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Abstract—This paper presents a novel architecture for end-
to-end design automation, facilitating high-level design porta-
bility across diverse technologies. We introduce programmatic,
customizable and reusable design-flows capable of generating
multiple implementations (e.g., CPU, GPU, FPGA) from a single
technology-agnostic high-level application source. Notably, our
approach incorporates design-flow branch points and automated
path selection strategies, mitigating the manual effort currently
needed for efficient design production, particularly for hetero-
geneous platforms. To validate our approach, we implement
optimizing design-flows tailored to different hardware platforms.
Through experiments on five AI and HPC benchmarks, we
demonstrate significant speed improvements compared to single-
threaded CPU execution. Our approach generates multi-thread
CPU, CPU+FPGA, and CPU+GPU designs from a single high-
level source description, achieving speedups of up to 30 times for
OpenMP multi-thread CPU, 32 times for oneAPI CPU+FPGA,
and 779 times for HIP CPU+GPU designs. We also showcase cost-
effective implementations targeting heterogeneous computing
platforms. Additionally, these performance advancements are
accompanied by gains in developer productivity, quantified based
on added lines of code.

I. INTRODUCTION

High-level programming languages, such as C/C++, have
long offered a portable way to express functionality across di-
verse CPU architectures, demonstrating resilience in adapting
to evolving platforms. This adaptability relies on the capability
of CPU compilers to leverage increasingly advanced features,
such as specialized instruction sets and memory hierarchies,
without human intervention, while providing simple and flex-
ible programming interfaces, such as the use of OpenMP [1],
to further enhance performance.

However, such progress in CPU compilers has not extended
to hardware accelerators such as FPGAs and GPUs when
employed as co-processors. As HPC and cloud systems adopt
heterogeneous architectures with various types of accelerators,
there is a growing need for efficient implementations from
high-level portable descriptions. Despite the availability of
tools such as high-level synthesis (HLS) and cross-platform
frameworks like oneAPI [2] and OpenCL [3], disparities
persist between unoptimized high-level descriptions and actual
implementations, often requiring manual code restructuring
and optimizations to maximize performance on each device.
The process of generating an optimized heterogeneous design
involves manual steps like code partitioning, mapping, and
optimization, requiring developer expertise. Transitioning to
new platforms entails employing different techniques and
optimization strategies.

This works seeks to automatically generate diverse and
efficient heterogeneous designs from a single high-level ap-
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Fig. 1. Our automated approach for diverse PSA-flows stems from modular,
codified design-flow tasks and branch points with path selection automation
(PSA). Each task encapsulates a distinct code analysis, transformation, or
optimization, and branch points allow specialization at various levels (e.g.,
for different targets, vendors, and/or optimization strategies).

plication description, while aiming to enhance design quality
and developer productivity by ensuring portability across CPU
platforms with hardware accelerators (FPGAs and GPUs) as
co-processors. Employing meta-programming [4] [5], strate-
gies for static code analysis, runtime behavior characterization,
and source-to-source optimizations are programmatically en-
coded independently from functional description to maintain
code readability and improve maintainability. Our approach is
further refined to support PSA-flows, which employs branch-
ing sequences with Path Selection Automation (PSA) to enable
automatic specialization of different targets and optimization
strategies (see Fig. 1). This capability facilitates programmatic
decision-making, addressing the complexity of selecting the
most suitable target platform for a given computation.

This paper makes the following key contributions:

(1) a novel approach automating custom PSA-flows for
portable high-level descriptions across diverse hardware
targets (Section II-B);

(2) a complete implementation of the approach using Artisan
meta-programs (Section III);

(3) an evaluation of the approach (Section IV).

The paper is organized as follows: Section II provides
an overview of our approach; Section II-A covers meta-
programming design-flow tasks; Section II-B explains PSA-
flow automation; Section III outlines implemented PSA-flows;
Section IV presents the evaluation; Section V discusses related
research; Section VI concludes and outlines future work.
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II. APPROACH

This work addresses the significant technical challenge of
automating the optimization of portable high-level code across
diverse hardware targets, including HPC and cloud platforms.
The tasks involve identifying and accelerating code hotspots,
determining suitable mappings for specialized processors, and
adapting source code with specialized languages and program-
ming models, followed by device- and framework-specific
optimizations. The complexity arises from factors such as
memory footprint, data movement, and arithmetic intensity,
contributing to a massive and non-linear design-space. The
manual execution of these tasks proves challenging for non-
experts, prompting the proposal of an automated approach.
Our approach encodes and automates expertise within a
design-flow, enabling specialization for different targets, ven-
dors, and strategies using the PSA-flow architecture, thereby
addressing challenges related to tedium, error-proneness, and
the need for individualized efforts in each application and
target. The encoding of design-flow tasks and the orchestration
of PSA-flows are covered next.

A. Codifying Design-Flow Tasks

Meta-programs [4] leverage programmatic access to source
code, tools, and platforms to automate design-flow tasks. Fig. 2
illustrates an example meta-program, described in pseudocode,
which encodes an automated DSE task that unrolls FPGA
kernel loops iteratively until resources are overmapped, thus
maximising parallelism and resource utilization of the FPGA
target. The operation of this meta-program on an example
application is depicted on the right, which we explain next.

The meta-program takes as input a C++ source file (src)
and the name of a function representing the FPGA kernel
(kernel_name). In this example, partitioning and mapping
have already taken place, so the kernel function is known. The
meta-program outputs a modified source file (mod_src) with
loops unrolled based on the results of the DSE, which operates
as follows.

First, an internal abstract syntax tree (AST) representation
of the source-code is created, illustrated by the purple tree
structure on the right. The AST is queried for all outermost
for-loops enclosed in the kernel function. In the example,
there is one match, catching nodes representing a function
(knl()) and enclosed top level for-loop, highlighted in red.
The query does not match the second, nested for-loop within
knl() since it is not outermost. Moreover, none of the loops
in the non-kernel function (main()) are matched.

In a DSE loop, each matched loop is instrumented with
a #pragma unroll directive. As such, the source-code is
directly modified with a newly inserted pragma. An FPGA
compiler tool is then run to gather estimated resource utilisa-
tion. This may, for example, run a partial compile with Intel’s
oneAPI tools to generate a high-level design report. The meta-
program checks the generated report for estimated LUT usage,
and doubles the unroll factor at every iteration, continuing
the DSE until LUTs are overmapped (utilisation> 90%). The

NAME: unroll_until_overmap 
INPUT: src, kernel_name      
OUTPUT: mod_src
ast ⇐ Ast(src) 
n ⇐ 2; design ⇐ ∅   
loops ⇐ query(∀loop,fn ∈ ast: 
          loop.isForStmt 

    ∧ fn.name = kernel_name
    ∧ fn.encloses(loop) 
    ∧ loop.is_outermost)

do
   for ∀loop ∈ loops:
     instrument(before, loop,
      #pragma  unroll  $n)
          
     report ⇐ exec(ast)
 

     overmap ⇐ report.LUT ≥ 0.9 
     if not overmap 
        n ⇐ n*2; design ⇐ ast
while not overmap 

if design
   design.export(mod_src)
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Fig. 2. Meta-programs [4] provide programmatic access to source-code, tools,
and platforms, with built-in mechanisms for code querying and instrumen-
tation, tool configuration, application execution, and platform monitoring.
This enables self-contained analysis, transformation, and optimisation tasks
to be codified and maintained separately from application descriptions. This
example illustrates a meta-program written in pseudocode that unrolls program
loops iteratively until the design overmaps a particular target FPGA.

final unrolled design is then exported to a new source file,
app_out.cpp.

This example provides a glimpse of the extensive range of
tasks that can be accomplished using meta-programs employ-
ing the query and instrument mechanisms mentioned earlier.
Developers can effectively encode various types of static and
dynamic analyses, as well as source-to-source transformations
and programmatic DSE. In Fig. 4, we present a list of meta-
programs utilised in this paper.

B. Orchestrating PSA-Flows

To construct a design-flow with a predetermined optimiza-
tion strategy tailored to specific application domains or targets,
a set of codified design-flow tasks must first be orchestrated.
These tasks can be linearly composed into a sequence, but
for supporting diverse targets and strategies within a single
design-flow, branching is essential to accommodate varying
task sequences at each level of specialization. Branch points
in a PSA-flow, depicted by yellow blocks in Fig. 1 and
Fig. 4, introduce divergence, enabling the consideration of
different target types, devices within hardware/vendor families,
or strategies based on distinct goals. These branches lead to
increasingly specialized designs, requiring decisions based on
specific requirements or objectives, a process facilitated by
programmatic, customizable PSA at branch points.

Fig. 3 illustrates a branch point with a PSA strategy that
selects a suitable device mapping based on information ac-
crued from target-independent analysis tasks that are currently
implemented in our repository. These tasks are captured as
meta-programs, and executed with the reference unoptimised
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Fig. 3. An example PSA strategy for a branch point that specialises
for different target types (GPU+CPU, FPGA+CPU, or Multi-Thread CPU)
targeting, for instance, heterogeneous clouds. The strategy uses information
obtained by a series of target-independent analyses as well as analytical cost
evaluation.  indicates a dynamic analysis that requires program execution.

high-level application description as input. Initially, hotspot
loop detection and extraction are run on the input source-code.
Hotspot detection instruments the application with loop timers
and executes the instrumented code to dynamically identify
time-consuming loops as candidates for acceleration. Once a
hotspot is identified, it is extracted into an isolated function for
further analysis and eventual offloading, replacing the original
loop with a function call. This covers the partitioning stage
of the design-flow. Next, various analyses are run on the new
hotspot function, including dynamic loop trip-count analysis,
static loop dependence analysis, dynamic data movement
analysis, and static arithmetic intensity analysis.

The first step in the example PSA strategy is to compare
the estimated time for data transfer to and from an accelerator
(determined using data movement analysis and known device
transfer bandwidths) to the recorded hotspot execution time on
a single CPU thread. If data transfer is expected to exceed CPU
execution time (Tdata trnsfr > TCPU ), or if the arithmetic
intensity (FLOPs/B) indicates that the hotspot is memory
bound (< X , where X is a tunable parameter), there is no
benefit to offloading the hotspot to an accelerator (GPU or
FPGA). In this case, the strategy checks if the outer hotspot
loop is parallel, in which case it is mapped for multi-threaded
CPU optimisation, or not, in which case the design-flow
terminates without modifying the input high-level reference.

If it is worthwhile to offload the hotspot to a GPU or
FPGA co-processor (that is, if Tdata trnsfr < TCPU and
FLOPs/B > X), the strategy checks if the outer hotspot
loop is parallel. If it is parallel, a GPU will likely perform
well due to efficient data parallel execution. However, if there
are any inner loops with loop-carried dependencies and fixed
bounds under a certain threshold (‘fully unrollable’ on an
FPGA), the FPGA could achieve better performance through
pipelined execution. For a parallel outer hotspot loop, the

decision between GPU and FPGA is made accordingly. If the
outer hotspot loop is not parallel, the hotspot is mapped for
FPGA optimisation. Note that while this strategy has proven
effective empirically for our benchmarks and experiments, it
could be adjusted to support different domains or target types.

After a path has been selected based on application char-
acteristics, the example PSA-flow uses information about the
selected target’s capabilities to evaluate the cost of the design.
Cost, in this context, could be based on performance, power,
and/or monetary requirements, with various models available
to predict these metrics on different targets [6]. If the evaluated
cost exceeds a user-specified budget, the PSA-flow feeds back
and the design is revised with updated information. Otherwise,
the PSA-flow continues with the selected branch. With access
to a full application representation, data collected by analysis
tasks, and knowledge of target hardware capabilities, there
is considerable opportunity for sophisticated PSA strategies
incorporating, for example, machine-learning (ML) techniques
to make intelligent decisions, which we are considering for
future work.

To implement PSA-flow strategies, developers must take
into account a variety of trade-offs. First, there are implications
to the placement of branch points. The closer they are to the
final implementation, the greater the opportunity for reuse of
design-flow tasks across diverse targets. However, there could
be cases where specialising too late might miss opportunities
for optimisation. Second, developers need to consider different
mechanisms used to make decisions at branch points. For
example, when selecting paths between two different FPGA
types, a PSA strategy could use the application representation
to run performance estimation, bit-accurate simulation, or
full compilation and synthesis to select the most profitable
accelerator based on a certain goal (e.g. performance, power,
or area). These mechanisms can vary in terms of the time taken
to produce results and the level of accuracy achieved, and thus
developers need to make decisions suitable and practical for
their use cases (e.g. quick experimentation or fine-grained cost
optimisation).

III. IMPLEMENTATION

To implement PSA-flows, we use the Artisan meta-
programming framework [4] to codify design-flow tasks. Ar-
tisan provides a uniform Python development environment
for code analysis, manipulation, and execution. In addition,
we provide a high-level Python interface for developers to
seamlessly compose their design-flow tasks and branch points.

Fig. 4 includes a list of the tasks we currently have codified
in our repository, and illustrates our implemented PSA-flow
for generating multi-thread CPU, CPU+FPGA, and CPU+GPU
designs from a single C++ application source. The PSA-flow
begins execution with target-independent tasks. Similar to the
example in Fig. 3, the code is partitioned by identifying the
most time-consuming program loop and extracting it into
a kernel function (i.e. hotspot detection/extraction). Then, a
series of static and dynamic analyses are automatically per-
formed on the kernel: dynamic pointer alias analysis to ensure
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Fig. 4. Our implemented PSA-flow supporting HIP CPU+GPU, oneAPI CPU+FPGA, and OpenMP CPU platforms. The automated PSA-flow is composed of
target-independent and -dependent design-flow task meta-programs from our repository included on the left, where A, T, CG, and O signify task classifications
(Analysis, Transform, Code-Generation and Optimisation), and  indicates a dynamic task that requires program execution.

that pointer arguments do not reference overlapping memory
locations; static arithmetic intensity analysis to indicate if
computations are compute- or memory-bound; dynamic data
movement analysis to quantify data transfer requirements;
static loop dependence analysis to identify loop-carried depen-
dencies; and dynamic loop trip-count analysis to characterise
the behaviour of program loops.

At branch point A, there are three paths corresponding to the
supported targets: CPU+GPU, CPU+FPGA, and multi-thread
CPU. A mapping decision is made following the PSA strategy
from the yellow hexagon in Fig. 3, using the information
accrued by the analysis tasks. Each path after the branch point
comprises target-dependent tasks, beginning with generating
the framework specific management code required for each
programming model (HIP, oneAPI, or OpenMP), followed by
target-dependent optimisations. For instance, unrolling fixed-
size FPGA loops, or introducing suitable GPU shared memory
buffers. Within the CPU+FPGA and CPU+GPU paths there are
further branch points specialising for different FPGA and GPU
devices (Arria10 or Stratix10 FPGAs, GeForce GTX 1080 or
RTX 2080 Ti GPUs) often found in heterogeneous clouds.

Device-specific branching (B, C) enables fine-grained spe-
cialisation to support device-specific optimisations and DSE.
For example, taking advantage of zero-copy host memory with
oneAPI is supported on Intel Stratix10 FPGAs with support for
unified shared memory (USM), but not on Arria10s. Moreover,
the launch parameters that maximise occupancy and minimise
latency for a GPU kernel (e.g. blocksize) are likely different
for the same computation executed on different GPUs, as is
the factor by which a given kernel loop can be unrolled on
different FPGA devices. As such, device-specific tasks are

performed in these final branches before outputting the final
designs. The current implementation automatically selects both
paths at B and C, generating two CPU+GPU designs or two
CPU+FPGA designs respectively, with one for each device.

Note that since Artisan ASTs closely mirror the source-
code as written without lowering, output implementations are
human-readable and can be further hand-tuned if desired.
Furthermore, the approach is not limited to the programming
models or vendor device types in our implemented PSA-flow.
To target new technology, target-specific design-flow tasks can
be implemented and seamlessly plugged in.

IV. EVALUATION

A. Experimental Setup

To validate our approach, we apply the implemented PSA-
flow (Fig. 4) to five HPC and AI applications, namely: N-
Body Simulation, K-Means Classification, AdPredictor, Rush
Larsen ODE Solver, and Bezier Surface Generation. For CPU
experiments, we compile with g++ and target an AMD EPYC
7543 32-Core Processor @2800MHz. For GPU experiments,
we target two NVIDIA platforms with GeForce GTX 1080 Ti
and RTX 2080 Ti GPUs, using the hipcc compiler. For FPGA
experiments, we target two Intel FPGA platforms with PAC
Arria10 and Stratix10 boards, using the dpcpp compiler.

The following subsections cover an evaluation of our PSA-
flow automation approach in terms of performance and devel-
opment productivity.

B. Performance of Auto-Generated Diverse Designs

To evaluate our automated PSA-flow (Fig. 4), we run it
using two modes on each of the five benchmark applications:
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Fig. 5. Accelerated hotspot region speedups of the automatically generated designs from Fig. 4 compared to the input, unoptimised reference executed on a
single CPU thread. ‘Auto-Selected’ bars represent the designs generated when using the PSA strategy from Fig. 3 in branch point A.

• Informed. We execute the PSA-flow as outlined in
Section III, incorporating the PSA strategy from Fig. 3
at branch point A. This allows for the generation of
either one OpenMP multi-threaded CPU design, two HIP
CPU+GPU designs (1080 Ti and 2080 Ti), or two oneAPI
CPU+FPGA designs (Arria10 and Stratix10).

• Uninformed. We modify branch point A to automati-
cally select all paths, generating all design versions (one
OpenMP multi-threaded CPU, two HIP CPU+GPU, and
two oneAPI CPU+FPGA designs) for all applications.

Fig. 5 shows the speedups obtained for the hotspot regions
of each generated design compared to the input reference
software implementation executed on a single CPU thread.
Note that for each benchmark, the PSA-flow applied is the
same. The ‘Auto-Selected’ bar (leftmost) for each applica-
tion represents the performance of the design generated by
the informed PSA-flow. In the case where CPU+GPU or
CPU+FPGA designs are generated, the Auto-Selected bar rep-
resents the fastest of the two generated designs (i.e. 1080 Ti or
2080 Ti for CPU+GPU, Arria10 or Stratix10 for CPU+FPGA).
As shown, the informed PSA-flow selects the best target for
all of the five benchmarks.

i. Multi-Thread CPU Performance (OpenMP). The
OpenMP PSA-flow path selects the maximum number of
threads available automatically for each of the five benchmarks
with the “OMP Num Threads DSE” task, achieving speedups
ranging from 28-30X. Since each application is embarrassingly
parallel, we observe speedups close to the number of cores
(32), as expected. For K-Means Classification, the OpenMP
multi-threaded implementation achieves the best performance
of the five generated designs. Since the identified hotspot
is a memory-bound computation, the informed PSA strategy
automatically selects the multi-thread CPU branch.

ii. CPU+GPU Performance (HIP). The HIP CPU+GPU de-
signs similarly take advantage of the benchmarks’ parallelism
to achieve significant speedups. The CPU+GPU designs are
best for the Rush Larsen solver, N-Body Simulation, and
Bezier Surface Generation. All three of these applications are

automatically determined to be compute bound. Rush Larsen
comprises a single outer loop, N-Body Simulation comprises
a double outer loop nest with bounds unknown at compile
time, and Bezier Surface Generation contains a complex
multi-nested inner loop structure. As such, the informed PSA
strategy automatically selects the CPU+GPU branch for all
three.

In the device-specific GPU+CPU paths, the DSE tasks
for blocksize selection tailored to the GTX 1080 and RTX
2080 GPUs aim to minimize execution time and maximize
occupancy for each benchmark. Generally, the RTX 2080
outperforms the GTX 1080, as expected due to its larger
number of cores. For the Rush Larsen benchmark, the RTX
2080 achieves 1.6 times faster performance than the GTX 1080
(98X vs 63X). However, due to the complexity of the ODE
solver logic, the GPU design requires 255 registers per thread,
saturating the GTX 1080 but not the RTX 2080. Conversely,
the N-Body Simulation workload fully saturates both GPUs,
allowing the RTX 2080 to achieve more than 2 times faster
performance than the GTX 1080 (751X vs 337X). For Bezier
Surface Generation, where neither GPU is fully saturated, the
difference in performance is less substantial (67X vs 63X), yet
still significant compared to CPU performance.

iii. CPU+FPGA Performance (oneAPI). The oneAPI
CPU+FPGA optimization strategy attempts to maximise
pipeline parallelism on the target FPGAs, with device-
specific “unroll until overmap DSE” tasks. In general for the
CPU+FPGA designs, the Stratix10 performs better than the
Arria10, as expected since it is a newer, larger FPGA with
more advanced features, including support for zero-copy host
memory.

This unrolled FPGA execution model is well suited to
AdPredictor, for which the Stratix10 CPU+FPGA design
achieves the best performance across all targets (32X speedup).
The computations in AdPredictor are highly amenable to
pipelined execution on an FPGA, with simple fixed-bound,
fully-unrollable inner loops and an outer loop that can be
unrolled to maximise resource utilisation on each FPGA target
without affecting its initiation interval (II=1).
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TABLE I
ADDED LINES OF CODE (LOC) FOR EACH GENERATED DESIGN COMPARED

TO THE REFERENCE UNOPTIMISED HIGH-LEVEL SOURCE

Application
LOC ∆ Per Design Total

OMP HIP HIP oneAPI oneAPI LOC ∆

1080 2080 A10 S10 (5 designs)

Rush Larsen +.4% +6% +6% n/a n/a n/a
N-Body +2% +37% +37% +52% +69% +197%
Bezier +2% +26% +26% +34% +42% +130%
AdPredictor +2% +31% +31% +42% +63% +169%
K-Means +4% +81% +81% +101% +147% +414%

Average +2% +36% +36% +57% +81% +212%

Although CPU+FPGA design descriptions for Rush Larsen
are generated, their performance results are not included. This
is because the resulting designs are sizeable and exceed the
capacity of our current FPGA devices. As a result, additional
strategies, like finer partitioning (e.g. loop splitting) and more
effective resource area reduction, need to be incorporated into
the PSA-flow. However, these adjustments may potentially
impact performance negatively.

C. Development Productivity

In this section, we validate the efficacy of our approach
towards enhancing development productivity. This validation
is achieved through quantifying the increase in lines of code
(LOC) for each automatically generated design in comparison
to the input source reference. To facilitate a comprehensive
assessment, we generate five heterogeneous designs for each
benchmark under consideration. However, it is imperative to
note that the generated CPU+FPGA designs for Rush Larsen
are not synthesizable, as previously mentioned, and therefore,
they are excluded from our LOC evaluation.

Table I showcases the outcomes of our analysis. The gen-
eration of five new implementations for a single application
requires, on average, an additional 212% of the reference
source-code LOC. Using automated PSA-flows removes the
burden of manually writing this code from developers, thereby
streamlining the design process and subsequently improving
productivity. Note that LOC counts solely serve as a rudimen-
tary indicator and do not encapsulate the expertise requisite for
manually crafting code to map and optimize each application
onto distinct hardware targets. Consequently, our LOC-based
estimation presents a conservative perspective on the reduction
in development effort.

Although the initial effort required to encode PSA-flows
may seem substantial, its benefits become evident upon sub-
sequent applications. Once codified, PSA-flows can be readily
applied across various benchmarks, leading to significant time
and resource savings in the long run. Furthermore, by encapsu-
lating design-flow tasks into meta-programs, their adaptability
and versatility are greatly enhanced. These meta-programs
serve as building blocks that can be seamlessly integrated
into customized PSA-flows, amplifying their utility and value
proposition.

1/4 1/3 1/2 1 2 3 4

GPU is more 
cost effective

FPGA is more 
cost effective

Fig. 6. Relative costs of FPGA vs. GPU execution for varying resource prices.
FPGA-s and GPU-s correspond to 1s of execution on an FPGA or GPU.

D. Cost and Performance Trade-offs

With a set of generated diverse designs available for differ-
ent targets (e.g. using the uninformed PSA-flow), there is scope
for runtime experimentation beyond just identifying the best
performing resource for a particular application and workload.
For instance, performance models could be derived and used
to inform runtime mapping decisions in heterogeneous cloud
platforms [7] [8]. In a cloud environment particularly, factors
such as cost also need to be considered. With models to predict
performance on different resources and known cloud resource
prices, computations can be mapped at runtime to minimise
cost. Thus, the most performant design for a given application
and workload might not be the most cost effective.

Cloud resources are typically priced based on the time for
which they are provisioned (e.g. AWS EC2 [9] On-Demand
instances are charged per hour). Costs for different resources
depend on supply and demand considerations as well as plat-
form traffic. Resource costs may be variable, with discounts at
off-peak hours, for example. Fig. 6 shows the relative cost of
FPGA and GPU execution for three applications based on the
Stratix10 and 2080 Ti results from Fig. 5, illustrating different
scenarios:

• if the FPGA price per unit time is > 3.2 times the
GPU price, it is more cost effective to execute on the
CPU+GPU 2080 Ti platform, although AdPredictor exe-
cutes fastest on the Stratix10 CPU+FPGA platform;

• if the GPU price is > 2.5 times the FPGA price, it is
more cost effective to execute Bezier on the Stratix10
CPU+FPGA platform, despite being slower than execut-
ing on the 2080 Ti CPU+GPU platform.

Similar analysis could be used to identify the most energy
efficient implementation for a specific application. When all
targets as well as factors such as cost, energy, and performance
requirements are considered, the mapping problem becomes
more nuanced. The ability to automatically generate multiple
diverse implementations from a single technology-agnostic
description facilitates streamlining experimentation in such
scenarios, including deriving performance and cost models for
different applications across multiple targets.
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V. RELATED WORK

There have been various efforts addressing issues similar to
those covered by this paper. Table II compares approaches
for partitioning, mapping, and optimising applications onto
diverse hardware targets.

Cross Platform Frameworks (e.g. OpenMP [1],
oneAPI [2], OpenCL [3]) support compilation of a single
source description onto multiple targets (e.g. CPUs, GPUs,
and/or FPGAs). However, they require manual partitioning,
mapping, and optimisation. Furthermore, while they in
principle support compilation of identical code for diverse
targets, in practice substantial refactoring is necessary to
achieve desired performance on each device.

Domain Specific Languages (DSLs) simplify the optimi-
sation of specialised hardware designs by providing built-in
constructs that are specifically tailored to a certain domain or
platform. For instance, HeteroCL [10] is a Python-based DSL
designed for FPGA configurations. It distinguishes between
algorithm description and hardware customisation. Similarly,
Halide [11] is a DSL embedded in C++ that is used for
constructing CPU and GPU image processing pipelines. It
separates the description of the algorithm from its scheduling.
Both HeteroCL and Halide are designed to support a specific
target (CPU, GPU, or FPGA) for any given design. However,
they require that developers rework computation descriptions,
manually partition and map their code onto suitable devices,
and conduct optimisations solely at the kernel level.

Compiler frameworks, like Delite [12] and MLIR [13],
facilitate development of customised DSLs with fine-grained
optimisations, and flexibility to support multiple targets and
full applications. While they enable effective built-in optimi-
sations, they require developers to rework code and manually
partition and map computations across targets. Compiler ex-
pertise is needed to develop new DSLs using them.

Automatic HLS DSE tools support programmatic black-
box or analytical systematic DSE with the goal of generating
optimised HLS FPGA designs considering various trade-offs
(e.g. area, performance). These tools typically consider only
directives-based optimisations ( [14] [15] [16]), tightly cou-
pled to a particular HLS compiler (e.g. Merlin [17], Vivado
HLS [18]). ScaleHLS [19] is a full HLS compiler built on
MLIR with an embedded DSE engine that considers multi-
level optimisations (i.e. loops, graph, directives). These tools
effectively optimise designs but are limited to FPGA targets
and kernel scopes, and do not cover partitioning or mapping.

Automated partitioning and/or mapping tools, like
StreamBlocks [20] and GenMat [21], aim to derive optimal
code partitions and device mappings. StreamBlocks is an HLS
compiler that automatically identifies code regions apt for
hardware execution, using performance models to optimise
partitioning and minimise execution time. However, it is
limited to CPU+FPGA targets with implicit mapping. On the
other hand, GenMat is an ML-driven tuner for heterogeneous
platforms. It wraps applications in meta-programs that expose

TABLE II
COMPARISON OF DESIGN APPROACHES THAT PARTITION (P), MAP (M),
AND/OR OPTIMISE (O) APPLICATIONS ONTO SPECIALISED HARDWARE.

Approach P M O Multiple Scope
Targets

Cross-Platform
✓ Full App.

Frameworks [1]–[3]
HeteroCL [10] ✓ Kernel

Halide [11] ✓ Kernel
Delite [12] ✓ ✓ Full App.
MLIR [13] ✓ ✓ Full App.

HLS DSE [14]–[16], [19] ✓ Kernel
StreamBlocks [20] ✓ Full App.

GenMat [21] ✓ ✓ ✓ Kernel
Design-Flow Patterns [5] ✓ ✓ Full App.

This Work ✓ ✓ ✓ ✓ Full App.

tunable parameters and uses automatic profiling and ML-based
modelling to choose a target mapping. However, designs for
different targets must already be available. Other runtime map-
ping approaches [22] [23] [24] select a device for computation
execution at runtime, but do not aim to deduce mappings from
high-level code before generating specialised designs.

Meta-Programming Design-Flow Patterns [5] catalogues
and encodes modular, reusable design-flow tasks as ‘patterns’
for reuse in design-flows for different targets and optimisation
strategies. Their approach covers automatic code partitioning
and optimisation, but only supports linear design-flows for
specific targets (e.g. CPU+GPU, or multi-thread CPU). As
such, there is no support for automated mapping.

This work covers automated code partitioning, mapping,
and optimisation, capturing the full scope of applications. It
supports adaptability across various diverse targets within a
single integrated PSA-flow, in contrast to manual cloud GPU
and FPGA designs [25].

VI. CONCLUSION

This paper proposes a novel design-flow automation ap-
proach with potential for disrupting high-level design.

Our focus on unified PSA-flows with branch points enables
a new way of understanding and documenting design devel-
opment: algorithmic-level branch points separate optimisations
applicable to multiple algorithms from those specific to a do-
main, while device-level branch points separate optimisations
applicable to multiple devices types from those specific to a
particular device. We demonstrate how unified PSA-flows can
enhance the portability of high-level designs across specialised
heterogeneous platforms, achieving speedups of up to 30 times
for multi-thread OpenMP, 32 times for oneAPI CPU+FPGA,
and a striking 779 times for HIP CPU+GPU designs, when
compared to single-threaded references.

Current and uture work includes extending our repository
of design-flow task meta-programs, developing sophisticated
ML-based PSA strategies, and demonstrating the effectiveness
of PSA-flows for various cloud and edge computing platforms.
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