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Abstract

We present an experimental framework for mapping
declarative programs, written in a language known as
Ruby, into various combinations of hardware and software.
Srategiesfor parametrised partitioning into hardware and
software can be captured concisely in this framework, and
their validity can be checked using algebraic reasoning.
The method has been used to guide the development of
prototype compilers capable of producing, from a Ruby
expression, a variety of implementations involving field-
programmable gate arrays (FPGASs) and microprocessors.
The viability of this approach isillustrated using a number
of examplesfor two reconfigurable systems, one containing
an array of Algotronix devicesand a PC host, and the other
containing a transputer and a Xilinx device.

1 Introduction

Although it has been known for many yearsthat, from a
functional point of view, there islittle distinction between
hardware and software, in current practice they are mostly
developed using very different methods and tools. This
paper presents a coherent framework for describing and
producing implementations that contain one or more hard-
ware and software components. Our aim is to investigate
the features for a system-level language to provide a rapid,
reliable and cost-effective route for realising such designs.
The purpose of this paper is to provide an overview of
our techniques and tools, many of which are still under
development.

Much of our work is based on a declarative language
known as Ruby (see[4], [10]). Ruby has been used princi-
pally as a hardware description language in the past. Here
we shall explore its use as a system design language. Our
approach is particularly applicable to designs with a uni-
form structure, which can be found in, for instance, many
signal processing systems.

An overview of thedesign processin our current frame-
work isshown in Figure 1. The user first prepares a Ruby

program for the desired computation, indicating which
parts should be implemented in hardware and which parts
should beimplemented in software. Our system-level com-
piler produces from this program an implementation in-
volving one or more hardware and software components,
depending on the target system. The appropriate inter-
face will be included in these components to allow them
to communicate with each other. Other hardware and soft-
ware tools can then be used to realise the implementation;
for instance, vendor-provided implementation tools can be
used to generate configuration datafor field-programmable
devices.
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Figurel Anoverview of thedesign processin our frame-
work.

At present the partitioning into hardware and software
iscarried out by the user, and we are exploring possibilities
for automating thisprocess. Whileafully-automatic design
tool can sometimes be very useful, we are aware of the
importance for the user to retain full control whenever the
need arises. Hence our framework is evolved in such a



way that it should be possible to use our techniques in
conjunction with other methods, or to optimise generated
designs further by hand or by other tools.

Let us explainin somedetail the motivations behind the
use of Ruby. Declarative languages often have a simple
semantics that makes them easy to understand and to use
[2]. Ruby shares this advantage, and it has additional fea-
turesthat are attractive for system design. First, therearea
number of primitives and functions in Ruby for describing
parametrised designs concisely; they allow the user to fo-
cusonthe essential structure of the system and also serveas
high-level design documentation. Second, as we shall see
later, aRuby expression can beimplemented in anumber of
ways, ranging from a sequential program to a piece of fast
parallel hardware—or acombination of both; thisflexibility
provides the basis for a unified representation of heteroge-
neoussystems. Third, Ruby hasanalgebrafor transforming
designs based on simple equational reasoning, so one can
generate from an initial description a variety of designs
customised to specific requirements. This facility is par-
ticularly useful in checking the correctness of parametrised
transformation strategies, such as those for partitioning a
program into hardware and software parts. Finally, data
refinement is supported in our framework, thus a designer
may start with, for instance, a program involving integer
datatypes and explores the effects of different bit-level rep-
resentations, using formal techniques or simulation.

It should perhaps be made clear that our work isintended
to complement, rather than to replace, existing hardware
and software languages and tools. Our framework can be
used in an incremental way to produce and to assessdesigns
rapidly; once a promising implementation is found, then
other tools can be used to further optimiseit if desired.

2 Primitivesand compositions

This section introduces the way that computation and
wiring components are described in Ruby, and the com-
position functions which allow connection of components
with a compatible interface.

A design is represented in Ruby by a binary relation of
theform z R y where z and y belong respectively to the
domain and range of R. For instance, a squaring operation
can be described by

T SqY <= :ztzzy

or, more succinctly, by z s¢ z2. In this paper we shall
focus on designs with inputs in the domain and outputs in
the range, so we can aso define such components in the
usual way asinsq z = z°.

Wiring relations can be used to replicate, extract or re-
arrange data. Asan example, the relation fork can be used

to duplicate a datum, since z fork (z,z). Extracting an
element from apair is achieved by the projection relations
w1 and wo, defined by (z,y) m z and (z, y) 72 y. Some
wiring relations are parametrised: for example, zip,, re-
lates a pair of sequences of the same length to a sequence
of pairs,

<([L‘0, Tlyeen, In—l): <y0a Y1, ..+, Z/n—l))
zipn ({0, Yo), (%1, Y1), -+, (Tn1, Yn—-1))-

Wiring relations not only shorten description of data rear-
rangement — they also have useful properties that can be
used for optimising designs which will be explained later.
Two components () and R can be joined together by
sequential composition if they share acommon interface s
whichishidden inthe compositeprogram @ ; R (Figure 2a),

t(Q;R)y & Is.(zQs) A (sRy). (1)

Many readers would recognise that sequential composition
correspondsto relational composition. It issimple to show
from this definition that sequential composition is associa
tive. Noticethat z, y and s can be composite: for instance
@) canbe add, where (z, y) add (z + y).

w0— Q-0

b. [Q, R]

a@ ;R

Figure2 Sequential and parallel composition.

If there are no connections between @ and R, the com-
positeisrepresented by parallel composition[ @, R], where

(z0,21) [@, R] (9o, 71) < (20Q ) A (z1Ry1)(2)

as shown in Figure 2b. Given that : isthe identity relation
(z ¢ z), we use the abbreviations

fst R = [R,4,
snd R = [, R].

Repeated sequential composition of n copies of R
is given by R", so R* = R ; R; R ; R. Simi-
larly repeated parallel composition is given by map,, R:
maps R = [R, R, R]. There are functions for capturing
other patterns of replicating components and for building
state machines; details of these can be found in [4], [5],
[10] and [12].



3 Design mapping

It is possible to implement a Ruby expression in a num-
ber of ways. For instance, the expression @ ; R can be
implemented in hardware as two connected circuit blocks
as shown in Figure 2a, or implemented in software in the
form of C and occam programs. In this case, if both @ and
R are functions with inputs in their domain and outputsin
their range, then the code for @ will be executed before the
code for R. Repeated compositions can be translated into
for-loopsin software.

Moreinterestingly, animplementation of ¢ ; R can have
@ in hardware and R in software or vice versa, provided
that the interface between them follows the sequencing
constraint imposed by sequential composition. At present
we adopt synchronous communication [3] between com-
ponents executing in parallel — whichever completes ex-
ecution first has to wait for its partner to finish. If there
are several ways of interfacing between @ and R, the user
should be able to indicate which oneif the default optionis
not preferred; we are also exploring methods for automat-
ing the selection of aternative interfaces.

To map the components of an expression into hardware
or software, we label them either by H or by §,asin'H @ ;
S R. For convenience, S and H will bedistributed through
composite functions to their components and S (HA) =
HAandH (SB) = S8B,s0S8 (P ; [@,H R]; S)isan
abbreviationfor S P ; [S Q,H R] ; S 5. Itispossibleto
have several physical hardware or software resources: the
implementation for

S (A5 fork ; [B,Ho (fork ; [C,H1 D])])

contains (a) asoftware program for implementing A, B and
thefirst fork, specified by S; (b) acircuit for implementing
C and the second fork, specified by Ho; and (c) another
circuit for implementing D, specified by ;.

4 Design tools

We havedevel oped aset of compilation toolsfor asubset
of Ruby knownasT. Currently arelationin T alwayshasin-
putsinitsdomain and outputsinitsrange. Sequential prim-
itives [10] such as D have not been implemented. Many
of our tools are target-independent; the target-specific tools
correspond to compiler backends that produce the output
in aparticular format.

The target-independent compiler convertsa T program
into two parts: a hardware part H, and a software part S.
The execution of H and S can be simulated. Our simulator
supports both symbolic simulation and numerical simula-
tion involving integers and fixed-point numbers; a mixture

of numerical and symbolic simulation is possible as well.
The target-specific tool s then generate device- or language-
specific files from H and S. The hardware part H can be
further processed by compilers [11] for various FPGA de-
vices, including those from Xilinx and Algotronix. S, the
software part, can be used to produce C or occam programs.

When designing with Ruby, one usually starts with a
high-level description of the computation without deciding,
for instance, how integers will be represented at bit-level.
In a separate step, often known as data refinement, the
implementation of high-level data structuresis considered.
Thismethod is useful in structuring design documents, and
inproviding additional flexibility for realising designs. Our
design tools contain functions that convert between data
representations, facilitating the analysis of finite-precision
effects. For instance, given that add is integer addition
and sint2bit,, and bit2sint,, respectively convert integers
to their n-bit two’s complement representations and vice
versa, the expression

[bit2sint,, bit2sint,) ; add ; sini2bit,

models an n-bit adder. The trade-offs of adopting dif-
ferent data representation schemes, for both hardware and
software, can be explored by systematically replacing high-
level operations by their low-level models — a step which
is being automated.

5 Partitioning strategies

In accelerating performance-critical programs, a pure
hardware implementation may not be attractive due to
reasons such as cost; a mixed hardware-software imple-
mentation may be more appropriate. This section presents
parametrised strategies capable of rearranging the compu-
tations to achieve an effective partitioning for hardware-
software implementations. For simplicity we shall focus
on the case that we have asingle hardware unit and asingle
software unit, but it would be possibleto develop partition-
ing strategies for multiple hardware and software units.

As our first example, consider implementing R™ on a
piece of hardware that can only accommodate R?, where
n > p. One solution is to find ¢ and r such that n =
p X ¢ + rinorder toimplement R™ as

S((H(R"))" 5 R). 3)

Therearetwo sequentia loopsin thisimplementation. The
first contains ¢ iterations in software, and each of these
iterations invokes the hardware once for computing R?;
the second loop iterates r timesto compute R™ in software.

Clearly the above solution assumes that the hardware
implementation of R is faster than the software implemen-
tation, and that the time for communicating between the



Figure3 Using a butterfly network to implement a 16-point fast Fourier transform.

hardware and the software components is much less than
the computation time.

To describe a partitioning method for parallel compo-
sition, we need two more wiring operations. The firgt,
groupnm, », relates a sequence of m x n elements to a se-
guence of m elements, each of which isasequence of » el-
ements, 0 (1,2, 3,4,5,6) groups, ((1,2),(3,4),(5,6)).
The second wiring operétion, appn ,, relates a sequence
of two sequences of length m and » to the appended ver-
sion, s0 ((1,2,3),(4,5)) apps2 (1,2,3,4,5). We shall
also need the converse operation, given by

tRl'y & yRuz

Thepattern P~ ; Q ; P —inwords" @ conjugated by P’
—will be abbreviated to Q\ P.

Thetheoremthat equatesarepeated parallel composition
to its partitioned version is

Map, «(g4r)+s 1
= [(map, ([map, R, map, R]\appy,,r))
\gmupp,ﬁra map, R]\apppx(q+r),s- (4)

While this theorem may appear complicated, it can be
proved algebraically using simpler laws. We can now label
the components on the right-hand side of this equation with
H and S, so that map,, (4,4, £ can beimplemented in
hardware using only ¢ copies of R:

S ([(map,, ([H (map, R), map, R]\app,,))
\groupy, ¢4r, map, R]\apppx(q+r),s)-

There are two sequentia loops in this implementation.
Oneinvolves p iterations, each implementing concurrently
map, R in hardware and map,. R in software. The other
loop involves implementing map, R in software. To min-
imiseidletime, the parameter r should be chosen such that
the time for executing ¢ copiesof R in hardwareis around
the same as that for executing r copies of R in software.
If necessary, serialisation strategies [10] can be applied to
the hardware part to balance the hardware load and the
software |oad.

Our next example involves partitioning of a butterfly
network. We shall need riffie,,, a wiring operation similar
to zip,, but without some of theinternal sequence structures
in the domain and range data, to describe a perfect shuffle
architecture [5]:

<I0azla" 'ayn—l>

riffle, (xo, yo, 21, Y1, - -

-y In-1, Y0, Y1, - -

y Tp—1, yn—l>~

One can show that riffle, = groups , ; zipn ; groupgé. A
parametrised butterfly network can bedefined using riffie,,:

bfy, R = (bfycol, R)"+l,
bfycol,, R = riffleon ; (mapn R)\groups;i ,.

Figure 3 illustrates the use of a butterfly network to
compute a 16-point fast Fourier transform. Each node
in this network takes in a par (u,v) and computes
(v—a xu,v+ ax u), where ¢ isthe coefficient for the
multiplication (the twiddle factor) and is labelled at each
node in the figure. This network can be described by an



“indexed” version of bfy,, ibfy,, which takes into account
the variation of coefficients at each node.

When a butterfly network istoo large to fit onto a given
pieceof hardware, we can partitionitin several ways. First,
sinceeach columnin abutterfly network isthe same, we can
use Equation 3 to partition bfy. Second, if the amount of
hardware is too small to implement even a single column
of a butterfly network, we can use the theorem below to
partition a bfycol:

bfycol .., R = rijj‘lezm\groupz_,,ll+l72n ;
(mapym (bfycol, R))\groupz_,,llyznﬂ.

An instance of this theorem is shown in Figure 4. The
expression map,m (bfycol,, R) on the right-hand side of
the above equation can now be rewritten and optimised by
Equation 4.

Figure 4 bfycol,,,, R = rzﬁ‘lezm\groupz_,,lHlZn ;

(map ym (bfycol,, R))\groupz_,%’znﬂ, with m = 1 and
n=2

As a final example, we have expressed in Ruby a
method for partitioning multidimensional programs [13].
The method involves a divide-and-conquer structure, with
the “divide” and “merge” phases carried out by a general-
purpose processor whilethe“ conquer” phaseis handled by
application-specific hardware. It can be expressed in Ruby
as:

S (divide,, ; conquer, (H R) ; merge,)

where R is an n-dimensional program. [13] presents the
conditions such that the equation

divide,, ; conquer, R ; merge, = R (5)

istrue.

The application of some of these partitioning strategies
will be illustrated in the following sections. There are
other partitioning methods, for instance those involving
a combination of composition functions, which have not
been described above.

6 Edgedetection on the CHS2x4

The divide-and-conquer partitioning strategy has been
used inimplementing the Sobel edge detector on an FPGA -
based hardware accelerator known as CHS2x4 [1] (Fig-
ure 5). The CHS2x4 is afull-length IBM AT card which
communicates with the host computer through the AT bus.
The board consists of three subsystems: the Computation
Subsystem which holds eight CAL 1024 chips[6] arranged
in atwo by four array, the Memory Subsystem which con-
tains 256 Kbytes of SRAM, and the Interface and Control
Subsystem which deals with the communication between
the board and its host machine. At present datatransfer be-
tween the CAL chipsand the on-board memory isrestricted
to sequentia input and output over a byte-wide channel,
controlled by invoking C-library routines provided by the
manufacturer. Each CAL chipisan FPGA consisting of 32
by 32 cells. Each cell hasaone-bit input port and a one-bit
output port on each of its four sides. Aninput port can be
programmed to connect to one or more output ports, or to
afunction unit which can be programmed to behave either
as atwo-input combinational logic gate or as alatch.

The Sobel edge detection algorithm involves a two-
dimensional convolution using the masks

[[-1,-2,-1],[0,0,0], 1,2 1]]

and
[-1,0,1],[-2,0,2],[-1,0,1]]

to produce the image gradient in the horizontal and in the
vertical direction. The squares of thetwo gradientsarethen
summed together and compared against a threshold. Our
hardware implementation consists of adders, subtractors,
registers, multiplexers, magnitude extractors and a multi-
plier. Partitioning is necessary because the size of many
images requires a larger memory than is available in our
CHS2x4 system.
Our implementation is guided by the Ruby expression

S (dividez ; conquery (H Sed) ; mergey)

(from Equation 5). In this expression the component
divide,, the two-dimensional version of divide,, divides
an image into a series of smaller images, each of which
is then processed by conquer, using the Hardware Sobel
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Figure5 The CHS2x4 board.

edge detector Sed, and the resulting edge maps are stitched
together in software according to merge,. The result pre-
sented below has been obtained by an implementation pro-
duced by hand, but it should be straightforward to automate
a substantial part of the work using our prototype com-
piler. In this case the hardware-software interface would
be implemented by calls to the library routines supplied by
Algotronix.

We have carried out some experiments to compare the
Sobel edge detector in software on a 386-based PC against
the FPGA-assisted version. Even with the slow software-
controlled FPGA execution, aspeedup of over 20 timescan
be obtained if datatransfer overhead to and from disk isnot
included, while a speedup of afactor of two is observed if
we include the data transfer overhead. In fact, the critical
path of our hardware design is found to be around 574ns,
which means that it should be capable of performing edge
detection for images of 128 by 128 pixels at 35 frames per
second, provided that data can be supplied at that rate. We
have also found that the time for dividing the image into
sub-images and combining the results is around 5% of the
total processing time; so our partitioning strategy appears
to incur a modest overhead for this system.

7 Implementing designson HARP1

The HARP1 system is constructed as a platform for
developing hybrid hardware/software systems [8]. It inte-

gratesaT805 transputer, 4AMbyte DRAM, aXilinx 3090 (or
3195) FPGA chip with two local banks of 32K by 16-bit
SRAM, and a 100MHz variable clock frequency synthe-
sizer on an industry-standard (size 6) TRAM module (Fig-
ure 6). The speed of the FPGA depends on the critical path
of the logic that it implements, and it can be varied using
the frequency synthesizer. The board can be regarded as a
prototype of afuture microprocessor, which has a conven-
tional RISC coreclosely integrated with aflexible hardware
COprocessor.

The transputer can communicate with the FPGA in a
number of ways. It can directly communicate with the
FPGA through the bus, or it can use the SRAM or the
DRAM as a shared memory with the FPGA. One common
mode of operation of HARP1 is asfollows. The transputer
first loadsthe SRAM with data, and it then reconfiguresthe
FPGA to carry out the desired computation. The transputer
and the FPGA can then operatein parallel, exchanging data
over the busif necessary. Theresult in SRAM, if any, can
be extracted at the end of the computation. Notice that
since the FPGA and the transputer can run in parallel, the
definition of divide,, conquer, and merge, for thedivide-
and-conguer partitioning method can be modified such that
the expression

S (divide,, ; conquer, [H R, S] ; mergen)

describesthe concurrent execution of the software program
S and the hardware implementing £.
A variant of occam, called Handel, can be used to pro-
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gram the FPGA on HARP1 (see [14],[15]). There are li-
brary routinesin Handel that providetheinterfaceto SRAM
and to the transputer busfor the FPGA, and it is possible to
describe the core computation using Ruby and the interface
using Handel. Hence our system-level compiler produces
from a Ruby source description three target programs for
HARP1: a Ruby program and a Handel program for the
FPGA, and an occam?2 program for the transputer.

Using our compilers and other tools, we have imple-
mented a number of Ruby programs on HARP1, includ-
ing sequence matchers and several butterfly networks for
matrix transposition and for fast Fourier transform. The
FPGA clock typically ranges between 5SMHz and 20MHz,
depending on the application. The implementation process
is completely automatic — athough for large designs the
vendor software for placing and routing the FPGA may
take along time to complete.

8 Concluding remarks

Our declarative framework offers a number of advan-
tages for parametrised hardware-software codesign, such
as concise descriptions, flexibility of target and support
for provably-correct development. It is particularly appli-
cable to designs with a uniform structure, which can be
found in, for instance, many signal processing systems.
Implementations can be produced rapidly if the hardware
isimplemented by field-programmable devices.

While our experience of Ruby has been favourable, fur-
ther research is required before realistic designs can be
produced routinely. It would be useful to extend the ex-

pressive power of the system-level description language,
perhaps by incorporating the stream model of Ruby (see
[4], [21Q]) which provides additional primitives including
delay operators, rate converters and abstractions for run-
time configuration of components. Both the hardware and
the software code generators of our experimental compilers
can be optimised: part of this optimisation can be achieved
using the algebra of Ruby.

We have aso been investigating techniques for assess-
ing the quality of hardware designsin Ruby [9]. Methods
for estimating performance are being extended to take into
account the effects of having multiple hardware and soft-
ware units, and the overheads of communication between
them. These techniques should facilitate the devel opment
of appropriate cost measures for mixed hardware-software
systems, which can be used in algorithms and transforma-
tion systems for automatically optimising and partitioning
designs.
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