
FPGA-based computation of Free-Form Deformations
in Medical Image Registration

Jun Jiang, Wayne Luk and Daniel Rueckert
Department of Computing

Imperial College
180 Queen’s Gate

London SW7 2BZ, England

Abstract

This paper describes techniques for producing FPGA-
based designs that support free-form deformation in med-
ical image processing. The free-form deformation method
is based on a B-spline algorithm for modelling three-
dimensional deformable objects. Our design includes four
optimisations. First, we transform a nested loop to elim-
inate conditional statements. Second, we adopt a cus-
tomised number representation format in our implementa-
tion. Third, we store the values of a third-order B-spline
model in lookup tables. Fourth, we pipeline the design
to increase its throughput, and we also deploy multiple
pipelines such that each covers a different subimage. Our
design description, captured in the Handel-C language, is
parameterisable at compile time to support a range of im-
age resolutions and computational precisions. An imple-
mentation on a Xilinx XC2V6000 device at 67 MHz can
run 3.2 times faster than an Intel Xeon-based PC at 2666
MHz.

1 Introduction

This paper describes techniques for producing FPGA-
based designs that support free-form deformations (FFDs)
in medical image processing. Free-form deformations,
which are based on B-splines, are a powerful tool for mod-
elling three-dimensional deformable objects.

Image registration algorithm has been applied in areas
such as remote sensing and three-dimensional computer vi-
sion. In medical applications, such as the detection of can-
cerous lesions in contrast-enhanced breast Magnetic Res-
onance Imaging (MRI), the free-form deformation model
is adopted as an important part of non-rigid registration, a
method for analyzing deformable objects [13]. However,
there is one disadvantage of this image registration imple-
mentation which adopts free-form deformation as the local

motion model: the processing time of a three-dimensional
image with a resolution of 256 by 256 by 64 voxels takes
between 15-30 minutes of processor time on a Sun Ultra
10 workstation.

In this paper we present the use of reconfigurable hard-
ware based on FPGAs to compute free-form deformation.
Our design approach has four innovations: (1) A data trans-
formation is developed for a nested loop to eliminate the
conditional statements. (2) A customised data format is
adopted in our implementation. (3) The values of the third-
order basis function of the B-spline are precalculated and
stored in lookup tables. (4) A pipelined design has been
developed and multiple pipelines have also been deployed
which can perform free-form deformations in real time for
a two-dimensional image with a resolution up to 256 by
256 pixels. This design is parameterisable at compile time
for different image resolutions.

Other researchers have explored the use of hardware in
medical computations [5], [18]. Previously, we have pre-
sented a method for eliminating conditional statements in
a nested loop for FFD computation by narrowing the range
of the input [9]. Another method has been presented to
achieve the same effect by transforming input data [10].
This method has the advantage that all data can be pro-
cessed by the hardware compared to our previous method.
In this paper, we investigate the possibility of using fixed-
point number representation in our design and comparing
it with floating-point format in terms of clock speed and
area cost.

2 B-spline based FFD

Cubic B-splines are widely used in interpolation appli-
cations [6] and graphics, such as attenuation map recon-
struction [2], pre-surgical planning in plastic surgery [7],
filtered back-projection [8] and high-quality image rota-
tion [3].

S
o
u
r
c
e

I
m
a
g
e

T
a
r
g
e
t

I
m
a
g
e

T
r
a
n
s
f
o
r
m
e
d

I
m
a
g
e

1

G
l
o
b
a
l

T
r
a
n
s
f
o
r
m
a
t
i
o
n

S
i
m
i
l
a
r
i
t
y

M
e
a
s
u
r
e
m
e
n
t

L
o
c
a
l

T
r
a
n
s
f
o
r
m
a
t
i
o
n

T
r
a
n
s
f
o
r
m
e
d

I
m
a
g
e

2

S
i
m
i
l
a
r
i
t
y

M
e
a
s
u
r
e
m
e
n
t

R
e
f
i
n
e
m
e
n
t

R
e
f
i
n
e
m
e
n
t

Figure 1: An approach to image registration.

In medical image processing, B-spline based free-form
deformations (FFDs) are frequently used in non-rigid reg-
istration to aid the detection of cancer in 3D contrast-
enhanced MRI. The goal of image registration in contrast-
enhanced breast MRI is to relate any point in the post-
contrast enhanced sequence to the pre-contrast enhanced
reference image. The motion of the breast is non-rigid
so that rigid or affine transformations alone is not suffi-
cient for the motion correction of breast MRI. Therefore
a combined transformationT, which consists of a global
transformation and a local transformation, is defined as fol-
lows [14]:

T (x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z)

The basic idea of the FFD is to deform an object by
manipulating an underlying mesh of control points.

To define a B-spline based FFD, the domain of the im-
age volume is defined asΩ = {(x, y, z)|0 ≤ x < X, 0 ≤
y < Y, 0 ≤ z < Z}. Let Φ denote anx × ny × nz mesh
of control pointsφi,j,k with uniform spacing. The FFD can
be written as the 3D tensor product of the familiar 1D cubic
B-splines:

Tlocal(x, y, z)

=

3∑
i=0

3∑
j=0

3∑
k=0

Bi(u)Bj(v)Bk(w)φi+l,j+m,k+n (1)

where

l = b x

nx
c − 1, m = b y

ny
c − 1, n = b z

nz
c − 1,

u =
x

nx
− b x

nx
c, v =

y

ny
− b y

ny
c, w =

z

nz
− b z

nz
c

andBi represents thei-th basis function of the B-spline.

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6 (2)

where u ∈ [0, 1].
To relate a post-contrast enhanced image to the pre-

contrast enhanced reference image, we must define a sim-
ilarity criterion which measures the degree of alignment
between two images. Given that the image intensity might
change after the injection of the contrast agent, one cannot
use a direct comparison of image intensities, such as sum
of squared differences (SSD) or correlation, as a similarity
measure. Alternatively, mutual information (MI) has been
chosen as a voxel-based similarity measure. To avoid any
dependency on the amount of image overlap, the use of
normalized mutual information (NMI) was suggested as a
measure of image alignment:

Csimilarity(A, B) =
H(A) + H(B)

H(A, B)
(3)

Csmooth =
1

V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+

(
∂2T

∂z2

)2

+ 2

(
∂2T

∂xy

)2

+ 2

(
∂2T

∂xz

)2

+2

(
∂2T

∂yz

)2
]
dxdydz (4)

To find the optimal transformation, we minimize a cost
function associated with the global transformation param-
etersΘ, as well as the local transformation parametersΦ.
The cost function comprised two competing goals. The
first term represents the cost associated with the image sim-
ilarity Csimilarity in Equation 3, while the second term
corresponds to the cost associated with the smoothness of
the transformationCsmooth in Equation 4. Here,λ is the
weighing parameter which defines the trade-off between
the alignment of the two image volumes and the smooth-
ness of the transformation.

C(Θ, Φ) = −Csimilarity(I(t0), T(I(t))) + λCsmooth(T) (5)

For computational efficiency, the optimization proceeds
in several stages. Initially, the affine transformation pa-
rametersΘ (upper dashed box in Figure 1) are optimized
at increasing levels of image resolution by maximizing the

For k=0 to k=M
Begin

K = k + n - 1
if (0 <= K <= N)

out = out + const*Phi[K]
End

where n ∈ [0, N − 1], K ∈ [−1, N + M − 2]

Figure 2: Conditional for-loop, wheren, M and N are
integers, and alsoN ≥ M .

For k=0 to k=M
Begin

K = k + n
out = out + const*Phi[K]

End

where n ∈ [0, N − 1], K ∈ [0, N + M − 1]

Figure 3: Transformed loop with limited range of input,
wheren, M andN are integers, and alsoN ≥ M .

normalized mutual information (NMI) (Equation 3). Dur-
ing the subsequent refinement, the non-rigid transforma-
tion parametersΦ (lower dashed box in Figure 1) are opti-
mized at increasing levels of resolution of the control point
mesh. The approach to our image registration is shown in
Figure 1.

3 Conditional Loop Transform

In the three nested for-loop of the B-spline based FFD
local deformation, there are three conditions which deter-
mine whether the loop body is executed or not. All of these
conditions not only depend on the for-loop variables, but
also the input values of the deformation.

Assuming that we have a simplified conditional for-loop
as shown in Figure 2. We can transform the conditional
for-loop into one without theif statement by including two
more elements in thePhi[K] data array (Figure 3) with
one in the first and the other in the last of the array. Hence,
Phi[K] has(N + M) instead of(N + M − 2) elements,
and the value ofPhi[0] andPhi[N + M − 1] are assigned
to zero so that the final value ofout would not be affected.
This method can be used to transform the FFD computa-
tion as explained below.

Figure 4 shows the pseudo code of the nested for-loop
for the FFD computation used in 3D images. The inner
loop body would be executed only whenK, J andI are
all satisfied. The variablesn, m andl are the integer part
of the input fixed-point numbers, of whichu, v andw are
the fraction part. Although one can implement a sequential

For k=0 to k=3
Begin

K = k + n - 1
if (0 <= K < CP_Z)

For j=0 to j=3
Begin

J = j + m - 1
if (0 <= J < CP_Y)

For i=0 to i=3
Begin

I = i + l - 1
if (0 <= I < CP_X)

x = x + Bi(u) * Bj(v) * Bk(w) * Phi_X[K][J][I]
y = y + Bi(u) * Bj(v) * Bk(w) * Phi_Y[K][J][I]
z = z + Bi(u) * Bj(v) * Bk(w) * Phi_Z[K][J][I]

End
End

End

Figure 4: Pseudo code of B-spline based free-form defor-
mation, wherel = bx/nxc, m = by/nyc, n = bz/nzc.

For k=0 to k=3
Begin

K = k + n
For j=0 to j=3
Begin

J = j + m
For i=0 to i=3
Begin

I = i + l
x = x + Bi(u) * Bj(v) * Bk(w) * Phi_X[K][J][I]
y = y + Bi(u) * Bj(v) * Bk(w) * Phi_Y[K][J][I]
z = z + Bi(u) * Bj(v) * Bk(w) * Phi_Z[K][J][I]

End
End

End

Figure 5: Pseudo code of transformed loop, wherel =
bx/nxc,m = by/nyc, n = bz/nzc.

hardware implementation using Handel-C [4], the perfor-
mance is predictably low. In order to get high throughput
in hardware, pipelining is a useful technique. However,
the conditions within the nested loop make it difficult to be
pipelined.

Following the method explained earlier, we use a trans-
formed loop structure (Figure 5) that eliminates the con-
ditional statements by assigning the first and the last el-
ements of the transformed data array to zero. A control
lattice of a 2D FFD computation after the transformation is
shown in Figure 6, in which the gray control points outside
the image are the appended points after the transformation.
With this method, a pipelined implementation of B-spline
based FFD algorithm for processing 2D images can been
successfully fitted into an FPGA.

4 Pipelined Designs for FFD

Our pipelined designs for FFD mainly involves three
steps. The first step is to precalculate the four basis func-
tions of a third-order B-spline, as shown in Equation 2, and
store the values in four lookup tables accordingly. The sec-
ond step is to design a pipelined FFD core. The third step

(0,0)

1
 CP_X-2
 CP_X-1

1

CP_Y-2

CP_Y-1

X

Y

. . .

.

.

.

CP_X

CP_Y

. . .

.

.

.

Figure 6: The arrangement of control lattice on a 2D im-
age.

is to deploy multiple pipelines.
We precalculate the values of each basis function of the

third-order B-spline and store it in a lookup table with 1024
entries. The reason we choose 1024 entries for each basis
function of the B-spline is that the highest resolution of
a 2D medical image that we use is 2048 by 2048, and the
lowest possible mesh of control points is 3 by 3. Therefore,
the smallest possibleu (Equation 2) is(3− 1)/(2048−1),
which means a lookup table with 1024 entries for approxi-
mating each basis function is accurate enough.

Thus, for four basis functions of the third-order B-
spline, we have four lookup tables, each with 1024 entries.
With a customised data format of a 12 bit-width version,
each lookup table requires 1024×12 bits.

Before the pipelined multiplier and adder, there is a
Stage 1 circuit which pre-processes input data in fixed-
point format (Figure 7). This circuit can be obtained by ap-
plying the slowdown transformation used in deriving sys-
tolic array designs [12]. The input datax, y andz to this
stage are interleaved and processed so that the integer and
fraction part of the lookup table containing the data can be
stored in separate temporal registers. Thereafter the inte-
ger part is used as the index to the input control point lat-
tice, which is stored in external memories (LUTCP X, Y,
Z block in Figure 7), while the fraction part is used as the
index to the B-spline lookup tables (LUT B-spline block in
Figure 7). All the results that come from the lookup tables
and control point lattice are fed into the next stage of the
pipeline on every cycle.

In Stage 2, 3 and 4, one pipelined adder and three
pipelined multipliers are used to produce the final result.
All these four arithmetic operators are in customisable

MULT_P

ACC_P

MULT_P

MULT_P

Phi_X,Y,Z

LUT

B-spline

X,Y,Z

Stage 1

Stage 2

Stage 3

Stage 4

X,Y,Z

Integer Part
 Fraction Part

Figure 7: Single-channel pipelined hardware for free-form
deformation computation. MULTP denotes a pipelined
floating-point or fixed-point multiplier. ACCP denotes a
pipelined floating-point or fixed-point adder.

fashion. We can either choose floating-point arithmetic
format [1], which is based on Xilinx LogiCORE [16], or
alternatively, fixed-point format. Stage 2 and 3 each takes
six cycles, while Stage 4 takes three cycles.

Currently, we only use one input channel; therefore, the
total number of execution cycles is around

Nd × (i + 1)d × 3 (6)

whereN denotes the pixels in each axis of an image,i
denotes the order of B-spline, and finallyd represents the
dimension of an image.

The input data have to be interleaved so that the whole
pipeline could be fully used. In the pseudo code (Figure 3),
we can see that the value ofBi(u), Bj(v) andBk(w) need
to be accessed simultaneously in order to make a more ef-
ficient pipeline. Therefore, we replicate the lookup tables
twice to meet the requirement of accessing three indepen-
dent lookup tables concurrently (Equation 1).

For implementations targeting Celoxica’s RC2000
board with a Xilinx XC2V6000 chip, the total cost for a
12 bit-width mantissa with 8 bit-width exponent represen-
tation is only 25 percent of the block RAM resources.

A faster system can be achieved as follows. For the pur-
pose of illustration, only 2D images are considered. A 2D
version of the algorithm in Figure 4 can be transformed by

Table 1: Estimation of hardware resources in two different
implementations.

Implementations One channel Three channels

Multipliers 3 5

Adders 1 3

For j=0 to j=3
Begin

J = j + m0..m15 //within a grid, the value
//of m0..m15 is the same

For i=0 to i=3
Begin

I = i + l0..l15 //within a grid, the value
//of l0..l15 is the same

x0 = x0 + Bi(u0) * Bj(v0) * Phi_X[J][I]
x1 = x1 + Bi(u1) * Bj(v1) * Phi_X[J][I]
...
x15 = x15 + Bi(u15) * Bj(v15) * Phi_X[J][I]

y0 = y0 + Bi(u0) * Bj(v0) * Phi_Y[J][I]
y1 = y1 + Bi(u1) * Bj(v1) * Phi_Y[J][I]
...
y15 = y15 + Bi(u15) * Bj(v15) * Phi_Y[J][I]

End
End

Figure 8: Pseudo code of transformed loop, where l0..l15
are the integer part of x0..x15, m0..m15 are the integer part
of y0..y15, u0..u15 are the fraction part of x0..x15, v0..v15
are the fraction part of y0..y15.

(0,0)
 (1,0)
 (2,0)
 (3,0)

(0,1)

(0,2)

(0,3)
 (1,3)
 (2,3)
 (3,3)

(3,2)

(3,1)
(2,1)
(1,1)

(1,2)
 (2,2)

x0
 x1
 x2
 x3

x4
 x5
 x6
 x7

x8
 x9
 x10
 x11

x12
 x13
 x14
 x15

Figure 9: The effect of control lattice on the pixels in the
grid.

MULT_P

ACC_P

MULT_P

MULT_P

LUT

B-spline

Fraction

Part X

y
0

Integer

Part X

Integer

Part Y

x
0

Fraction

Part Y

Phi_X
 Phi_Y

MULT_P

x
1

x
15

.
.
.

y
1

y
15

.
.
.

FIFO

ACC_P

FIFO

v
0

v
1

v
15
.
.
.

l
0

l
1

l
15
.
.
.

m
0

m
1

m
15
.
.
.

u
0

u
1

u
15

.
.
.

x
0

x
1

x
15

.
.
.

y
0

y
1

y
15

.
.
.

Figure 10: The new 2-channel architecture for processing
2D images.

inlining into the one shown in Figure 8. For all the pixels
within a grid of control lattice, the surrounding sixteen con-
trol points have similar effect on them. As we can see from
Figure 9, the16 central gray pixels are manipulated by the
control points fromΦ(0, 0) to Φ(3, 3). Assuming that we
have two input channels for storing the values of the po-
sition of pixels inx andy directions, and two more chan-
nels for the values of control pointPhi X andPhi Y , we
can feed inx0..x15 sequentially in thex channel while
calculating the effect of upper-leftΦ(0, 0) on these pix-
els, then calculating the effect ofΦ(1, 0) on them after 16
clock cycles. Finally all the sixteen control points would
have been applied on these pixels (Figure 10). The total
memory banks that we need for processing 2D images are
seven, two for channels of input datax andy, two for chan-
nels of output data, two for control points and one for the
precalculated B-spline data. In the case of computing 3D
images, ten memory banks are needed.

If we use this method to process 3D images of resolu-
tion N by N by N , the total number of cycles for exe-
cution is aroundN × N × N × 64. In this case, there
are16 × 3 values coming out every64 × 16 clock cycles.
Compared with the previous architecture, the throughput
is three times higher, however, it needs more hardware re-
sources (Table 1).

Table 2: Hardware results of floating-point representation
in different mantissa bit-width for a Xilinx XC2V6000
FPGA for images of 256 by 256 resolution.

Format Exponent Mantissa Clock Speed Area

(bits) (bits) (MHz) (slices)

Floating-point 8 23 67.4 3423

8 16 74.3 3340

8 12 76.3 3189

Table 3: Hardware results of fixed-point representation in
different fraction bit-width for a Xilinx XC2V6000 FPGA
for images of 256 by 256 resolution.

Format Integer Fraction Clock Speed Area

(bits) (bits) (MHz) (slices)

Fixed-point 8 23 72.8 4031

8 16 83.3 3661

8 12 85.1 3490

5 Custom Number Representation

Our investigation shows that normally a fixed-point
multiplier requires more hardware resources than a
floating-point multiplier with the same dynamic range. In
this case, we have three multipliers and only one adder.
Thus, we decide to implement the pipeline using floating-
point arithmetic rather than to implement it using fixed-
point arithmetic. A customisable floating-point library
which utilizes the Xilinx LogiCORE has been used to con-
struct our pipeline in hardware. The speed and area char-
acteristics of our custom floating-point number representa-
tion are investigated (Table 2). For comparison, we have
also implemented our design using fixed-point format (Ta-
ble 3). The area cost of our design using fixed-point format
is higher than the floating-point format, while the clock
speed for the fixed-point format is slightly faster.

The width of the floating-point number in our cus-
tom floating-point library can be adjusted: we can change
the mantissa and exponent parameters at compile time to
achieve a variety of trade-offs in performance and hard-
ware resources.

The accuracy of the entire calculation has been esti-
mated by testing 2D images with a resolution of 256 by
256, and a 4 by 4 control point lattice. When comparing
with the standard IEEE double-precision format with 52-
bit mantissa, our design with 12-bit mantissa only has an
average error of 0.0009 (Figure 11) and a maximum error
of 0.0021 (Figure 12).

Based on the speed and area cost of this implementation

Average Error vs. Mantissa Bit-width/Fraction Bit-width

9.315E-04

2.242E-04
 2.147E-04

1.071E-03

2.257E-04
 2.147E-04

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

12
 16
 23

Bit Width

A
ve

ra
g

e
E

rr
o

r

Floating point format

Fixed point format

Figure 11: Average error against mantissa(floating-point)
and fraction(fixed-point) size ranging from 12 bits to 23
bits.

Maximum Error vs. Mantissa Bit-width/Fraction Bit-width

2.111E-03

6.384E-04
 5.925E-04

2.132E-03

6.691E-04

5.925E-04

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

12
 16
 23

Bit Width

M
ax

im
u

m
 E

rr
o

r

Floating point format

Fixed point format

Figure 12: Maximum error against mantissa(floating-
point) and fraction(fixed-point) size ranging from 12 bits
to 23 bits.

Virtex II

FPGA

ZBT SRAM

4MBytes

ZBT SRAM

4MBytes

ZBT SRAM

4MBytes

ZBT SRAM

4MBytes

ZBT SRAM

4MBytes

ZBT SRAM

4MBytes

PCI DMA

Figure 13: The RC2000 board with six memory banks.

in an FPGA, we conclude that a custom floating-point rep-
resentation of 12-bit mantissa will be sufficient for the FFD
calculation used in an image of resolution 256 by 256. As
a result, it is possible to deploy several pipelines on a large
FPGA regardless of memory boundary and available pins,
such as Xilinx Virtex II devices.

6 Performance

For a 2D image of resolution 256 by 256, the clock
speed after place and route of our current two-pipeline im-
plementation on a Xilinx Virtex II XC2V6000 device (Ta-
ble 4) with 12-bit mantissa and 8-bit exponent is 67 MHz,
which still exceeds the clock rate between the FPGA and
the six ZBT SRAMs on the RC2000 (Figure 13), which
only supports up to 67 MHz. Therefore, the estimated ex-
ecution time for the XC2V6000 device is

256× 256× 16× 3
67× 106 × 2

' 0.023(second)

Compared with the software version which runs on an
Intel Xeon 2.66 GHz PC, the execution speed of our cus-
tomised system is around 2.2 times faster. If we are not
limited by the number of external memory banks, then the
optimised architecture that we propose in Section 4 can be
chosen as our FFD processor. The execution speed would
be 3.2 times faster than the software version, if we can run
this design at around 67 MHz.

Looking towards the future, medical images are adopt-
ing increasingly higher resolution. For instance, if we need
to process a 2D image of resolution 1024 by 1024, then
it is essential to partition the image into multiple subim-
ages, such that each subimage will be dealt with by a sepa-
rate processor, which also has access to the relevant control

point information. To achieve near real-time performance,
we can partition each high-resolution image into 3 by 3
subimages. A system containing 9 pipelined processors
running in parallel is required: each processor would pro-
cess one subimage, which contains 12-bit fixed-point data,
at around 85 MHz (see Table 3). For this system, the slice
resources required would be around 3490× 9 = 31410,
whereas the Xilinx XC2V6000 has 33792 slices. The esti-
mated execution time is (1024× 1024× 48) / (85× 106

× 9) = 66 milliseconds, which gives a frame rate of around
15 frames per second.

7 Summary

We have described hardware techniques for medical im-
age processing. The key elements of our approach in-
clude precalculating the B-spline basis function, adopt-
ing custom number representation, transforming a nested
loop to avoid conditional calculation, and developing fully-
pipelined circuits and multiple pipeline designs. Current
and future work includes integrating our design with a
hardware image warper [11], automating conditional loop
transformations [17], and exploring the use of run-time re-
configuration to reduce the amount of FPGA resources re-
quired [15].

Acknowledgements

The support of Xilinx, Inc., Celoxica Limited, and the
UK Engineering and Physical Sciences Research Coun-
cil (Grant number GR/N 66599, GR/R 31409 and GR/R
55931) is gratefully acknowledged.

References

[1] A. Abdul Gaffar, W. Luk, P.Y.K. Cheung and N. Shi-
razi, “Customising floating-point designs,”Proc. IEEE
Symposium on Field-Programmable Custom Comput-
ing Machines, IEEE, 2002.

[2] X.L. Battle, C. Le Rest, A. Turzo and Y. Bizais, “Free-
form deformation in tomographic reconstruction. Ap-
plication to attenuation map reconstruction,”IEEE
Transactions on Nuclear Science, vol.47, pp. 1065 -
1071, June 2000.

[3] C. Berthaud, E. Bourennane, M. Paindavoine and
C. Milan, “Implementation of a real time image rota-
tion using B-Spline interpolation On FPGA’s Board,”
International Conference on Image Processing, 1998.
ICIP 98. Proceedings. 1998, vol.3, pp. 995–999, 1998

Table 4: Performance comparison of FFD processors for 2D images of 256 by 256.

Processor Data Format Clock Speed Exec.Time Throughput

(MHz) (ms) (pixels/second)

XC2V6000 (one pipeline, Figure 10) fixed-point 67 16 4187500

XC2V6000 (two pipelines, Figure 7) floating-point 67 23 2791667

XC2V6000 (one pipeline, Figure 7) fixed-point 85.1 37 1772917

XC2V6000 (one pipeline, Figure 7) floating-point 76.3 41 1583333

Xeon (Dual processor) floating-point 2666 50 1310720

AMD Athlon floating-point 1400 100 655360

Pentium 4 floating-point 1800 110 595782

Pentium III floating-point 933 140 468114

[4] http://www.celoxica.com, Celoxica Limited.

[5] S. Coric, M. Leeser, E. Miller and M. Trepanier,
“Parallel-beam backprojection: an FPGA implemen-
tation optimized for medical imaging,”Proc. ACM In-
ternational Symposium on FPGAs, ACM Press, 2002.

[6] L.A. Ferrari and J.H. Park, “An efficient spline basis
for multi-dimensional applications: image interpola-
tion,” Proceedings of 1997 IEEE International Sympo-
sium on ISCAS ’97, vol.1, pp. 757–760,1997.

[7] Jianlin Gao, MengChu Zhou, Haimin Wang and
Chongzhe Zhang, “Three dimensional surface warping
for plastic surgery planning,”2001 IEEE International
Conference on Systems, Man, and Cybernetics, vol.3,
pp. 2016–2021, 2001.

[8] S. Horbelt, A. Munoz, T. Blu and M. Unser, “Spline
kernels for continuous-Space image processing,”IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 2000. ICASSP ’00. Proceedings.
2000, vol.4, pp. 2191 -2194, 2000.

[9] J. Jiang, W. Luk and D. Rueckert, “FPGA-based Com-
putation of Free-Form Deformations,”IEEE Interna-
tional Conference on Field-Programmable Technol-
ogy, pp. 407–410, 2002.

[10] J. Jiang, W. Luk and D. Rueckert, “An FPGA-based
Computation of Free-Form Deformations”,Proc.
Field-Prog. Logic and Applications, LNCS 2778,
Springer-Verlag, 2003.

[11] J. Jiang, S. Schmidt, W. Luk and D. Rueckert, “Pa-
rameterizing designs for image warping,”Reconfig-
urable Technology: FPGAs and Reconfigurable Pro-
cessors for Computing and Communications, Proc.
SPIE, vol. 4867, 2002.

[12] S.Y. Kung, “VLSI Array Processors,”Prentice Hall,
1988.

[13] D. Rueckert, C. Hayes, C. Studholme, P. Summers,
M. Leach and D. J. Hawkes, “Non-rigid Registra-
tion of Breast MR images using Mutual information,”
In First Int. Conf. on Medical Image Computing and
Computer-Assisted Intervention (MICCAI ’98), Lec-
ture Notes in Computer Science, Cambridge, MA,
pp. 1144–1152, 1998. Springer-Verlag.

[14] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill,
M. O. Leach and D. J. Hawkes, “Non-rigid registration
using free-form deformations: Application to breast
MR images,”IEEE Transactions on Medical Imaging,
vol.18, no.8, pp. 712–721, 1999.

[15] N. Shirazi, W. Luk and P.Y.K. Cheung, “Framework
and tools for run-time reconfigurable designs,”IEE
Proc. Comput. Digit. Tech., May 2000, pp. 147–152.

[16] http://www.xilinx.com/products/logicore/
lcoredes.htm, Xilinx, Inc.

[17] M. Weinhardt and W. Luk, “Pipeline vectorization,”
IEEE Trans. on Computer-Aided Design, February
2001, pp. 234–248.

[18] T. Yokota, M. Nagafuchi, Y. Mekada, T. Yoshinaga,
K. Ootsu and T. Baba, “A Scalable FPGA-based Cus-
tom Computing Machine for a Medical Image Process-
ing,” Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 307–308, 2002.

