
28 WILMOTT magazine

Understanding Intra-day Price 
Formation Process by  

Agent-based Financial Market 
Simulation: Calibrating the 
Extended ChiarellaModel

Kang Gao,  
Imperial College London and Simudyne

Email: kang.gao18@imperial.ac.uk

Perukrishnen Vytelingum, Simudyne
Stephen Weston, Deloitte UK and 

Imperial College London
Wayne Luk, Imperial College London

Ce Guo, Imperial College London 

^



^

AGENT-BASED PRICE FORMATION

WILMOTT magazine 29



30 WILMOTT magazine

Abstract
This article presents XGB-Chiarella, a powerful new approach for deploying agent-
based models to generate realistic intra-day artificial financial price data. This 
approach is based on agent-based models, calibrated by XGBoost machine learning 
surrogate. Following the Extended Chiarella model, three types of trading agents are 
introduced in this agent-based model: fundamental traders, momentum traders, and 
noise traders. In particular, XGB-Chiarella focuses on configuring the simulation 
to accurately reflect real market behaviors. Instead of using the original Expectation-
Maximization algorithm for parameter estimation, the agent-based Extended 
Chiarella model is calibrated using XGBoost machine learning surrogate. It is shown 
that the machine learning surrogate learned in the proposed method is an accurate 
proxy of the true agent-based market simulation. The proposed calibration method 
is superior to the original Expectation-Maximization parameter estimation in terms 
of the distance between historical and simulated stylized facts. With the same under-
lying model, the proposed methodology is capable of generating realistic price time 
series in various stocks listed on three different exchanges, which indicate the uni-
versality of intra-day price formation process. For the time scale (minutes) chosen in 
this paper, one agent per category is shown to be sufficient to capture the intra-day 
price formation process. The proposed XGB-Chiarella approach provides insights 
that the price formation process comprises the interactions between momentum 
traders, fundamental traders, and noise traders. It can also be used to enhance risk 
management by practitioners.

Keywords
Agent-based Model, Financial Market Simulator, Extended Chiarella Model, 
Price Formation

1 Introduction

1.1 Motivation
In the past decade algorithmic trading has grown rapidly across the world  
and has become the dominant way securities are traded in financial markets, 
currently generating more than half of the volume of US equity markets.  
Constantly improving computer technology and its application by both traders 
and exchanges, together with the evolution of market micro-structure, automa-
tion of price quotation and trade execution have together enabled faster trading. 
Consequently, intra-day price formation underpinning this trading process has 
become the focus of intense research attention in recent years as market participants 
attempt to gain greater insight into how prices are determined and hence improve  
trading performance.

Price formation determines the price of an asset through interactions between 
buyers and sellers. It is at the core of the efficient and transparent operation of mar-
kets for goods and services. The balance between buyers and sellers provides an 
effective indicator of demand and supply in a market, where demand and supply are 
generally significant but not the only driving factors behind price movements. This is 
because the mechanisms of price discovery indicate what sellers are willing to accept 
and what buyers are willing to pay, so the price discovery process is concerned with 
finding an equilibrium (or near equilibrium) price that enables the greatest liquidity 
for that asset at a given point in time. Beyond supply and demand, attitudes to risk, 
volatilities, available information and market micro-structure all exert varying levels 
of influence on the price discovery process.

Lo (2017) explains the process of price formation in properly functioning 
markets as generally involving market participants engaging in cause-and-effect 

reasoning along the lines of “if my strategy is x, then the market will respond with y, 
in which case I will respond with z.…” Even this simple process requires that the 
algorithms of buyers and sellers have some understanding of the other’s motives and 
incentives. Theoretically, this approach would imply that such chain reasoning could 
infinitely recurse.

However, Sirignano and Cont (2019) define a “price formation mechanism” 
as a high-level map representing the relationship between asset price and variables 
such as order flow and market price history. Modeling such a mechanism using 
stochastic differential equation models, machine learning prediction models and 
market micro-structure, all provide different ways to represent this map. However, 
an issue central to the price formation mechanism is the degree to which such a 
high-level map is universal. That is, whether the price formation mechanism is 
independent of the particular asset being considered. The universal existence of 
certain empirical stylized facts seems to be evidence supporting this universality 
traded. In this work, we present evidence for the existence of such a universal price 
formation mechanism by proposing the XGB-Chiarella method, which is able to 
reproduce realistic synthetic data for various stocks on different exchanges. The fact 
that the XGB-Chiarella method is based on the same underlying agent-based model 
backs the existence of a universal price formation mechanism.

Our investigation of intra-day price formation process is through financial  
market simulation using agent-based models. Financial markets are obviously  
one of the most dynamic systems in existence. With huge potential academic and 
industrial value, financial market simulation in agent-based models is an exciting 
new field for exploring behaviors of financial markets. In an agent-based artificial 
financial market, heterogeneous agents (traders) trade a financial instrument 
through a realistic trading mechanism for price formation. Unlike traditional 
economic theories, there is no equilibrium assumption in agent-based financial 
markets. In addition, traders are no longer assumed to have rational behaviors as 
in traditional economic theories. The removal of these assumptions makes agent-
based financial market simulation more realistic than traditional equilibrium-
based economic and financial theories. Various agent-based simulators have been 
developed in literature. However, there are still gaps in creating ideal agent-based 
financial market simulators that are capable of generating realistic synthetic market 
data and shedding light on the intra-day price formation process. Specifically, 
most existing agent-based financial markets are of lower frequency such as daily 
or monthly. To investigate intra-day price formation process, higher simulation 
frequency is needed.

To ensure realism in the generated intra-day financial time series data, 
parameters of the agent-based model must be calibrated to be as close to real 
market data as possible. Realistic simulated market data are supposed to exhibit 
certain characteristics known as stylized facts, which are universally observed in 
historical financial market data. Some stylized facts originate from behaviors of 
market participants, while others could be natural consequences of market structure 
design. Examples of stylized facts include fat tails of returns, volatility clustering, 
etc. Parameter calibration with respect to certain stylized facts can be extremely 
challenging due to the huge parameter space and complexity in designing explicit 
optimization objective function.

To sum up, there are still two challenges of great interest in this field:

 • C1: To implement an agent-based financial market simulator which allows for 
the investigation of intra-day price formation process in financial market.

 • C2: To calibrate the agent-based financial market simulator to ensure realism 
and reproduce common stylized facts.
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To address the two challenges, we developed XGB-Chiarella, which is a novel 
approach to developing and calibrating an intra-day financial market simulator 
to narrow the existing gaps. The XGB-Chiarella methodology has two essential 
components: the underlying mathematical model for simulation and the calibra-
tion workflow with surrogate modeling. For the underlying model, the simple 
but powerful Extended Chiarella model (Majewski et al., 2020), which consists 
of fundamental traders, momentum traders, and noise traders, is used as the 
underlying model for the XGB-Chiarella method. For the calibration workflow,  
the method utilizes XGBoost1 algorithm to build a machine learning surrogate  
for the purpose of model calibration. We will show that even with only one agent  
for each type of trader, the XGB-Chiarella method is able to generate realistic price 
series simulations after proper model parameter calibration process.

1.2 Background and related work
With the rapid development of modern financial markets, price formation process 
in financial market has been of great interest to both researchers and practitioners 
for many years. One group of price formation process literature is based on the 
equilibrium state of financial market. Faias et al. (2011) propose a pure exchange 
economy with a finite number of types of agents and commodities. They analyze the 
equilibrium price formation in a differential information market, where traders have 
incomplete and asymmetric information. Jackson (1991) shows that it is possible to 
have an equilibrium with fully revealing prices and costly information acquisition if 
the price formation process is modeled explicit and traders are not price-takers. Price 
formation process is also extensively investigated from the perspective of double 
auction market. Cason and Friedman (1996) present 14 laboratory experiments that 
examine the price formation process in the continuous double auction. It is shown 
that participants in their double auction market experiments succeed in discovering 
prices that would achieve most of the exchange surplus. The same is true even with 
no auctioneer and with traders possessing various private information. Gerety and 
Mulherin (1994) examine the relationships between market structure and stock price 
formation. It is shown that trading mechanism and price formation provide different 
explanations for the greater volatility at the opening of trading.

Unlike the above works, in this article we analyze the price formation process 
in financial markets from another aspect, which focuses on the so-called trend and 
value effects. Trend and value effects are indispensable when it comes to price form-
ation process in financial market. The two interactive effects pervade all financial 
markets. Trend refers to the price behavior that positive (negative) returns are more 
likely to be followed by positive (negative) returns. Value means that the asset price 
will converge to the intrinsic value of the asset, which indicates that assets with 
prices higher (lower) than their fundamental value tend to achieve negative (posi-
tive) future returns. The trend and value effects correspond to two types of market 
participants: fundamental trader and momentum trader. Fundamental trader reacts 
to the difference between fundamental value and market price, while momentum 
trader reacts to price trends. Lots of models investigating trend and value effects are 
analyzed in the literature.

Beja and Goldman (1980) build a model that proves that the so-called “specula-
tion on the price trend” plays an important role in the formation of dynamic price 
behaviors. It is shown that speculative trading can accelerate the convergence to the 
equilibrium state, but it can also lead to price oscillations and market instability. 
Frankel and Froot (1986) present a model containing fundamentalists and chartists 
to explain the dollar price in the early 1980s. Not constrained by the assumption of 
utterly rational behaviors, in this model each type of trader performs the specific  
task in a reasonable and realistic way. Their model provides a framework for explain-

ing price formation process in a variety of asset markets. Zeeman (1974) shows 
that the unstable behaviors in various financial markets can be credited to the 
interactions between fundamental traders and momentum traders. In one famous 
paper, Chiarella (1992) proposes the so-called Chiarella model, which consists of 
fundamentalists and chartists in the artificial financial market. It is shown that the 
Chiarella model is capable of generating a number of dynamic regimes in financial 
market that are consistent with empirical evidence. Based on the Chiarella model, 
Majewski et al. (2020) propose an Extended Chiarella model by adding noise  
traders and changing the demand function of fundamentalists. The Extended 
Chiarella model investigates the co-existence and interaction between trend and 
value effects in the framework of agent-based models. The model parameters are 
estimated using an Expectation-Maximization algorithm. Nevertheless, all the  
above models share some common drawbacks. Firstly, all the above models are  
estimated by mathe matical derivation. Consequently, all those models generate 
theoretical results instead of actual simulated results. Secondly, existing models  
are used to explain daily or monthly price behaviors. There still exists a large gap 
in successfully explaining intra-day price formation process in terms of trend and 
value effects.

In this work, we examine the intra-day price formation process in the framework 
of agent-based models, where trend and value effects are represented by hetero-
geneous traders. Given an agent-based model, how to effectively calibrate the model 
to real data is still an open challenge. Successful calibration of an agent-based model 
enables the model to generate qualitative or quantitative properties that are observed 
consistently in empirically measured data and cannot be reproduced using tradi-
tional equilibrium-based approaches (LeBaron, 2006). Lots of calibration methods 
have been proposed in the literature. For some simple models such as the CATS 
model in Bianchi et al. (2007), model parameters can be read directly from the data. 
Analytical method is another class of agent-based model calibration method. For 
example, Majewski et al. (2020) apply Expectation-Maximization method to get the 
maximum likelihood estimation of the parameters of the Extended Chiarella model. 
However, for most complex models, model parameters are not directly observable. 
In addition, most agent-based models that are of interest are incompatible with cali-
bration methods that require analytical solutions. In those cases, the only choice for 
model calibration is simulation-based method. The most common simulation-based 
calibration method is the simulated minimum distance method and its variations 
(Grazzini and Richiardi, 2015). The simulated minimum distance method involves 
the construction of an objective function that measures the distance between real 
data and simulated data for a given set of model parameters. Optimization methods 
are subsequently applied to minimize the distance to get an optimal set of model 
parameters. In the context of economic agent-based models, popular distance  
measures include weighted sums of the squared errors between empirical moments 
and simulated moments. Franke (2009) applies the method of simulated moments 
to estimate the parameters of an agent-based asset pricing model. Their moment 
selection emphasizes the reflection of certain stylized facts in financial markets, 
such as the fat tails and autocorrelation patterns of the daily returns in stock price 
time series. To explore structural stochastic volatility, Franke and Westerhoff (2012) 
employ the method of simulated moments to estimate parameters of different 
candidate agent-based asset pricing models. They also take into consideration the 
proportion of Monte Carlo simulation runs that yield moments within the empirical 
moments confidence intervals.

Another large obstacle in the development of robust and widely applicable  
agent-based model calibration strategies is the computational complexity. Most 
agent-based models of interest are computational costly to simulate, and the  
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situation is even worse when it comes to large-scale agent-based models. One  
possible solution to address this challenge is the use of surrogate modeling to help 
guide parameter space exploration and thus avoid a large amount of intensive 
agent-based model simulations. Examples of surrogate modeling include kriging 
(Rasmussen, 2003) and machine learning surrogate approach (Lamperti et al., 2018). 
Dosi et al. (2018) apply kriging method to enable a global exploration of the para-
meters space for a multi-firm evolutionary simulation model. Sensitivity analysis 
is also carried out in this kriging framework. Lamperti et al. (2018) build machine 
learning surro gate models to approximate two agent-based models. Experimental 
results show that their XGBoost-based machine learning surrogate achieves high 
accuracy in approximating the relationship between model parameters and model 
outputs. The approach of machine learning surrogate modeling is also the founda-
tion of the calibration method in this article.

1.3 Our contributions
In this paper, we propose XGB-Chiarella—a method for developing and calibrating 
an agent-based market simulator to generate realistic intra-day financial market 
data. The underlying model is the Extended Chiarella model (Majewski et al., 2020). 
We adapted the machine learning surrogate modeling approach in Lamperti et al. 
(2018) to calibrate the agent-based financial market simulator. By reproducing 
realistic synthetic data for various stocks, we show that there is a universal intra-
day price formation process that involves trend and value effects. The main 
contributions are:

 • Addressing challenge C1: The Extended Chiarella model was originally  
tested on monthly data. To address Challenge C1, we further tested the 
Extended Chiarella model in intra-day minute data to explain the intra-
day price forma tion process. The model is tested extensively in more than 
75 stocks from three major exchanges in the world: Nasdaq, the London  
Stock Exchange, and the Hong Kong Stock Exchange. For all the stocks  
on the different exchanges, the experimental results are similar, and the 
simulator can all produce realistic simulated financial time series. This  
shows that trend and value effects exist universally in the stock market  
price formation process, regardless of the exchanges.

 • Addressing challenge C2: Instead of the Expectation-Maximization 
algorithm, we propose a novel application of a recent machine learning 
surrogate modeling approach (Lamperti et al., 2018) to calibrate the 
Extended Chiarella model, which addresses challenge C2. The foundation 
for this calibration method is the surrogate modeling approach in Lamperti 
et al. (2018). Instead of building an XGBoost classifier to predict positive 
calibration and negative calibration, we train an XGBoost regressor to 
innovatively predict the actual distance between simulated stylized facts and 
historical stylized facts. The distance involves not only the return distribution 
but also the autocorrelations between returns and squared returns. In 
addition, exploration-exploitation mechanism is introduced in the iterative 
process of selecting new points in parameter space. In terms of stylized facts 
distance, results show that the proposed method performs much better than 
the baseline Expectation-Maximization estimation algorithm.

2 Model architecture
This section presents the set-up and components of the agent-based financial 
market simulator.

2.1 Model set-up
We denote the price of a stock at time t  as Pt . The total signed volume traded  
on the market from t  to t+∆  constitutes the cumulative demand imbalance  
in the same period. This quantity is denoted as D t t( , )+∆ . This aggregated  
demand depends on the trading strategies of various types of market participants.  
Following Majewski et al. (2020) and Kyle (1985), the price dynamics is assumed 
to be governed by a linear price impact mechanism:

 P P D t tt t+ − = +( )∆ ∆l ,   (1)

where l  is called “Kyle’s lambda”, which is related to the liquidity of the market 
and is a first-order approximation of market price sensitivity to market demand 
and supply. The market participants are assumed to be heterogeneous in their 
trading decisions. Following the Extended Chiarella model (Majewski et al., 
2020), we populate our model with fundamental traders, momentum traders, and 
noise traders. Since traders of the same type exhibit same behaviors, we only use 
one agent for each type of trader. This single agent represents the corresponding 
type of traders in the market. With only three agents in the model, simulation 
process is significantly accelerated. Each trader is associated with some parameters 
that control the trading behaviors and the amount of demand generated by the 
corresponding trader group. We will show the calibration of these parameters in  
later sections.

2.2 Fundamental trader
Fundamental traders make their trading decisions based on the perceived funda-
mental value of the stock. The fundamental value is denoted as Vt . A fundamentalist 
will tend to buy a stock if the stock is under-priced ( )V Pt t− > 0 ; otherwise, it will 
tend to sell the stock. Following the convention in Chiarella (1992), in this work  
we assume the aggregated demand of fundamental traders is proportional to the 
level of mispricing. In other words, the aggregated demand of fundamentalists is 
k( )V Pt t- , where k  controls the overall demand generated by fundamental traders. 
The fundamental value Vt  is an exogenous signal that is input to the model.

2.3 Momentum trader
Momentum traders are also called “Chartists”. This group of traders buys and sells 
financial assets after being influenced by recent price trends. The assumption is to 
take advantage of upward or downward trend of the stock prices until the trend starts 
to fade. Instead of looking at the fundamental value of the stock, momentum traders 
focus more on recent price action and price movement. If the stock price has recently 
been rising, a long position is established; otherwise, momentum traders will enter 
a short position.

There are lots of methods to estimate the momentum of stock prices. A common 
trend signal is the exponentially weighted moving average of past returns with decay 
rate a . This trend signal is denoted by Mt :

 M M p pt t t t= −( ) + −( )− −1 1 1a a   (2)

where a  is the decay rate. Given the trend signal Mt , the demand function of 
momentum traders is denoted as f Mt( ). The demand function f Mt( ) must satisfy 
two conditions:

 • f Mt( ) is increasing.
 • f M Mt t″ <( )* 0
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where the first condition is consistent with the nature of momentum trading and  
the second condition imposes the risk-averse assumption to momentum traders. 
Consistent with Chiarella (1992), here we choose f M Mt t( )= β γtanh( ) with  
the requirement that g> 0. g  represents the saturation of momentum traders’ 
demand when momentum signals are very large. This phenomenon is partly  
due to, for example, budget constraints and risk aversion, which is prevalent in  
real chartists. b  controls the overall demand generated by momentum traders.  
b  is also assumed to be positive, i.e., the demand of momentum traders is positive 
when the momentum signal ( )Mt  is positive; otherwise, the demand is negative.  
The choice of this demand function for momentum traders strictly satisfies the  
two requirements.

2.4 Noise trader
Another group of market participants is noise traders. They are designed so as to 
capture other market activities that are not reflected by trend-following and value 
investing. As a result, the cumulative demand of noise traders can be described 
by a random walk. The random walk is also multiplied by a parameter sN , which 
controls the overall demand level from noise traders. Mathematically, for each step 
the demand from noise traders is sampled from a normal distribution with zero 
mean and standard deviation sN .

2.5 Model dynamics

2.5.1 Simulation process
Using mathematical formulas to approximate the supply and demand generated 
by all the participating traders, the resulting model dynamics for ∆t→ 0 can be 
described by the following dynamical system. Note that here the fundamental value 
Vt  is an exogenous signal that is input to the model, which is a major adaption from 
the original Extended Chiarella model. In addition, there are only three agents in our 
simulation, namely, fundamental trader, momentum trader, and noise trader. Each 
trader creates a demand corresponding to one term in Equation (3). Our simulation 
results will show that this model is able to generate very realistic artificial financial 
price time series, even though there are only three agents included in the model.
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where t  follows standard normal distribution. Substitute Equation (1) into the 
above equations, we can get:
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where k , b , sN  equal to λκ¢ , λβ ¢ , λσ¢N , respectively. Furthermore, the simulator 
runs according to a discrete-time version of model (4), in which Dt  is 1, correspond-
ing to one unit of the smallest simulation time interval:
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The whole simulation runs according to Equation (5). For each step, each  
trader collects and processes market information. Internal variables associated  

with each trader are calculated. According to agent types and values of internal  
variables, demands are generated by the traders. The price evolves according  
to Equation (1).

2.5.2 Fundamental value from Kalman Smoother
The only remaining unknown variable is the fundamental value of the stock. 
According to Equation (5), the simulation can proceed only if fundamental 
value is known and is exogenously input to the model. One difficulty is the non-
observability of the fundamental value. According to the economic literature, the 
fundamental value of a stock equals to the expected value of discounted dividends 
that the company will pay to shareholders in the future. However, this methodology 
requires extremely strong assumptions of the future dynamics of the stock dividends. 
Furthermore, this approach can never reflect the intra-day change of fundamental 
value, while the consensus fundamental value can indeed vary during the trading 
day due to the continuous feed of events and news.

In this paper, we propose a novel method, which is to apply Kalman Smoother 
(Ralaivola and d’Alche Buc, 2005) directly to the stock price time series to get the 
hidden fundamental value. Note that Equation (5) is a linear dynamical system in Vt ,  
which is treated as a hidden variable of the system. Here the observations are the 
actual prices traded in real market. The specific Kalman Smoothing algorithm used 
here can be found in Byron et al. (2004). The algorithm is already implemented in 
the Python package “pykalman”.

3 Model calibration
In this section, we present the methodology for calibrating the agent-based financial 
market simulator. Calibration means finding an optimal set of model parameters 
to make the model generate most realistic simulated financial market. Firstly, we 
describe the real data and the associated stylized facts in financial markets. Next, 
we define the distance between historical and simulated stylized facts, which acts as 
the loss function in the calibration process. Finally, the machine learning surrogate 
modeling for parameter space exploration is presented in detail.

3.1 Data
In the model calibration process, real financial market data are essential to set up 
the calibration target. We collected stock price data of 75 stocks from three major 
exchanges in the world—Nasdaq, the London Stock Exchange, and Hong Kong Stock 
Exchange. Our dataset comprises intra-day minute price data for those 75 stocks, 
spanning the entire trading period from September 20, 2021, to November 30, 2021. 
Detailed stocks from each exchange are shown in Table 1.

Table 1: Specific stocks from three exchanges in the dataset.

Exchange Stocks

Nasdaq AAPL, HUT, AMD, AAL, MSFT, INTC, UBER, NVDA, SOFI, DKNG, 
WISH, HON, FB, TSLA, MRNA, AFRM, LCID, CMCSA, HBAN, TLRY, 
MU, CSX, CSCO, JD, UAL

LSEG LLOY.L, VOD.L, RR.L, GLEN.L, IAG.L, HSBA.L, BP.L, PRU.L, DGE.L, 
LGEN.L, AAL.L, AV.L, RDSA.L, STAN.L, ULVR.L, BHP.L, BATS.L, RIO.L, 
GSK.L, NG.L, REL.L, EZJ.L, JET.L, SMT.L, BRBY.L

HKEX 0700.HK, 3690.HK, 9988.HK, 1299.HK, 1211.HK, 2020.HK, 2269.
HK, 0175.HK, 2331.HK, 1024.HK, 0916.HK, 2318.HK, 1918.HK, 
9618.HK, 9999.HK, 2333.HK, 9888.HK, 0836.HK, 1919.HK, 0388.
HK, 3968.HK, 1772.HK, 1171.HK, 0005.HK, 0027.HK
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Figure 1: Cumulative distribution function of historical returns in two stocks (FB, RIO.L) for one trading day, in comparison with a normal distribution reference.

    

Figure 2: Autocorrelation patterns for returns of three stocks from the three exchanges.

3.2 Stylized facts and loss function
Financial price time series data display some interesting statistical characteristics 
that are commonly called stylized facts. According to Sewell (2011), stylized facts 
refer to empirical findings that are so consistent (for example, across a wide range of 
financial instruments and different time periods) that they are accepted as the truth. 
A stylized fact is a simplified presentation of an empirical finding in financial market. 
A successful and realistic financial market simulation is capable of reproducing 
various stylized facts. These stylized facts include fat-tailed distribution of returns, 
autocorrelation of returns, and volatility clustering. The loss function used in the 
calibration process is constructed by measuring the distance between historical and 
simulated stylized facts.

3.2.1 Fat-tailed distribution of returns
The distributions of price returns have been found to be fat-tailed across all 
timescales. In other words, the return distributions exhibit positive excess  
kurtosis. Understanding positively kurtotic return distributions is important  
for risk management, since large price movements are much more likely to occur 

than in commonly assumed normal distributions. In this paper we focus on  
intra-day minute price returns. Excess kurtosis of the distribution of minute- 
level returns is calculated for each stock at each trading day. Table 2 presents the 
average excess kurtosis for the intra-day minute-level return distributions of six 
randomly chosen stocks. For each stock, the return distribution has significantly 
positive excess kurtosis, proving the fat-tail characteristic of return distributions. 
Figure 1 also shows a comparison between cumulative distribution function of 
historical returns in two stocks for one trading day and that of a normal distribution 
with identical mean and standard deviation. Similar results are found in all other 
stocks from the three exchanges.

Table 2: Average excess kurtosis for return distributions of five stocks.

Stock FB AAPL VOD.L JET.L 9999.HK 0700.HK
Excess Kurtosis 5.51 5.64 16.20 9.60 9.49 4.66
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Figure 3: Autocorrelation patterns for squared returns of three stocks from the three exchanges.

3.2.2 Autocorrelation of returns
Autocorrelation is defined to be a mathematical representation of the degree 
of similarity between a time series and a lagged version of the same time series. 
It measures the relationship between a variable’s past value and its current value.  
Take first-order autocorrelation, for example. A positive first-order autocorrelation 
of returns indicates that a positive (negative) return in one period is prone to be 
followed by a positive (negative) return in the subsequent period. Instead, if the 
first-order autocorrelation of returns is negative, a positive (negative) return will 
usually be followed by a negative (positive) return in the next period. It is observed 
that the return series lack significant autocorrelation, except for weak, negative 
autocorrelation on very short timescales. McGroarty et al. (2019) show that the 
negative autocorrelation of returns is significantly stronger at a smaller time horizon 
and disappears at a longer time horizon. Examination of our data supports this 
stylized fact. Figure 2 shows the autocorrelation function of minute-level return 
time series for several stocks up to lag 30. We can see that the autocorrelation is 
significantly negative for small lags, and the negative autocorrelation gradually 
disappears for larger lags.

3.2.3 Volatility clustering
Financial price returns often exhibit the volatility clustering property: large  
changes in prices tend to be followed by large changes, while small changes in prices 
tend to be followed by small changes. This property results in persistence of the 
amplitudes of price changes (Cont, 2007). It is found that the volatility clustering 
property exists on timescales varying from minutes to weeks and months. Volatility 
clustering also refers to the long memory of square price returns (McGroarty et al., 
2019). Consequently, volatility clustering can be manifested by the slow decaying 
pattern in the autocorrelations of squared returns. Specifically, for short lags the 
auto correlation function of squared returns is significantly positive, and the auto-
correlation slowly decays with the lags increasing. Figure 3 shows the auto correlation 
patterns for squared returns of several randomly chosen stocks from the three 
exchanges. Autocorrelation for squared returns of other stocks also exhibit similar 
patterns. It is shown that the volatility clustering stylized fact exists universally in 
financial markets.

3.2.4 Stylized facts distance as loss function
The target for agent-based model calibration is to find an optimal set of model 
parameters to make the model generate realistic simulated financial market. To solve 
this optimization problem, it is essential to have a metric that is able to quantify the 
“realism” of a simulated financial market. First of all, a realistic simulated financial 
market must exhibit similar characteristics to real financial market, such as the 
return distribution and volatility level. In addition, realistic simulated financial 
data are also required to reproduce other stylized facts such as the autocorrelation 
patterns in returns and squared returns. Here we design a stylized facts distance to 
quantify the similarities between simulated and historical financial data. The stylized 
facts distance is the weighted sum of four quantities: Kolmogorov-Smirnov statistic 
of return distributions, volatility difference, autocorrelation difference of returns and 
autocorrelation difference of squared returns:

 D w KS w w wV ACF ACF= + + +1 2 3 41 2* * * *∆ ∆ ∆   (6)

Detailed calculations of the four quantities in the stylized facts distance are 
introduced below.

Kolmogorov-Smirnov statistic is a quantity from Kolmogorov-Smirnov test in 
statistics. Kolmogorov-Smirnov test is a non-parametric test of the equality of prob-
ability distributions that can be used to compare two samples. Here the two samples 
are simulated returns and historical returns, respectively. The Kolmogorov-Smirnov 
statistic quantifies a distance between the distribution functions of simulated returns 
and historical returns. Recall that the empirical distribution function is an estimate 
of the cumulative distribution function that generated the points in the sample. Let 
F xs( ) and F xh( ) denote the empirical distribution functions of simulated returns and 
historical returns, respectively. Then the Kolmogorov-Smirnov statistic is calculated 
as follows:

 KS F x F x
x

s h= ( )− ( )sup   (7)

where supx  is the supremum of the set of differences. Intuitively, the statistic repre-
sents the largest absolute difference between the two distribution functions across all 
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x values. The smaller the statistic is, the more similar are the simulated and historical 
returns. The inclusion of Kolmogorov-Smirnov statistic in the stylized facts distance 
addresses the requirements that the simulated data have similar return distribution 
to historical data and exhibit fat tails of returns.

The second part of the stylized facts distance is the absolute volatility difference 
between simulated returns and historical returns:

 ∆V s hV V= −   (8)

where Vs  and Vh  denote simulated volatility and historical volatility, respectively. 
This part addresses the requirement that simulated financial market should be 
similar to real market in terms of volatility.

The third part of the stylized facts distance is the difference between simulated 
and historical autocorrelations of returns. This part in the stylized distance measures 
the model’s ability of reproducing autocorrelation patterns commonly found in 
historical returns. It is shown that financial price return time series lack significant 
autocorrelation, except for short time scales, where significantly negative auto-
correlations exists. This phenomenon is backed by our historical minute-level 
returns data. For very small lags the autocorrelations are negative, while for larger 
lags the autocorrelations become insignificant. To measure the distance in auto-
correlation patterns between simulated data and historical data, we invoke the 
autocorrelation function of returns and calculate the average absolute difference 
between autocorrelations of simulated return time series and historical return time 
series for various lags:

 ∆ACF

s h
l in lag

ACF l r ACF l r

lags
1 =

∑ ( )− ( ), ,
  s   (9)

where ACF l rs( ), , ACF l rh( ),  are the autocorrelation function of lag l for simulated 
returns and historical returns, respectively. lags  denotes the number of lags used in 
the calculation. Because the empirical autocorrelations are negative for very small 
lags and close to zero for larger lags, it is not necessary to consider all of the auto-
correlation coefficients. Empirical evidence suggests that the autocorrelation pattern 
is well represented by the coefficients for three lags: 1, 10, 20. Also, to reduce the 
effects of accidental outliers, the autocorrelation function is smoothed by calculating 
the three-lag average. That is, the lag 1 autocorrelation is calculated as the average 
autocorrelation of lag 1, 2, 3, and so as the calculation for lag 10 and lag 20. In total, 
autocorrelations of 9 lags (1, 2, 3, 10, 11, 12, 20, 21, 22) are considered and included 
in the calculation.

The last part of the stylized facts distance is the difference between simulated  
and historical autocorrelations of squared returns. The replication of auto- 
correlation patterns in squared returns indicates the model’s capability to  
reproduce the volatility clustering stylized fact. It is shown empirically that large 
price changes tend to be followed by other large price changes, known as the  
volatility clustering phenomenon. Consequently, though there are generally no 
significant patterns in autocorrelations of returns, the autocorrelations of squared 
returns are significantly positive, especially for small time lags. Also, as time lag 
increases, the autocorrelation of squared returns displays a slowly decaying pattern, 
as shown in Figure 3. Similar to the difference between autocorrelations of returns 
DACF1 , the difference between autocorrelations of squared returns is calculated  
as follows:

 ∆ACF

s h
l in lags

ACF l r ACF l r

lags
2

2 2

=
∑ ( )− ( ), ,

    (10)

where ACF l rs( ), 2 , ACF l rh( ), 2  are the autocorrelation function of lag l for simu- 
lated squared returns and historical squared returns, respectively. lags  denotes  
the number of lags used in the calculation. Unlike the case for autocorrelations  
of returns calculation, here we use a different lags . Because empirical auto- 
correlations of squared returns are significantly positive and slowly decaying,  
we consider the autocorrelations of squared returns from a minimal lag length  
of one minute up to a maximal lag length of 20 minutes. In total, the auto- 
correlations of 20 lags (1, 2, 3, ..., 18, 19, 20) are considered and included in  
the calculation.

The above four parts, along with the corresponding weights, constitute the 
stylized facts distance in Equation (6). In our experiments, there is no preference 
for any one of the four stylized facts. Thus, all the weights are equal to 1. Since it 
happens that the four quantities are of the same orders of magnitude, there is no 
need to adjust weights either. Also note that the stylized facts distance is a function 
of model parameters. In other words, given a set of model parameters, there is 
a unique stylized facts distance calculated from the simulated time series, which 
correspond to that particular set of model parameters. Let q denote the vector of 
model parameters to be estimated, Equation (6) can be rewritten as:

 D w KS w w wV ACF ACFq q q q q( ) ( )+ ( )+ ( )+ ( )= 1 2 3 41 2* * * *∆ ∆ ∆   (11)

The smaller D( )q  is, the more realistic is the simulation. Thus, D( )q  serves as the 
loss function that the calibration method aims to minimize by finding an optimal set 
of model parameters. Let Q  denote the admissible set for model parameter vector q, 
the calibration target is to find the optimal model parameter vector q̆ that minimizes 
the stylized facts distance:

 q̆ q
q

= ( )
∈

arg min
Θ

D   (12)

The calibration method is presented in detail in subsequent sections.

3.3 Surrogate modelling calibration method

3.3.1 Specification
We propose a novel surrogate modeling approach to calibrate the model parameters. 
That is, to find an optimal set of model parameters to minimize the loss function—
stylized facts distance. The approach is adapted from the machine learning surrogate 
modeling methodology in Lamperti et al. (2018). The original methodology mainly 
trains an XGBoost classifier to classify a positive calibration or negative calibration 
(Lamperti et al., 2018), while in our approach we train an XGBoost regressor to 
directly approximate the mapping from model parameters to stylized facts distance. 
Another novelty in our approach is the introduction of exploration-exploitation 
mechanism in selecting new points in parameter space. The advantage of surrogate 
modeling approach is that it significantly reduces the computational cost of 
calibrating an ABM with several model parameters. Using only a limited budget 
(N) of ABM evaluations, the XGBoost surrogate model is proved to be a fairly good 
approximation of the mapping from model parameters to the target stylized facts 
distance. The surrogate provides a costless way to predict the model’s response and 
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allows for efficiently finding the optimal point in the model parameter space that 
minimizes the loss function.

With regard to the Extended Chiarella simulation model, during calibration the 
model can be represented as a mapping M: q q® D( ) from a vector of model para-
meters q into the stylized facts distance D( )q . Generally, the number of parameters 
ranges from several to dozens. In our case, we have three parameters to calibrate: k ,  
b , and sN . The values for parameters g  and a  are fixed in advance. Parameter a  
indicates the typical horizon of trend computation for momentum traders. Following 
the original Extended Chiarella model (Majewski et al., 2020), a  is relatively small 
to represent a relatively low frequency momentum trader. Here we take the value 
0.1 for a . Other values of a  are also tested, and similar results are obtained as long 
as a  is smaller than 0.4. For larger a  value, the low frequency momentum traders 
will become high frequency momentum traders, which would be an extension of the 
Extended Chiarella model. We will present this extension in a separate paper. For g , 
the value is fixed to be 10. Since g  appears in the same term as b  in Equation (5), the 
model calibration will have difficulties pinning down the value of parameters g  and 
b  if both parameters are to be estimated. As a result, fixing g  significantly improves 
the robustness of the model calibration process. We have also tested other values of g  
and the results are similar.

Instead of classifying a positive calibration or negative calibration as in the 
original method (Lamperti et al., 2018), here our calibration objective is obvious: 
finding an optimal set of values for k , b , and sN  to minimize the stylized facts 
distance. Our calibration measure is a real-valued number providing a quantitative 
assessment of the realism of the simulated market. An XGBoost machine learning 
surrogate model is trained to approximate the mapping from model parameters 
to stylized facts distance and help to find the optimal parameters. Detailed 
implementations are presented below.

3.3.2 Implementation
The whole calibration methodology proceeds with the following steps.

Step1. Initialization
The process starts with drawing a relatively large pool of parameter combinations. 
Each combination is a vector containing a value for each parameter: k , b , and sN
. The requirement is that the pool should be a good approximation of the whole 
parameter space. In our experiments, we use Sobol sampling (Morokoff and 
Caflisch, 1994) to implement the sampling routine. Sobol sampling is capable 
of guaranteeing uniformity of distribution even though the sampled set has a 
small number of points. It is shown that in terms of uniformity properties, Sobol 
sequences outperform the sequences generated by other sampling techniques such 
as Latin Hypercube sampling (Kucherenko et al., 2015). Other advantages of Sobol 
sampling include efficient implementation and faster sampling speed. The sampling 
number and quality of the pool of parameter combinations dominate the ability 
of the whole process to learn a good surrogate model. As a result, faster sampler is 
preferred so that more samples can be obtained in limited computational time. In 
our experiments, we use Sobol sampling to sample 16,384 ( )214  points as the pool 
of parameter combinations.

After the pool of parameter combinations is obtained, an initial set of samples 
is chosen randomly from the pool as the initial training set. Each point in the set 
of initialization samples is evaluated by actually running the agent-based model 
with the corresponding parameter combination. The corresponding stylized facts 
distance is calculated, which will act as the true label associated with that point 
in the training set. After this step, we obtain an initial training set of parameter 

combinations with corresponding stylized facts distances as labels. The size of the 
initial training set in our experiments is 2,000.

Step 2. Surrogate model training
Given a training set of evaluated parameter combinations and corresponding 
stylized facts distances, an XGBoost regressor is learned over the training set in 
order to build the surrogate model. The input is the vector of model parameters 
to be calibrated, which in our experiments has dimension three. The output is the 
stylized facts distance, which is a scalar. The XGBoost regressor is trained to fit the 
mapping from model parameters to stylized facts distance. Implemented under the 
Gradient Boosting framework, XGBoost is a machine learning algorithm designed 
to be highly flexible, efficient, and portable (Chen and Guestrin, 2016). The XGBoost 
algorithm builds an ensemble of simple decision trees, which are subsequently 
aggregated to improve the prediction performance. Details on the XGBoost 
algorithm can be found in Chen and Guestrin (2016).

Remark 1. One difficulty in training the XGBoost regressor is how to tune hyper-
parameters of the XGBoost algorithm. Here we employ the Bayesian Optimization 
method based on Gaussian Process (Snoek et al., 2012) to fine-tune the hyper-
parameters of XGBoost. In the framework of Bayesian Optimization, performance 
of the XGBoost regressor is modeled as a sample from a Gaussian Process. The 
Gaussian Process then guides the exploration of the hyper-parameter space and 
helps to find an optimal set of hyper-parameters of XGBoost. Note that here the 
focus is the exploration of hyper-parameter space of the XGBoost machine learning 
algorithm, which is different from the parameter space of the agent-based model. 
Details on the Bayesian Optimization with Gaussian Process can be found in Snoek 
et al. (2012).

Remark 2. Another technique we have applied during the training process is to 
clip the values of training labels into a relatively small range. Specifically, for any 
training point, if the calculated stylized facts distance is too large, the distance value 
will be replaced with a relatively smaller value. The logic for this operation is that 
our calibration focus is the area of the model parameter space where stylized facts 
distances are small. In other words, parameter combinations with large stylized facts 
distances are of no interest and it is not important to have precise surrogate model 
approximations of stylized facts distances in those areas. If the range of distance 
value is not restricted, some large input labels would utterly bias the learning process 
of the XGBoost surrogate model. In these circumstances, the XGBoost surrogate 
model would wrongly try to fit those large outlier values. Consequently, the model is 
no longer a good approximation of the mapping from agent-based model parameters 
to stylized facts distance. By restricting the values of training labels to a relatively 
smaller range, the bias is successfully corrected, and experimental results show that 
the surrogate model predicts the stylized facts distances quite precisely. Since  
optimal stylized facts distances in our experiments are generally smaller than 0.8, 
we restrict the training labels to the range of (0, 1].

Step 3. Surrogate model prediction
Once the surrogate XGBoost model is trained, it is used to predict the stylized facts 
distances over the set of remaining unlabeled parameter combinations. That is, the 
stylized facts distances that would be generated if those unlabeled parameter com-
binations were to be used in agent-based model simulation. The surrogate model 
predictions are used to guide further exploration of the model parameter space, as 
specified in the next step.
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Step 4. Supplement training set
Given the XGBoost surrogate model predictions, a subset of the unlabeled para-
meter combinations is drawn from the pool sampled in the first step. This subset 
of the unlabeled parameter combinations is evaluated in the agent-based model 
simulation, and the true stylized facts distances are calculated and subsequently 
assigned as the true labels of these samples. This set of newly labeled points is 
then added to the training set of labeled parameter combinations. There are two 
critical issues in this process: How many new points to be drawn into the subset 
of the unlabeled para meter combinations and how to select the points. For the 
first issue, the original method recommends that the number of new points to be 
drawn in this stage is the logarithm of the computational budget (Lamperti et al., 
2018). However, in our experiments, it turns out that this rule would draw too few 
samples. Consequently, more iterations are required, which significantly reduce the 
computational efficiency. After lots of testing, in our method, around two percent 
of total samples are drawn at each iteration, which in our case is 300 points. As for 
how to choose those unlabeled parameter combinations, we utilize the predictions 
made by the XGBoost surrogate model. The unlabeled points are sorted according 
to the predicted stylized facts distances. The points with smaller predicted stylized 
facts distances are selected, as the optimal parameter combination is more likely to 
exist among or near those points. However, not all points are selected according to 
predicted stylized facts distances. We also randomly choose some points from the 
unlabeled parameter combinations to avoid occasional bias induced by the XGBoost 
surrogate model. Specifically, 200 points are selected according to the “small 
predicted stylized facts distance” principle and 100 points are selected randomly.

Remark 3. The way of selecting the subset of unlabeled points implements an 
exploration-exploitation mechanism, which is a novel aspect of our methodology 
compared to the original method. Around two-thirds of the points are selected 
according to the predicted stylized facts distances. In this way, we exploit the 
information given by the XGBoost surrogate model and the model intelligently 
helps to direct the selection of new samples. The reason is that the optimal para-
meter combination is more likely to exist among the points with smaller predicted 
distances. This is true as long as the surrogate is a fairly good approximation of the 
real mapping from parameter combinations to stylized facts distances. However, 
exploration is also essential if the aim is to find a global minimum. There might be 
multiple local minimums inside the model parameter space. Completely exploiting 
the information given by the surrogate model may get the method stuck in a local 
minimum. Randomly sampling some unlabeled points helps to avoid this problem 
and contributes to better exploration of the whole model parameter space.

Step 5. Iterations
After the training set is supplemented by the newly drawn samples and the 
corresponding labels, a new XGBoost surrogate model is trained using the new 
training set. The procedure is identical to previous steps. In other words, the  
previous “training-predicting-supplement” (step 2 to step 4) process is repeated  
until the budget of computational time is reached. In our experimental settings, 
we find that generally less than five iterations are required to build a fairly good 
surrogate model, whose stylized facts distance prediction error is less than five 
percent at the predicted optimal point.

4 Results and evaluation
The whole methodology is run on 75 stocks from three exchanges: Nasdaq, the 
London Stock Exchange, and the Hong Kong Stock Exchange. The main results 

are the stylized facts distances of the calibrated model, compared with the baseline 
stylized facts distances where model parameters are estimated by Expectation-
Maximization algorithm. We also present the error rate of XGBoost surrogate model 
prediction for stylized facts distance at the predicted optimal point to evaluate the 
surrogate model prediction accuracy. Finally, we show the methodology’s capability 
of reproducing autocorrelation patterns in return series, which is an advantage of 
XGB-Chiarella methodology over other traditional models.

4.1 Stylized facts distance
Table 3 shows the stylized facts distances of the calibrated model for all stocks, 
averaged by trading days. The corresponding standard deviations are also presented. 
For stocks in Hong Kong Stock Exchange, the XGB-Chiarella method outperforms 
EM estimation algorithm for all 25 stocks. As for stocks on Nasdaq, in 22 out of 
25 stocks, the performance of the XGB-Chiarella method is better than the EM 
estimation method. On average, the XGB-Chiarella method achieves around 
10 percent smaller stylized distances than the EM baseline in these two exchanges, 
showing that the simulated market is calibrated to be more realistic. The standard 
deviations of the stylized facts distance are also generally a bit smaller for the 
proposed XGB-Chiarella method in Nasdaq and the Hong Kong Stock Exchange. 
For stocks on the London Stock Exchange, the performance of the XGB-Chiarella 
method is not as good as the performance in the other two markets, with smaller 
advantage over the EM baseline estimation algorithm. However, it is still valid to say 
that the XGB-Chiarella methodology outperforms the baseline since smaller stylized 
facts distance is achieved in more than half of the stocks. Overall, the results show 
that the proposed the XGB-Chiarella methodology outperforms the EM baseline 
in terms of stylized facts distance and the realism of the market simulation.

Results in Table 3 are the mean and standard deviation of stylized facts 
distances across all trading days in our data span. To scrutinize each trading day for 
individual stock, Table 4 shows the number of trading days when the XGB-Chiarella 
methodology outperforms the EM baseline in terms of stylized facts distance, and 
the percentage of these trading days out of all trading days. In Table 4, the column 
“Better” represents the number of trading days when the performance of the XGB-
Chiarella method is better than the baseline EM estimation, while column “Total” 
represents the number of all trading days in our experiments. For the performance 
in different exchanges, results here are similar to the results in Table 3. For most 
stocks on Nasdaq and the Hong Kong Stock Exchange, the XGB-Chiarella method 
performs better than the EM baseline for more than 85 percent of total trading days. 
As for stocks listed on the London Stock Exchange, this percentage is slightly lower, 
but is still on average more than 70 percent. On the whole, for most trading days, 
the XGB-Chiarella method is capable of creating a simulated financial market with 
smaller stylized facts distance, indicating that the proposed XGB-Chiarella method 
is able to generate more realistic artificial financial markets.

4.2 Surrogate model performance
To evaluate the performance of the surrogate model approximation, we present the 
prediction error rate when the surrogate model is used to predict the real stylized 
facts distance. Table 5 shows a comparison between the surrogate model predicted 
and the actual stylized facts distance at the surrogate predicted optimal point in 
model parameter space for one trading day. Very similar results are achieved for 
other trading days. The results show that the XGBoost surrogate model is a very 
accurate proxy for the true model around the predicted optimal point for each stock 
on each trading day, with predicted stylized facts distance very close to the actual 
stylized facts distance generated in agent-based model simulation. For most 
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Table 3: Average stylized facts distance comparison between XGB-Chiarella calibration and Expectation-Maximization method. The stylized facts 
distance is the average across all trading days for each stock; values in parentheses are corresponding standard deviations. There are several rare cases 
where distances are much larger, showing algorithms fail to obtain a reasonable set of parameters during the parameter estimation process.

NASDAQ XGBChiarella EMalgorithm LSEG XGBChiarella EMalgorithm HKEX XGBChiarella EMalgorithm

AAL 0.32  (0.07) 0.36  (0.09) AAL.L 0.26  (0.17) 0.26  (0.09) 0005.HK 0.4  (0.04) 0.42  (0.05)
AAPL 0.25  (0.07) 0.28  (0.08) AV.L 0.27  (0.05) 0.28  (0.07) 0027.HK 0.43  (0.07) 0.45  (0.07)

AFRM 0.28  (0.08) 0.34  (0.09) BATS.L 0.24  (0.04) 0.25  (0.05) 0175.HK 0.43  (0.05) 0.45  (0.06)

AMD 0.29  (0.08) 0.32  (0.08) BHP.L 0.27  (0.26) 0.26  (0.13) 0388.HK 0.35  (0.07) 0.37  (0.07)

CMCSA 0.32  (0.08) 0.36  (0.09) BP.L 0.21  (0.06) 0.22  (0.05) 0700.HK 0.32  (0.06) 0.35  (0.06)

CSCO 0.28  (0.07) 0.3  (0.09) BRBY.L 0.31  (0.07) 0.32  (0.07) 0836.HK 0.39  (0.07) 0.43  (0.09)

CSX 0.32  (0.07) 0.35  (0.08) DGE.L 0.24  (0.06) 0.24  (0.07) 0916.HK 0.42  (0.08) 0.45  (0.08)

DKNG 0.31  (0.09) 0.36  (0.09) EZJ.L 25.5  (182.0) 25.2  (179.6) 1024.HK 0.35  (0.08) 0.39  (0.08)

FB 0.28  (0.08) 0.31  (0.08) GLEN.L 0.24  (0.07) 0.25  (0.1) 1171.HK 0.42  (0.07) 0.44  (0.08)

HBAN 0.39  (0.09) 0.36  (0.08) GSK.L 0.24  (0.06) 0.25  (0.08) 1211.HK 0.37  (0.08) 0.41  (0.08)

HON 0.28  (0.09) 0.3  (0.1) HSBA.L 0.23  (0.09) 0.27  (0.36) 1299.HK 0.4  (0.07) 0.43  (0.08)

HUT 0.27  (0.07) 29.5  (206.5) IAG.L 26.7  (191.0) 25.7  (183.4) 1772.HK 0.39  (0.09) 0.44  (0.09)

INTC 0.28  (0.07) 0.31  (0.08) JET.L 0.35  (0.27) 0.32  (0.08) 1918.HK 0.44  (0.08) 0.49  (0.1)

JD 0.34  (0.09) 0.38  (0.09) LGEN.L 0.28  (0.05) 0.29  (0.08) 1919.HK 0.44  (0.07) 0.46  (0.08)

LCID 0.29  (0.07) 6.35  (42.4) LLOY.L 0.23 (0.06) 0.24  (0.07) 2020.HK 0.35  (0.09) 0.39  (0.08)

MRNA 0.32  (0.09) 0.35  (0.09) NG.L 0.25  (0.06) 0.25  (0.07) 2269.HK 0.37  (0.08) 0.41  (0.09)

MSFT 0.26  (0.07) 0.29  (0.08) PRU.L 0.31  (0.07) 0.33  (0.06) 2318.HK 0.37  (0.07) 0.4  (0.07)

MU 0.34  (0.09) 0.39  (0.1) RDSA.L 0.3  (0.57) 0.27  (0.23) 2331.HK 0.38  (0.07) 0.42  (0.09)

NVDA 0.27  (0.08) 0.3  (0.07) REL.L 0.35  (0.05) 0.37  (0.05) 2333.HK 0.4  (0.07) 0.44  (0.08)

SOFI 0.3  (0.08) 0.36 (0.1) RIO.L 0.27  (0.24) 0.26  (0.11) 3690.HK 0.34  (0.08) 0.38  (0.07)

TLRY 0.29  (0.08) 0.34  (0.09) RR.L 0.25  (0.08) 0.28  (0.09) 3968.HK 0.39  (0.06) 0.42  (0.07)

TSLA 0.36  (0.2) 0.28  (0.08) SMT.L 0.23  (0.05) 0.26  (0.05) 9618.HK 0.35  (0.07) 0.38  (0.07)

UAL 0.33  (0.07) 0.37  (0.09) STAN.L 0.27  (0.05) 0.27  (0.06) 9888.HK 0.38  (0.09) 0.4  (0.07)

UBER 0.29  (0.07) 0.33  (0.08) ULVR.L 0.23  (0.08) 0.23  (0.07) 9988.HK 0.33  (0.06) 0.36  (0.07)
WISH 0.38  (0.14) 0.29  (0.07) VOD.L 0.24  (0.07) 0.25  (0.12) 9999.HK 0.36  (0.07) 0.4  (0.07)

stocks, errors between the predicted distance and the actual distance are less than 
10 percent. It is also shown that the accuracy of the XGBoost surrogate model 
prediction is similar across the three exchanges, which indicates the robustness 
of the XGB-Chiarella methodology.

Apart from the prediction accuracy at the predicted optimal point, we also 
examine the prediction accuracy around the optimal point as a sensitivity analysis. 
Figure 4 shows the comparison between the XGBoost surrogate model prediction 
and the actual simulated stylized facts value. For each sub-graph, one model 
parameter is assigned a series of values across the given range during calibration. 
Other model parameters are fixed to the optimal value. In this way a set of parameter 
combinations is obtained, with different values for that particular model parameter. 
Then, predicted and actual stylized facts distance are calculated and compared, as 
shown in Figure 4. The gray lines are the actual stylized facts distances, while the 
blue lines represent the XGBoost surrogate model prediction for the stylized facts 
distances. It is shown that the XGBoost prediction line fits the actual simulated 
stylized facts distance line quite well, especially for parameter “sigma N”. For each 

parameter, there is a unique minimal value in the graph, which corresponds to the 
optimal point predicted by the surrogate model. The results here indicate that the 
surrogate model approximates the real stylized facts distance quite accurately and 
is capable of finding the true optimal model parameter combination that is able to 
generate realistic financial market simulations.

4.3 Autocorrelations
One unique advantage of agent-based financial market simulation is the capability 
of reproducing autocorrelation patterns of returns. Currently, most literature in 
financial econometrics model financial price series has it as Geometric Brownian 
Motion (GBM). For example, the Black-Scholes model for option pricing explicitly 
assumes the stock price follows a GBM. However, the case is not true in real  
financial market. One obvious anomaly is the autocorrelation patterns in return 
series, such as the volatility clustering phenomenon shown in Figure 3. Our XGB-
Chiarella method has an advantage over the GBM model, in that, it can successfully 
reproduce the autocorrelation patterns in financial return time series. Figure 5 
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Table 4:  Percentage of trading days when XGB-Chiarella calibration outperforms the Expectation-Maximization method.

NASDAQ Better Total Percentage LSEG Better Total Percentage HKEX Better Total Percentage

AAL 46 50 92.00% AAL.L 43 52 82.69% 0005.HK 37 47 78.72%
AAPL 41 50 82.00% AV.L 37 52 71.15% 0027.HK 37 47 78.72%
AFRM 46 50 92.00% BATS.L 38 52 73.08% 0175.HK 34 47 72.34%
AMD 39 50 78.00% BHP.L 39 52 75.00% 0388.HK 39 47 82.98%
CMCSA 46 50 92.00% BP.L 40 52 76.92% 0700.HK 46 47 97.87%
CSCO 42 50 84.00% BRBY.L 48 51 94.12% 0836.HK 45 47 95.74%
CSX 44 50 88.00% DGE.L 33 52 63.46% 0916.HK 41 47 87.23%
DKNG 47 50 94.00% EZJ.L 49 52 94.23% 1024.HK 45 47 95.74%
FB 41 50 82.00% GLEN.L 34 52 65.38% 1171.HK 38 47 80.85%
HBAN 14 50 28.00% GSK.L 30 52 57.69% 1211.HK 45 47 95.74%
HON 44 50 88.00% HSBA.L 31 52 59.62% 1299.HK 42 47 89.36%
HUT 44 50 88.00% IAG.L 39 52 75.00% 1772.HK 45 47 95.74%
INTC 44 50 88.00% JET.L 37 52 71.15% 1918.HK 39 47 82.98%
JD 44 50 88.00% LGEN.L 37 52 71.15% 1919.HK 40 47 85.11%
LCID 47 50 94.00% LLOY.L 33 52 63.46% 2020.HK 42 47 89.36%
MRNA 47 50 94.00% NG.L 31 52 59.62% 2269.HK 42 47 89.36%
MSFT 42 50 84.00% PRU.L 45 52 86.54% 2318.HK 43 47 91.49%
MU 45 50 90.00% RDSA.L 36 52 69.23% 2331.HK 46 47 97.87%
NVDA 43 50 86.00% REL.L 44 51 86.27% 2333.HK 42 47 89.36%
SOFI 44 50 88.00% RIO.L 38 52 73.08% 3690.HK 45 47 95.74%
TLRY 45 50 90.00% RR.L 40 52 76.92% 3968.HK 43 47 91.49%
TSLA 19 50 38.00% SMT.L 45 52 86.54% 9618.HK 44 47 93.62%
UAL 46 50 92.00% STAN.L 38 52 73.08% 9888.HK 43 47 91.49%
UBER 47 50 94.00% ULVR.L 29 52 55.77% 9988.HK 44 47 93.62%
WISH 14 50 28.00% VOD.L 29 52 55.77% 9999.HK 44 47 93.62%

Figure 4. Sensitivity analysis around the optimal point predicted by the XGBoost surrogate model. This surrogate model corresponds to the trading day on 
September 29, 2021, for stock FB. For each sub-graph, the model parameters are fixed to the optimal value, except for the parameter in the x-axis. The gray 
lines represent the actual stylized facts distances while the blue lines represent the XGBoost surrogate model prediction for stylized facts distances.
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Table 5: Comparison between the surrogate model predicted and the actual stylized facts distance at the surrogate predicted optimal point. The results 
shown here are for one trading day (November 2, 2021), while results for other trading days are very similar.

NASDAQ Predict Actual Error LSEG Predict Actual Error HKEX Predict Actual Error

AAL 0.33 0.37 10.81% AAL.L 0.28 0.27 3.70% 0005.HK 0.39 0.42 7.14%
AAPL 0.25 0.27 7.41% AV.L 0.35 0.36 2.78% 0027.HK 0.42 0.43 2.33%
AFRM 0.48 0.49 2.04% BATS.L 0.25 0.24 4.17% 0175.HK 0.37 0.4 7.50%
AMD 0.39 0.4 2.50% BHP.L 0.26 0.26 0.00% 0388.HK 0.36 0.36 0.00%
CMCSA 0.45 0.46 2.17% BP.L 0.16 0.16 0.00% 0700.HK 0.27 0.26 3.85%
CSCO 0.39 0.4 2.50% BRBY.L 0.3 0.29 3.45% 0836.HK 0.29 0.31 6.45%
CSX 0.31 0.31 0.00% DGE.L 0.17 0.18 5.56% 0916.HK 0.53 0.55 3.64%
DKNG 0.26 0.27 3.70% EZJ.L 0.22 0.21 4.76% 1024.HK 0.28 0.26 7.69%
FB 0.27 0.27 0.00% GLEN.L 0.27 0.27 0.00% 1171.HK 0.37 0.36 2.78%
HBAN 0.4 0.38 5.26% GSK.L 0.4 0.39 2.56% 1211.HK 0.26 0.26 0.00%
HON 0.25 0.25 0.00% HSBA.L 0.18 0.19 5.26% 1299.HK 0.33 0.35 5.71%
HUT 0.3 0.31 3.23% IAG.L 0.26 0.27 3.70% 1772.HK 0.35 0.35 0.00%
INTC 0.36 0.35 2.86% JET.L 0.37 0.37 0.00% 1918.HK 0.3 0.34 11.76%
JD 0.33 0.33 0.00% LGEN.L 0.25 0.25 0.00% 1919.HK 0.33 0.36 8.33%
LCID 0.28 0.26 7.69% LLOY.L 0.25 0.27 7.41% 2020.HK 0.35 0.35 0.00%
MRNA 0.32 0.33 3.03% NG.L 0.2 0.2 0.00% 2269.HK 0.32 0.34 5.88%
MSFT 0.29 0.29 0.00% PRU.L 0.33 0.35 5.71% 2318.HK 0.31 0.31 0.00%
MU 0.42 0.43 2.33% RDSA.L 0.23 0.23 0.00% 2331.HK 0.29 0.28 3.57%
NVDA 0.2 0.2 0.00% REL.L 0.3 0.29 3.45% 2333.HK 0.32 0.35 8.57%
SOFI 0.32 0.32 0.00% RIO.L 0.25 0.25 0.00% 3690.HK 0.25 0.23 8.70%
TLRY 0.27 0.28 3.57% RR.L 0.27 0.32 15.63% 3968.HK 0.29 0.31 6.45%
TSLA 0.44 0.44 0.00% SMT.L 0.21 0.2 5.00% 9618.HK 0.25 0.24 4.17%
UAL 0.24 0.24 0.00% STAN.L 0.23 0.23 0.00% 9888.HK 0.34 0.33 3.03%
UBER 0.27 0.27 0.00% ULVR.L 0.21 0.21 0.00% 9988.HK 0.28 0.28 0.00%
WISH 0.52 0.48 8.33% VOD.L 0.15 0.21 28.57% 9999.HK 0.37 0.37 0.00%

Figure 5: (a) presents the autocorrelation of squared returns generated by a GBM; (b) is the autocorrelation of squared returns generated by the XGB-
Chiarella method for CMCSA on September 28, 2021; and (c) is the historical autocorrelation of squared returns for CMCSA on September 28, 2021.

   
 (a) GBM (b) XGB-Chiarella (c) Historical
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Figure 6: Simulated price scenarios generated by GBM and XGB-Chiarella.

shows autocorrelations of squared returns of a GBM model and that of a simula-
tion under the XGB-Chiarella methodology for one stock. The real historical 
autocorrelation of squared returns on the same day for that stock is also presented. 
It is obvious that our XGB-Chiarella method outperforms the traditional GBM 
model in terms of the replication of realistic autocorrelation patterns, especially for 
small time lags. For small time lags, significant positive autocorrelations of squared 
returns exist in historical financial market data. This stylized fact is successfully 
reproduced in XGB-Chiarella simulation, while the autocorrelations of squared 
returns generated by a GBM is basically close to zero, regardless of time lags. In fact, 
there is no specific patterns in autocorrelations generated by the GBM model. Notice 
that simulated results in other stocks for other trading days are similar to what is 
shown here.

Successful reproduction of autocorrelation patterns gives the XGB-Chiarella 
method an advantage in realistic simulation of multiple price series, which  
can be used in scenario simulations for risk management. When calculating  
simulation-based risk metrics, such as value at risk (VaR), lots of institutions are 
still using GBM to simulate future scenarios. As shown in Figure 5, the return series 
simulated by the GBM model lack realistic autocorrelation pattern, which would 
undermine the credibility of the risk metric calculation. Our proposed method  
is a better alternative. The proposed XGB-Chiarella method extracts fundamental 
values and calibrate the model parameters using historical data. With the same set 
of cali brated model parameters, the agent-based model is capable of generating 
multiple different scenarios by changing the input fundamental value series. For 
example, if GBM scenarios are used as fundamental value, the agent-based model 
is able to reproduce similar price series as the GBM model, but with realistic 
autocorrelation patterns of returns. Figure 6 shows the price scenarios generated  
by the GBM and XGB-Chiarella methods, respectively. Here the fundamental  
values in the XGB-Chiarella model are the price scenarios generated by the GBM. 
Figure 7 shows the corresponding average autocorrelation of squared returns  
for the two cases. It is shown that the two models can generate similar price 

scenarios, but the XGB-Chiarella model is able to reproduce much more realistic 
autocorrelation patterns. Specifically, for small time lags, the XGB-Chiarella  
model reproduces significant positive autocorrelation of squared returns,  
which is consistent with empirical data. In contrast, there are no significant  
autocorrelation patterns for GBM scenarios. It is believed that such agent-based  
price series simulation could provide a richer environment than the GBM model  
for risk management practice such as VaR calculation. Since the focus of this  
paper is on intra-day price formation process, we will address this topic in  
a separate paper in the future.

Figure 7: Average autocorrelation of squared returns associated with  
the simulated price scenarios in Figure 6. Blue line represents the  
GBM simulated scenarios, while the red dashed line represents the  
XGB-Chiarella simulated scenarios.
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5 Conclusion and future work

5.1 Summary of achievements
In this paper, a new approach called XGB-Chiarella is proposed to generate 
realistic intra-day artificial financial price data in order to provide insight into 
the intra-day price formation process. To the best of our knowledge, this is the 
first extension of the Chiarella model to generate minute-level intra-day financial 
market simulation. The approach utilizes agent-based modeling techniques. The 
underlying simula tion model has only three agents: one for fundamental trader, 
one for momentum trader, and one for noise trader. The model is simulated, and 
model parameters are calibrated by an XGBoost machine learning surrogate. 
The proposed methodology is tested on 75 stocks from three exchanges: Nasdaq, 
the London Stock Exchange, and the Hong Kong Stock Exchange. In terms of 
stylized facts distance, the proposed XGB-Chiarella method is able to generate 
more realistic financial market simulations than the original Expectation-
Maximization estimation algorithm. This is true in nearly all the stocks from the 
three exchanges. Despite the fact that the methodology is based on a model with 
only three agents, the XGB-Chiarella methodology successfully generates very 
realistic financial market simulations. This indicates that one agent per category 
seems to be sufficient to capture the intra-day price formation process for the 
time scale (minutes) chosen in this paper. The very simple model structure not 
only accelerates the simulation process in terms of computational cost, but also 
enables us to scrutinize the intra-day price formation process, such as the trend 
and value effects. The results provide support for the existence of a universal 
intra-day price formation mechanism. The realistic simulated intra-day financial 
market indicates that trend and value effects, as well as noise trading, are 
indispensable to the intra-day price formation process.

We also show that in the process of calibration, the XGBoost surrogate model 
is an accurate approximation of the true model. At the predicted optimal point 
for each stock on each trading day, the surrogate model prediction error is mostly 
smaller than 10 percent. The machine learning surrogate is capable of intelligent-
ly directing the exploration of model parameter space. The exploitation-explora-
tion mechanism is also introduced in the model calibration process. A practical 
application of the proposed methodology is also presented.

5.2 Future work
This work can be extended in several aspects. Firstly, in modern financial 
markets a large number of transactions can happen in fractions of a second, 
raising interest in the price formation process at higher frequency. Therefore, 
it would be interest ing to test whether the proposed methodology would work 
at higher frequency, for example, in microseconds or even nanoseconds level. 
Another interesting extension is about agent heterogeneity. For example, the 
momentum traders can be divided into two groups: one group of traders that 
focuses on lower frequency price momentum and the other group that acts 
according to the value of higher frequency price momentum. It is expected that 
the introduction of further agent heterogeneity would improve the realism of 
the model since real-world traders are obviously heterogeneous. In addition, 
it would also be interesting to understand the price behaviors if we relax the 
assumption of l-approximation in the underlying Chiarella model. With the 
l-approximation, it is assumed that price change is linearly proportional to 
the cumulative demand of all traders. One extension to relax this assumption 
is to introduce full exchange protocols and limit order books to the simulated 
financial market and investigate the corresponding market dynamics. In this 

circumstance, hundreds of agents can be included in the model and interact with 
one another through limit order books, which is exactly the mechanism exist ing 
in real financial markets. The last aspects of future work involve extending the 
Chiarella model to multiple stocks. For example, how to simulate the correlation 
structure across multiple stocks and how to create correlated demands for related 
stocks during simulation.
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Endnote
1. XGBoost (Chen and Guestrin, 2016) is a highly flexible and efficient machine 
learning algorithm based on an ensemble of decision trees.
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