
row-wise MVM. To support MVM column-wise processing,
our design deploys many parallel multipliers followed by
accumulators, as shown in Fig. 2(b). Furthermore, unlike our
previous work [14] which is based on a fixed-size tiling
approach, this work proposes a configurable tiling technique
that supports various configurations of EP and VP to further
improve the performance since different sizes of RNN models
prefer different configurations of (EP, VP), as shown in Fig. 3.

Our results indicate that the proposed acceleration architec-
ture is not only the fastest compared to the state of the art
for a large LSTM model, but also much more suitable for a
wide range of RNN models in terms of complexity. Hence,
it performs much better for RNN models with different sizes
as shown in Fig. 1. We make the following contributions.

1) Novel column-wise MVMs for RNNs to eliminate data
dependencies, increasing the HW utilization and system
throughput.

2) A flexible checkerboard tiling strategy supporting EP
and VP to exploit the available parallelism while increas-
ing HW utilization and scalability. Besides, the (EP, VP)
parameter space is comprehensively explored.

3) A latency-hiding HW architecture with novel hybrid
kernels and configurable adder-tree tail (CAT) units to
support the proposed optimizations.

4) Experimental evaluation of the proposed approach and
HW architecture, showing performance improvement of
3.7–14.8 times over state-of-the-art FPGA-based LSTM
designs [6], [7], [15], with the highest HW utilization
among them.

Relationship to Prior Publication: This article extends our
previous work in [14], which covers a medium-scale design
with a fixed EP and VP configuration, limiting the exploitation
of parallelism and diversity in RNN applications. Moreover,
the requirements to achieve high HW utilization for a small
LSTM workload and a large LSTM workload are different.
The choice of the mapping is highly dependent on the detailed
layer shape, and a fixed mapping is not ideal for different
models or even different layers of a model. This issue becomes
severe when the number of PEs is large. An additional
contribution of this article is a runtime configurable tiling
strategy which supports various sets of EP and VP, along with
novel CAT units, addressing the limitation described above.
Besides, an extensive design space exploration is performed
to identify favorable tiling block sizes for RNN models. Our
approach can benefit a large-scale design involving 65 536 PEs,
which has four times more PEs than our previous design [14],
while still achieving high run-time HW utilization with the
same benchmarks. Furthermore, additional information about
the HW architecture and related work is included to provide
a more detailed comparison. These optimizations lead to
significant throughput increase and latency reduction over the
previous design [14].

II. BACKGROUND AND PRELIMINARIES

A. Recurrent Neural Networks

LSTMs, one of the variations of RNNs, were initially
proposed in 1997 [16]. This work follows the standard LSTM
cell [3], [6], [7], [15]. An LSTM cell is composed of four
LSTM gates and an LSTM tail. Each gate has a back-to-back
MVM and activation operations, while the tail mainly involves
vector element-wise operations. The arithmetic of a single-cell
iteration is listed in the following equations:

it = σ(Wi [xt , ht−1] + bi), ft = σ(W f [xt , ht−1] + b f )

gt = tanh(Wg[xt , ht−1] + bu), ot = σ(Wo[xt , ht−1] + bo)

ct = ft � ct−1 + it � gt , ht = ot � tanh(ct)
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where symbols σ , tanh, and � are, respectively, the sigmoid
function, the hyperbolic tangent function, and element-wise
multiplication. it , ft , gt , and ot stand for the input, forget,
input modulation, and output gates at TS t , respectively. The
input modulation gate is often considered as a sub-part of
the input gate. W represents the weight matrix for both input
and hidden units. b represents bias. ct is the internal memory
cell state and ht is the output of the cell, also called the
hidden state, which is passed to the next TS or next layer.
Another variant of LSTMs is the GRU. The forget and input
gates of the LSTM are combined into a single “update gate”
in the GRU. It has fewer parameters since it has only three
gates. This study focuses on the optimization techniques for
the standard LSTMs, but these techniques can be generalized
to other RNN variants.

B. Related Work

There has been much previous work on FPGA-based imple-
mentations of persistent LSTM whose weights are stored in
on-chip memory [6], [7], [13], [17]–[19]. There are also some
previous studies of LSTM implementations storing weights in
off-chip memory on FPGA devices [4], [20]–[23], which had
been identified as the performance bottleneck. Liu et al. [24]
utilized stochastic computing to improve the energy efficiency
of RNNs. Khalil et al. [25] proposed reversible logic gates
for low-power circuit designs for LSTMs. BLINK [26] uti-
lizes bit-sparse data representation for LSTMs. POLAR [27]
and BRDS [28] presented FPGA-based pipelined and over-
lapped architecture for dense and sparse LSTM inferences,
respectively. Sun and Amano [29] proposed a multi-FPGA-
based approach for accelerating deep RNNs. Kwon et al. [30]
explored RNN partitioning strategies to achieve scalable
multi-FPGA acceleration for large RNNs. Some of the pre-
vious studies [2], [31]–[36] are focusing on weight pruning
and model compression to achieve good performance and
efficiency. Wang et al. [37] and [38], Li et al. [39], and
Yalamarthy et al. [40] presented a block circulant matrix to
reduce LSTM inference weight matrices. These studies are
orthogonal to our proposed strategy and architecture and can
be complementary to our approach to achieve even higher
throughput of RNN inferences on FPGAs.

Zhao et al. [15] proposed the cross-kernel optimization
within RNN cells targeting Plasticine, which achieves 30 times
higher performance compared to a GPU. The Brainwave [6]
is a single-threaded SIMD architecture for persistent RNNs.
It achieves more than an order of magnitude improvement
in latency and throughput over GPUs. Nurvitadhi et al. [7]
introduced a Brainwave-like neural processing unit (NPU)
for RNNs. A TensorRAM is also proposed for large per-
sistent data-intensive RNN models. Related work [19], [41]
proposed a novel HW architecture of 2D-LSTM and inves-
tigated the trade off between precision and performance.
Boutros et al. [42] presented the first performance evaluation
of Intel’s new AI-optimized FPGA, the Stratix 10 NX, with AI
tensor blocks. All these RNN designs are based on row-wise
MVM and suffer from data dependencies. Deploying the pro-
posed latency-hiding HW architecture involving column-wise

TABLE I

SUMMARY OF PARAMETERS USED IN OUR STUDY

MVM and the proposed tiling strategy, REcurrent Neural
networks with fine-grained cOlumn-Wise matrix–vector mul-
tiplicatioN (RENOWN) achieves high HW utilization and
throughput.

III. DESIGN AND OPTIMIZATION

This section covers data dependency analysis and optimiza-
tions targeting RNN designs. Some system parameters are
defined in Table I.

A. Weight Matrix of LSTM Gates

In this design, the four matrices of i, f, o, u gates in LSTMs
are combined into one large matrix since they share the same
size. Thus, in one TS calculation of the LSTM, we only need
to focus on one large matrix multiplied by one vector for the
whole LSTM cell instead of four small matrices multiplying
one vector. This is a generic optimization that can be applied
to any MVMs that share the same input vector. Since each
gate matrix has the size of Lh × (Lx + Lh), the size of the
combined matrix is (4 × Lh) × (Lx + Lh). Then we have
Hw = 4 × Lh and Lw = Lh + Lx . Besides, the weights of
the four LSTM gates are also interleaved in the final weights
matrix. Therefore, the related elements in the result vector
from four gates are adjacent and can be reduced easily via the
element-wise operations in the LSTM-tail units.

B. Row-Wise MVM for RNNs

Conventional designs of MVM for RNNs are row-wise,
and they have a major problem of being stalled when their
pipelines are not fast enough to bring data back to the input
for the next time step. They involve the entire vector of (xt ,
ht−1) and one or several entire rows of the weight matrix at a
time, as shown in Fig. 4(a). This approach imposes additional
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Fig. 4. Row-wise and column-wise MVM with LSTM data dependencies analysis. (a) Row-wise MVM for LSTMs. (b) Pipeline analysis of (a). (c) Column-
wise MVM for LSTMs. (d) Pipeline analysis of (c).

stalling since the system has to wait for a newly computed
hidden vector before starting the calculation of next timestep.

Data hazard exists since the whole new hidden vector
ht is required to start the new computation of xt+1 in the
conventional MVM design for RNN/LSTM. It is mainly due
to the data dependencies between the output from the current
timestep and the vector for the next timestep. It indicates
that the whole system pipeline needs to be drained to get the
new computed hidden vector ht before the new matrix–vector
operations can start. As [6] mentions, RNN programs have
a critical loop-carry dependence on the ht vector. If the full
pipeline cannot return ht to the vector register file in time to
start the next timestep, then the MVM unit will stall, as shown
in Fig. 4(b). Therefore, pipeline latency is important. On the
other hand, deep pipelining is often required to achieve a
high operating frequency for designs. This makes it difficult
to achieve a design with the best trade off.

C. Proposed Column-Wise MVM for RNNs

This work proposes a new technique that can alleviate
this problem by calculating the matrix–vector operations in
a column-wise fashion. At the beginning, only a few elements
from the xt vector are used while ht−1 is not touched, but
all the elements in the corresponding columns of the weight
matrix are involved to perform the operations, as illustrated
in Fig. 4(c). To illustrate the idea, the number of the pipeline
stages of the example system is 4, as shown in Fig. 4(d).
However, the pipeline stages of a real system can be much
larger. In addition, the figure shows that only one element in
the xt vector is used to perform the calculation for simplicity,
but the actual number of the involved elements in each cycle
depends on the architecture’s parallelism requirements. The
number of elements employed in this work is E P which is
explored and fine-tuned in Section IV. The partial result vector
is generated from the small dot product of the partial xt vector
and the corresponding weights. Then it is accumulated over
multiple cycles to generate the final result vector. This way,
the calculation of the new inference of (xt+1, ht ) can start
without waiting for the system pipeline to be drained to get
ht since it only needs a partial input vector. It indicates that
the system can be fully pipelined without stalls, as shown
in Fig. 4(d). Each hidden vector can finish the calculation
in the shadow region of processing xt before it is required.
The stall happens in the calculation of each timestep, and

the total potential stalling cycles equals the design pipeline
stages. When the LSTM workload is large, for example, with
a layer Lh as 2048, the number of processing cycles of such a
workload will be much larger than the number of stall cycles
and then the benefit of the column-based MVM will be small,
because the ratio of the stall cycles to the processing cycles
is small. However, when the workload is small, for example,
with a layer Lh as 256, the number of processing cycles of
such a workload is also small. In such a scenario, reducing
stall cycles is vital because the ratio of stalls is large. For
example, if the number of processing cycles is the same as to
the design pipeline stages, the HW utilization can be increased
from 50% to 100% if all the stalls can be hidden.

One disadvantage has been observed that although the
column-wise MVM only needs a partial input vector, it pro-
duces the output vector later than the row-wise MVM, because
it needs to wait for all the columns to be processed to get
the final accumulated vector before producing the output [43].
It seems that the succeeding HW units that depend on the
output vector (e.g., those that perform activation functions
and element-wise operations in the RNNs) would need to
wait longer. In contrast, the row-wise MVM completes one
subset of the output vector before moving to the next subset.
Therefore, a subset of the final output vector is completed
sooner than in a column-wise case. However, in the column-
wise case, the succeeding units can get an entire output vector
but not a subset. Although the column-wise architecture starts
the subsequent processing later than the one using row-wise
MVM, the number of succeeding units can be increased to
match the output bandwidth and finish the whole calculation
sooner than the row-wise case. Practically, we do not need
to significantly increase the number of these units since they
can process the whole vector over multiple cycles, until the
next vector is produced by the MVM engine. Besides, the
row-based approach may also involve multiple succeeding
units to increase parallelism. Moreover, these units are much
smaller compared to the MVM kernel engine that has lots of
multipliers and adders. Thus, the extra HW area is negligible
compared to the whole accelerator.

When the size of xt vector is small and/or the size of ht

vector is large, the design may still stall because the cycles of
processing xt vector cannot completely hide the whole pipeline
latency to get the ht ready before it is needed. However,
with the column-wise MVM, we can still continue to process
the MVM of xt and its corresponding weights when we are
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waiting for ht to be computed. Besides, when the input vector
is small, an LSTM model would rarely require a significantly
larger hidden vector.

D. Tiling and Parallelism

To further exploit the available parallelism, we introduce
EP and VP in our design, as shown in Fig. 3. The matrix
of weights is split into small tiles with a size of (EP, VP).
In each cycle, the HW engine is able to process a tile of the
weights matrix and a sub-vector of [xt , ht−1] with a size of
EP. EP and VP need to be determined carefully so that the
number of cycles to process the xt vector, given by (Lx/EP),
is larger than the system latency to ensure that the computation
of hidden vectors can be fully hidden by processing xt vector.
This number is small when EP is large and it may still result
in system stalls. To increase system parallelism, VP is chosen
to be as large as possible. However, the largest number of
VP is Hw, which equals 4 × Lh, since there are only four
gates in LSTM. In summary, the HW utilization and system
throughput can be improved via balancing EP and VP.

A fixed configuration of (EP, VP) can bring low HW utiliza-
tion. Brainwave [6] has six MVM tile engines, each processing
400×40 matrices. The NPU [7] also has a fixed configuration
of four tiles, 120-wide dot product engines, and 40 lanes. Any
MVMs that do not map well to these dimensions will leave
some resources idle. Since RNNs are used for various tasks,
RNN accelerators should support diverse configurations. This
work proposes a novel HW architecture to support various
sets of (EP, VP) since models with different sizes may prefer
different optimal EP and VP configurations. Fig. 3 shows the
basic idea with two sets of (EP, VP).

One option is to adopt the row-wise MVM while cascading
the computation of MVM_x and MVM_h, which are the
MVMs involving input vector and hidden vector, respectively,
instead of a unified MVM. Cascading them with a row-wise
fashion may also help to eliminate the data dependencies
between current and next timestep calculations. However,
it brings many issues. First, it introduces new data dependen-
cies. Since the partial results from the MVM_x and MVM_h
need to be added together to generate the final output, if we
calculate the MVM_x first, we have to store the partial results
somewhere locally waiting for the partial results from MVM_h
operations. This introduces a memory overhead of size 4Lh
(for LSTMs). When Lh is large, this overhead is large because
the design not only needs to cache these partial results, but also
has to fetch them to accumulate them with the corresponding
partial results from the hidden vector part. In our design,
only the VP partial results are needed which means that only
VP registers are needed. Besides, these partial results are
available in the next cycle without prefetching, so they can be
accumulated easily. Second, it brings difficulty in enhancing
parallelism. Usually, the length of x and h are different, result-
ing in different computation loads for MVM_x and MVM_h.
The input vector x is usually application-dependent, while the
value of h can be selected by designers to meet application
requirements and to reduce HW utilization. Zero padding may
be required to support both MVM_x and MVM_h, which

causes inefficiency. Actually the height of the MVM_x and
MVM_h are both 4Lh. The column-wise version of this
computation has more parallelism than the row-wise version,
which improves design efficiency. Both the designs [6], [7]
separate and cascade the MVM_x and MVM_h, but they still
suffer from low HW utilization as explained above.

IV. DESIGN SPACE EXPLORATION

The HW design space is characterized by the tiling
block size of (EP, VP) and the number of processing ele-
ments (NPEs) after combining the configurations discussed
previously. The effective performance varies with the tile size
and the number of PEs. To figure out the optimal parameters of
the system configuration for our in-depth analysis, we develop
a cycle-accurate simulator to conduct the design space explo-
ration. A greedy algorithm is proposed to explore design space.
It starts with EP = 1 while the VP is given according to the
system constraints, as shown in the following equation:

VP ≤ 4 × Lh and VP ≤ NPE

EP
. (1)

Practically, EP and VP should be as large as possible
because this would maximize the potential parallelism and the
system throughput. However, when EP increases, the number
of cycles needed for processing the input vector (Lx) decreases
so that the system may not have sufficient cycles to completely
hide the processing of the hidden vector as discussed in
Section III-C. In this exploration, the VP is set as large as
possible, which is min(4 × Lh, (NPE/EP)). Fig. 5 illustrates
the exploration results for different sizes of LSTM models
with Lh from 256 to 2048 with different colors and point
shapes, using our HW design when the NPE is 4096, 16 384,
or 65 536. Fig. 6 shows the feasible sets of (EP, VP) when
NPE is 65 536. The number of processing cycles determines
the throughput of the system and the lower it is, the better
the overall performance will be. As shown in Fig. 5, when
EP is small, the number of processing cycles is high because
the VP is constrained by (1) so that the number of effective
PEs is less than NPE, which leads to severe underutilization.
For instance, VP should be no larger than 4 × Lh which is
1024 when targeting the LSTMs with the size of Lh being 256,
illustrated by the blue line in Fig. 6. When EP increases, the
number of processing cycles decreases until EP reaches these
sweet spots. When EP is larger than the ones in sweet spots,
processing cycles increase gradually. Note that EP = 1 is not
shown in Fig. 5 (left) as its value is too large and it will make
the sweet spot too small to be shown.

From our design space exploration result, the optimal con-
figuration has an EP value between 4 and 16 when NPE =
16 382, and between 16 and 64 when NPE = 65 536. In these
sweet spots, high parallelism can be achieved, which results
in high system throughput. Note that for a given vector size,
better performance and utilization can be obtained by adapting
the (EP, VP) design parameters. As shown in Fig. 5 (left), the
LSTM workload of 512 has lower latency with (EP, VP) of
(32, 2048) than that of (16, 4096) as shown by the red line,
while the workload of 1024 has lower latency with (16, 4096)
than (32, 2048) as shown by the gray line. Different choices
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Fig. 5. Number of processing cycles in our proposed column-wise approach for different values of EP, NPE, and model sizes. Different colors combining
different point shapes represent different model sizes with Lh from 256 to 2048.

Fig. 6. Feasible sets of (VP, EP) when NPE equals 65 536. The sweet spot
is set according to the sweet spot in Fig. 5 (left).

Fig. 7. Overview of the system.

of EP and VP impact the HW utilization and performance
of the architecture when running RNN models of different
sizes. There is a trade off between performance and design
complexity with extra HW resources for supporting various
values of (EP, VP). More details about this trade off are given
in Section V.

V. HW IMPLEMENTATION AND OPTIMIZATION

This section presents our proposed HW architecture (see
Fig. 7), based on the optimization techniques introduced
above. It consists of the kernel units, an adapter unit, an acti-
vation function unit, and tail units.

A. Kernel Units

The architecture consists of VP kernel units, and each unit
has EP processing elements (PEs), so the number of effective

Fig. 8. Various kernels. (a) Row-wise kernel. (b) Column-wise kernel.
(c) Hybrid kernel.

PEs is VP × EP. The VP and EP values are determined via
the design space exploration described in detail in Section IV.
In this design, each PE is one fully-pipelined multiplier.
Fig. 8(c) shows the details of a computational kernel unit in our
design. The architecture of kernel units, as shown in Fig. 8(a),
which employs many parallel multipliers followed by an
balanced adder-tree is commonplace in FPGA-based designs
of RNNs [4], [6]. This architecture is for row-wise MVMs.
The column-wise MVM is based on the architecture of many
parallel multipliers followed by many parallel accumulators,
as shown in Fig. 8(b), since the elements in the partial result
vector are not related. To support EP, we propose a hybrid HW
architecture that combines these two architectures. A small
balanced adder tree is placed between the multipliers and
the accumulators, as shown in Fig. 8(c). This small adder
tree, which provides the summation of the products of EP
multiplications, can help balance EP and VP for a proper shape
of a tile. For example, when the VP is limited by 4 × Lh as
shown in Fig. 6, the design can increase the EP to enable more
PEs to increase the throughput since the number of effective
PEs is VP × EP.

The hybrid kernel might look more complex than the
row-wise or column-wise kernel but it does not consume more
HW resources when targeting the same problem size. For
example, if the number of the multipliers is N (for simplicity,
N is a power of 2) for all three types of kernels and each
hybrid kernel has a EP-to-1 small adder-tree, the design with
row-wise kernels requires N multipliers and N − 1 adders
(the design is supposed to be a fully pipelined one with a
balanced tree), the design with column-wise kernels requires
N multipliers and N accumulators, and the design with hybrid
kernels needs N multipliers, (N/EP) × (EP − 1) adders,
and (N/EP) accumulators. Because one EP-to-1 balanced
adder-tree unit needs EP − 1 adders and there are (N/EP)
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Fig. 9. Three modes of configurable four-input adder-tree tail with accumu-
lators.

of such units, so there are (N/EP) × (EP − 1) adders in total.
Generally, an accumulator is just an adder, so the hybrid kernel
also needs (N/EP) × (EP − 1) + (N/EP) = N adders. Thus,
the design with hybrid kernels has the same amount of HW
resources as the one using pure column-wise kernels and just
one more adder than the one using row-wise kernels. Note
that some row-wise architectures also have accumulators after
the large reduction tree since it can never guarantee to fully
unroll the matrix dimension [7]. In such a case, the design
using row-wise kernels also requires N adders.

B. Configurable Adder-Tree Tail

To support various versions of EP and VP, we design novel
adder reduction based on a custom adder-tree with the CAT.
With various EPs, the number of levels of the adder-tree needs
to be changed correspondingly. If a fixed structure of the
adder-tree is designed for a large EP (EP is also the number of
the input elements for the adder-tree), the results from the last
several levels of adder-tree can be used for small EPs to update
the accumulators directly instead of entering next level adders,
as shown in modes 2 and 3 in Fig. 9. For example, if EP is
64 and the number of input is also 64, with the proposed four-
input CAT, the number of the output elements of this adder-tree
becomes 2 when mode 2 is enabled. Thus, instead of enabling
a 64-to-1 adder-tree reduction, the design now has a 64-to-2
adder-tree which actually includes two 32-to-1 adder-trees. So,
the configuration of (EP, VP) changes from (64, 1024) to (32,
2048). With mode 3, the same design can be enabled with
(16, 4096). The detailed implementation can be achieved by
additional accumulators while keeping the tree structure intact.
However, the additional accumulators will result in resource
overhead. This work proposes the CAT architecture to reuse
the adders in the tail of the tree as the required accumulators
with no extra adder components. The CAT with N-input
(CAT-N) can be configured to update 1 to N accumulators
when the data reach the last log2(N) levels of the adder-tree.
Fig. 9 shows the three modes using CAT-4. The results from
the adder-tree can be used to update 1–4 accumulators. Fig. 10
shows the details of a CAT-4 unit. Different MUX settings
configure CAT-4 to be one of the three modes shown in Fig. 9.
For example, the red line in Fig. 10 shows the data flow when
CAT-4 in mode 2. In our large-scale design, CAT-4 is sufficient
since the sweet spot of EP is {16, 32, 64} according to design
exploration for optimal system throughput.

Fig. 10. Details of CAT-4.

C. Other Units

The adapter converts the parallelism between kernels and
tails. Then de-quantization (De-Quant) converts quantized
values into fixed-point values to reduce HW resources. The
σ /tanh unit performs the Sigmoid (σ ) and hyperbolic tangent
(tanh) functions. Both target programmable lookup tables
of size 2048 [2], [7]. The LSTM-tail unit and GRU-tail
unit mainly perform the element-wise operations. The output
hidden vector (ht ) needs to be quantized before it can be used
in the MVM kernels, so a Quant unit is deployed after the
final output of Tail units as shown in Fig. 7.

D. Low-Precision Multiplications With DSP Block Sharing

Reducing the precision of operations in DNN inference
accelerators can achieve high efficiency with little or no
accuracy loss compared to floating point by fitting more
multipliers per unit area. With careful retraining, low precision,
even binarized RNNs can still have decent accuracy [19],
[44], [45]. Rybalkin et al. [19] trained an LSTM model using
1-b weights and 2-b activations, which achieved a classi-
fication accuracy of 94% for OCR applications. Besides,
narrow bit-width multiplications can be mapped efficiently
onto lookup tables and DSPs. For example, Brainwave [6]
deploys 96 000 MACs on a Stratix 10 2800 FPGA by packing
2-b or 3-b multiplications into DSP blocks combined with
cell-optimized soft logic multipliers and adders. Our fixed
8-b design has 16 384 MACs. And our fixed 2-b design has
65 536 MACs, which deploys the same word length for multi-
pliers as those in Brainwave targeting the same FPGA device
for a fair comparison. The resource consumption of 65 535
fixed 8-b multipliers exceeds the available resources in the
Stratix 10 2800 FPGA. Our column-wise MVM optimizations
and fine-grained tiling strategy are applicable to multipliers of
any numerical precision.

In current FPGAs, there are highly configurable DSP blocks
which are often underutilized in implementing low-precision
DNN designs. References [46] and [47] demonstrated methods
to pack two 8-b multiplications into one Xilinx and Intel 18-b
multiplier, respectively. Both methods require two multiplica-
tions to share one input operand. With the proposed column-
wise MVM, one column of the weight matrix naturally shares
the same element of the input vector, which helps us to pack
four 8-b or ten 2-b multiplications into one DSP block on
Intel FPGAs [47] to reduce the HW resources. Moreover, this
would not be a restriction (and will come at lower cost) if we
use a novel DSP similar to what was proposed in [48] and
will be adopted in the next-generation Agilex devices [49].
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VI. EVALUATION AND ANALYSIS

This section presents evaluation results and analysis of two
generations of Intel FPGAs to show the scalability of the
proposed RNN accelerator optimizations.

A. Experimental Setup

To evaluate our RNN design, we utilize the same LSTM and
GRU workloads as the Brainwave design [6], the Brainwave-
like NPU [7] and the Plasticine [15] for comparison. These
workloads come from the DeepBench suite which is a set
of micro-benchmarks containing representative layers from
popular DNN models such as DeepSpeech [50]. These work-
loads are single layers with various sizes of hidden vectors
and different timesteps (or sequence lengths) from 1 to 1500,
as shown in Table III. This work takes the LSTMs with Lh =
256 as small LSTM workloads, Lh = 512 or 1024 as medium
ones, and Lh = 1536 or 2048 as large ones. Two generations
of Intel FPGAs, an Arria 10 1150 (A10) and Stratix 10
2800 (S10), are evaluated and compared with previous work.
Both run persistent LSTM/GRU of inference. Our proposed
HW architecture is implemented in Verilog HW description
language and implemented on the target A10 and S10 devices
using Quartus Pro 18.1.

B. Resource Utilization

Table II shows the resource utilization of our designs
with three configurations on FPGAs. We implement a small
RENOWN with the configuration of (EP, VP) as (4, 1024)
using an Arria 10 FPGA which has 4096 8-b multipliers
in the MVM kernels. A medium RENOWN with the con-
figuration of (EP, VP) as (16, 1024) is implemented using
a Stratix 10 FPGA which includes 16 384 8-b multipliers.
A large RENOWN with 65 536 2-b multipliers is also imple-
mented on a Stratix 10 FPGA with the configurations of
(EP, VP) as (16, 4096), (32, 2048), and (64, 1024). All our
designs consume most of the FPGAs’ available resources.
Note that HW utilization is different from resource utilization
and it reflects how often the HW computational units would
be “not idle.” Although we achieve a similar frequency to
that reported in the Brainwave [6] and Intel-NPU [7] articles,
we believe that further low-level optimizations can lead to
higher frequencies for better performance. We leave that for
future work since it has a limited impact on the conclusions
in this article.

C. Performance and Efficiency Comparison

To illustrate the benefits of our proposed approach, some
existing LSTM/GRU accelerator designs using the same
benchmark are compared with ours in Table III. This table
illustrates the latency, HW utilization, and throughput with
various workloads under different numbers of hidden units
(h) and TS. The HW utilization is the percentage of achieved
tera operations per second (TOPS) to the peak performance
for each layer. The DeepBench published results [15] on a
modern NVIDIA Tesla V100 GPU with 16-b precision are
also included. Some existing FPGA-based LSTM accelerator

TABLE II

RESOURCE UTILIZATION

TABLE III

PERFORMANCE COMPARISON OF DEEPBENCH INFERENCE FOR THE
PREVIOUS WORK AND OUR DESIGNS

designs are listed in Table IV. For a fair comparison, we only
show the previous work with a detailed implementation of
the LSTM system in this table. We show the FPGA chips,
model storage, precision, NPEs, run-time frequency, through-
put, power efficiency, and HW utilization.

The GPU is significantly underutilized even when cuDNN
library API calls, since it is designed for throughput-oriented
workloads, and it prefers BLAS level-3 (matrix–matrix) oper-
ations which are not common in RNN workloads [15]. Our
design can provide promising latency under 3 ms for all
Deepbench RNN layers at batch size of 1, reaching up to
29.6 effective TOPS for a large LSTM workload (h = 2048)
which is the largest reported performance in all these LSTM
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Fig. 11. Performance comparison. (a) Performance speedup for the various
LSTM dimensions. (b) HW utilization of various GRUs compared to prior
work.

designs as shown in Tables III and IV. Our work achieves
27.4–95.8 times higher performance than the Tesla V100,
as shown in Fig. 11(a). The performance of the specific
case (h = 512) is an approximate two orders of magnitude
advantage over the Tesla V100.

Our experiments show that the utilization is low with small
RNN applications that are composed of sequences of small
MVMs due to small hidden unit sizes and large number of
TSs. However, with our proposed optimizations, we can get
higher throughput and HW utilization than the counterparts
using a similar number of PEs. With a similar number of PEs
to [7], our RENOWN (Medium) achieves up to 94.1% HW
utilization which is the highest with respect to state-of-the-art
implementations on FPGAs, as shown in Figs. 1 and 11(b).
Achieving high utilization using a small number of PEs is eas-
ier than using a large number of PEs. In our RENOWN (Large)
design, we use around 31.7% fewer multipliers than [6], while
achieving 30.7% higher performance than [6] when targeting
large LSTM workloads. When targeting small LSTM models,
our design achieves 14.8 times higher performance. This is due
to better HW utilization which comes from our optimizations
incorporating novel column-wise MVM and fine-grained tiling
strategy. With a large number of PEs, our RENOWN can still
achieve up to 90.2% HW utilization which is higher than
the other work. When targeting small LSTMs and GRUs,
RENOWN (large) has a similar utilization as [7] and [15].
However, the number of PEs is, respectively, 3.41 times and
5.3 times more than those in [7] and [15]. The configurable
tiling of RENOWN (Large) also results in an additional up to

Fig. 12. Performance speedup due to configurable tiling.

27% higher system throughput as shown in Fig. 12. The figure
shows the speedup of the system throughput compared to the
lowest one among them with a given EP.

The previous designs of [19] and [41] in Table IV explore
various low-precision designs, showing their scalability to dif-
ferent bitwidth designs. Most of the other designs in Table IV
only support one bitwidth, while our work demonstrates
both 8-b and 2-b designs which show the scalability of
our architecture to cover different bit-width designs. Our
implementations are produced using the Verilog templates
with configurable parameters for each HW module instance.
Generally, Rybalkin et al. [19] and Rybalkin and Wehn [41]
are more scalable in bitwidth since they do not use the
DSP hard blocks on FPGAs for the computational kernels.
The FPGA DSP block has a fixed bit-width and it needs a
tailor-made wrapper for packaging several small multipliers
into one DSP HW block. Besides, Rybalkin et al. [19] and
Rybalkin and Wehn [41] target a particular model which
has four parallel and independent LSTM layers. These four
independent LSTM layers can be scheduled in an interleave
manner for an HW engine to alleviate the issues of recurrent
dependencies.

Some of the designs target smaller FPGAs [19], [41] than
Stratix 10. They have fewer logic resources and DSPs but
they also have a smaller TDP (thermal design power) power
consumption. We follow the convention in all related articles
and use GOP/S for performance comparison. In addition,
we also use GOPS/W and power efficiency, so that we are
not taking advantage of the FPGA chip size when compared
to the designs on small chips, such as the designs in [19]
and [41].

Overall, our RENOWN (Medium) provides over
1.05–3.35 times higher performance and 1.22–3.92 times
higher HW utilization than the state-of-the-art design [7],
as shown in Table III. In addition, the RENOWN (Large)
achieves 3.7–14.8 times better performance than state-of-the-
art FPGA-based LSTM designs [6], [7], [15]. This article
focuses on minimizing latency and maximizing throughput
by increasing the HW utilization. The results show flexible
customizability of our architecture for different scenarios. The
column-wise approach exposes the most parallelism while
minimizing stalls due to data dependencies.

To minimize latency, our design places the model weights
onto the on-chip memory, achieving high memory read
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TABLE IV

COMPARISON WITH PREVIOUS IMPLEMENTATIONS OF LSTM ON FPGAS

Fig. 13. Power consumption of the accelerator with the decomposition for
each of the major underlying blocks.

bandwidth suitable for real-time services. However, some
large-scale RNNs recently emerge with large on-chip mem-
ory requirements. Our design adopts a scale-out network of
utilizing multiple accelerators like [6], [30] which partition
the design to multiple FPGAs to address the challenges of
fast-growing RNN models where weights exceed on-chip
memory capacity on a single FPGA. Some cloud-based ser-
vices are able to tolerate a slightly longer latency of response.
It means a small amount of batching can be employed if
necessary. This benefits the GPU-based RNN inferences [6].
In [13], [42], [44], and [51], the batching technique is used
to improve the HW throughput and utilization for LSTM
inferences. Since our design executes a single input at a
time, increasing batch size does not affect the utilization.
Thus, our architecture’s utilization is not affected with or
without batching. Furthermore, some designs use binarized
datapaths [13], [19], [41] for LSTMs with negligible or no
effect on accuracy. Utilizing very low precision, for example,
binary, is orthogonal to our proposed approach which trans-
forms computation to eliminate data dependencies. Reducing
precision can be combined with our approach to achieve even
higher performance and efficiency.

Fig. 13 illustrates the power consumption of the proposed
RENOWN (Medium) design. The power is estimated by the
Intel early power estimator (EPE) tool and verified by the Intel
Quartus Power Analyzer. We note that this work considers
only the chip power, for a fair comparison. The bar chart
in Fig. 13(left) shows the decomposition for each of the major
underlying FPGA components. The static power consumption
of the device is 7.16 W. The dynamic power consumption
of the accelerator engine unit is the largest which is over
50%. The pie chart in Fig. 13(right) shows the dynamic power
consumption of each major unit of the accelerator engine unit.
The Buffer Units which store the weights and input–output
data have the largest power consumption which reaches nearly
half of the power consumed by the whole engine unit. The
Kernel Units also consume nearly half of the power while the
Tail units only consume less than 1% power.

VII. CONCLUSION AND FUTURE WORK

This article proposes fine-grained tile-based column-wise
MVMs with a novel latency-hiding HW architecture for
RNN/LSTM to improve both HW utilization and design
throughput. The proposed accelerator has been implemented
using Arria 10 and Stratix 10 FPGAs, achieving superior
performance and power efficiency compared to prior state-of-
the-art implementations. Further research includes combining
our approach with binarized RNNs, pruning techniques and
in-memory computing, and automating it to support rapid
development of efficient FPGA-based RNN/LSTM designs.
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