o

PARAMETRISED NEURAL NETWORK DESIGN AND
COMPILATION INTO HARDWARE

Wayne Luk, Adrian Lawrence, Vincent Lek, lan Page and Richard Stamper

INTRODUCTION

Most artificial neural networks consist of one or more arrays of compaonents, each of which
is obtained by replicating a few simple processing clements connected together in a uniform
manner. This paper illustrates the use of Ruby, a language of relations and functions, for
describing such networks and for implementing them in hardware. Qur objective is to enable
designs to be rapidly realised and evaluated.

Ruby has a number of generic relations — such as replication and transposition — that can
be used to generate interconnection patterns commaonly found in neural systems. It also has
a small set of constructors for building composite circuits from simpler ones. These features
enable many neural architectures, for instance multi-layer percepirons and Hopfield networks,
to be captured very concisely in Ruby.

We shall also discuss how Ruby can be used 1o derive, from a simple expression, a
complex parametrised representation for a family of architectures. For instance, o paratlel
design such as the perceptron network shown in Figure 5a can be systematically transformed
into a seria architecture like that in Figure 7. This approach permits developing from a high-
level description a range of designs with different performance trade-offs, and the features of
such designs can be summarised quantitatively — see Table 1 for an example. These tables
can be used to find an appropriate implementation for a particular application, given the
performance required and the availability of hardware resources.

In the next section we shall provide an overview of our approach, further details of which
can be found in Jones and Sheeran (1990) and Luk (1992).

DESIGN REPRESENTATION

A design will be represented by a binary refation of the form = 2 y where z and y represent
the interface signals and belong respectively to the domain and range of R. For instance, a
squaring operation can be described by z sqr y 4 7 = y or, more succinctly, by z sgr 2

Transformed or composite circuits are usually described by functions which map one or
more relations to a relation. As an example, the converse of Risdefinedby z 2~ yey R 1.
It can be considered as a reflected version of 1,

Two components ¢ and fi can be connected together if they share a compatible interface
s which is hidden in the composite circuit (Figure 1a): @; Rt is given by z (Q: R)y &
3s. (z @s) & (s Ry). For instance, x (sqr;sqr)z®. This is, of course, just the common
definition of relational composition. It is simple to show that relational composition is
nssociative, and that (Q; R}~ = R-1;@~'. A collection of such theorems constitutes a
calculus for reasoning about designs, which can usually be used without the need to refer to
the meaning of symbols such as ¢ and R.

As shown later, many uscful theorems can be expressed in the form B = P-1;@; P. The
pattern P~1; @; P — in words * ¢ conjugated by P* — will be nbbreviated as Q\P.

VLS! for Neural Networks and Antificial Invelligence
Edited by J.G. Delgado-Frias, Plenum Press, New York, 1994 197

[
b ;
flyl U
T 3 -y a—{Q}3{R]—r £
P
8 QR b. [@, R] . Qef d QIR

Figure 1 Binary compositions.

Farallel composition of two components @ and R, given by [}, R] (Figure 1b), Tepresents
the combination with no connection between Q and K. Given that a tuple (an ordered
collection) of signals are enclosed by angle brackets, parallel composition can be defined by
(m0, 1) (@, B] (w0, 31} ¢ (0 Q) & (21 Ry)s s0 {z,y) [sqr, (sqr: sqr)] (2,). One can
easily check tha[P, Q)i [R, S| = [P R, @:5), and that [P, Q] = [P-1, @-1).

There are several operations involving pairs of signals that we will require. First of
ali, given that : is the identity relation, we have the abbreviations fst R = [R,], and
snd 2 = [¢, R]. Next, the relation fork can be used to duplicate n signal, since = fork (z, z).
The projection relations x; and x3 extract an element from apair: {z,y) m zand (z, y} w2 y.
Finally, we need to be able to swap the elements of a pair: {(z,y) swap {y, z). Examples of
theorems involving these operations include fst @ ;snd R = snd R ; st Q = (@, B] and
(@, R\swap = swap ; [Q, R} ; swap = [R, Q). It should also be clear that fork; [xy, 73] =
{t,d. and that y="; %) = ¢ & #;3m ™) in general and similarly for w3,

A rectangular component with connections on every side is modelled by a relation that
relates 2-tuples, with the two components in the domain corresponding to signals for the west
and notth side and those in the range corresponding 1o signals for the south and east side. Such
components can be assembled together by the beside («) and below (}) operators (Figure 1c
and Figure id): (a, (b, c)) (Q=R) {{p, g),7) ¢ 3. (2,5} Q (#,5) & {s,) R {g,r) and
QIR = (@™'«+R~")~1, Theorems that have been proved for beside can readily be adapted
for below, and vice versa.

Itisalso useful o have a conjugate operator for pairs: QY\[R, S| = [§-, R-']; @; R, S].
Given that the conjugate operators have a lower precedence than all other operators ex-
cept relational composition, one can show that QYR = R~\swap; Q: R, and that
snd@-Y RyfstQ = R\(fst@). We shall also use the abbreviations fsth B = Revswap,
fstv R = Rlswap, and fstvh 1 = fstv(fsth &),

Repeated compositions

Let us now look at the ways that we describe one- and two-dimensional arrays of compo-
nents. Repeated relational composition of a given relation 72 cascades together copies of R
(Figure 2a); it is defined inductively by the equations R! = Rand R* = R*; R.

Repeated parallel composition, map R (Figure 2b), relates two equal-length tples such
that the corresponding elements of the tuples are related by R (note that #z denotes the number
of elements in tuple 1):

if#z=#y=N then z(mapR)y & Vi:0<i<N.z Ry

For ¢larity, on some occasions we shall make explicit the number of R’s in a map and write
it as mapy R. This expression can be considered to be an abbreviation of map R\ N where
N is the identity relation on N-wples.

a, f? 1]
i
c. rowy i m m
dcoy 8 c.rdn R L AR
b. map; R

Figure2 Repeated compositions.

A row of components (Figure 2c} is built from repeated composition of beside, and can
be described by

if#.r:#yzNandnz:(a,::)andyb:(y,b) then
az{rowR)yb & Is.(o=a) & (sy = b) & Vi:0<i < N, {si, 5} R (yi, 501

A column of components (Figure 2d) can be obtained from col R = (row R-NYLA
degenerate form of col, called a right-reduction (rdr, Figure 2¢), is also frequently used; it
describes the result of applying a binary operation on a tuple in a right-nssociative manner,
like {(a, b, c),z) (rdradd)z < a + (b + (c + z)) = z. Right reduction can be defined
by rdrl = col(R;m~"); xy. The corresponding degenerate version of row, known as
left-reduction, is given by rdl R = row (R ; EP) PN

We shall also need the relation A R (Figure 2f) which relates two equal-length tuples such
that their i-th elements relate to each other according to 7', The A operator is useful for
formulating distributive theorems for col: on the assumptionthat (A, B]; Risnd €' = R:fst B,
one can show that

coly (sndB; R) = [AA, B col, B :snd AC. (1)

The use of this equation in pipelining designs will be explained later,

Sometimes we shall need 1o interleave an array of components from two equal-length
tuples. This can be achieved by zip, given by (z, YpzreVi:0<i<N. {zi, i) = =,
on the assumption that #z = #y = #z = N, For instance, {(1,2,3),(4,5,6)) zip {{1,4),
(2,5),(3,6)}.

Sequential circuits and serialisation

So far we have been using relations to model a static sttuation — the steady state behaviour
of a circuit at a particular instant of time. To deal with sequential circuits, an expression
is interpreted as a relation that relates a strearm in its domain to a stream in its range. For
our purpose, o stream can be considered to be a doubly-infinite tuple containing data at
successive clock ‘ticks’. Notice that the clock is an abstract means for specifying data
synchronisation, and it may be realised either by a global synchronous clock or by some
hand-shaking mechanism.

We shall use z, 10 denote the {-th element from some reference point — such as the time
when the circuit is initialised — in the stream z; given that z, is a wple, =y, is its i-th element.
An adder can be described in the stream model asradd y & Vi oo+ 15, = g,

There are two primitives that do not POSSess a static interpretation, The first is defay, D,
definedby Dy & Vi 7oy = y,. An anti-delay D-' is such that DD =D D=, A

latch is modelled by a delay with data flowing from domain to range, or by an anti-delay with
data flowing from range to domain.

For a circuit £ which contains no primitives that possess a measure of absolute time,
itisthe casc that DR = B;D. With A = B = Dand € = D', the pre-condition for
Equation 1 becomes valid so that the transformation can be applied 1o disiribuie latches among
the R's to reduce the longest combinational path. This process is usvally called reriming, and
examples of deriving pipelined circuits based on an algebraic treatment of retiming can be
found elsewhere (Jones and Sheernn 1990, Luk 1992).

A serial design R with an internal feedback path can be modelled by the loop construct in
Figure 3. One can show that v R = (fstv R)Ysnd sndfo~! where z sndfb {{z, s), s).

u

s e

¥
(z,u) (v) {y,v) & Ta.({z,s),u} R (y,(v,3})
Figure 3 A function that describes designs with feedback.

The intuitive idea behind our serialisation equations, the details of which are included in
Luk (1992), is to circufate data through a processor » times to emulate the effect of n cascaded
processors. A multiplexer emz, conirols when 1o accept external data z and feedback
data y: {..., {m, o}, (21, W}y (=2,), .} @mmzs (., 20 11y 2 33, 34, 15, - .), ndl the relation
bundle, describes converting between scrial and parallel data: (..., 2, 21, 22, 33, 24, 35,...}
bundley {..., {2, 71,22}, {33, 24, 35},...). The relations evy! and ev, arc used to inject
and to reject dummy data when the processor is in feedback mode: {...,z, 71, 32,...) vy
{-*+,a, 73, 3, -}. The number of laiches in a serinlised processor, slow, R, has to be n
times of that of the unserialised version £, since it contains up 1o n interleaved computations
with each corresponding to a copy of R. As an example, the following equation can be used
to serialise a row of components:

row, B = v(fstemz, ;slow. B ; snd (D; fork)} % [bundle,, ev,] ; snd D' (2)

Apain the comresponding theorem for a column of components can be abained by substituting
sow R by (cal R=')-.

DEVELOPING PERCEPTRONS

First, recall that if £ is a tuple, then {z,0) (rdvadd) 3, 7. Letxleyerz = y = ¢, and
sndzero = m~';snd 0. Then z (sndzero;rdradd) T, ;.

Given input r; and weights w;; where 0 < i < mand 0 € j < =, a node in a perceptron
computes the output y; = th (¥, wi; x ;) where th is a threshold function such as the
sigmoid function; that is, {z, w;) zmadds y; where zmadds = :zip;sndzero;rdt, madd; th,
and madd = fst mult; add. To pass the value of r 10 a neighbouring node, we usc the wiring
cell wirel = fork;sndz; to implement a broadcast circuit, so that {z, w;) nodel {y;,z)
where nodel = wirel;{st zmadds.

A layer in a perceptron consists of a row of m nodes, layer]l = row,, nodel ; = (Fig-
ure da), and our first description of a multi-layer perceptran, mip1 (Figure 4b), is assembled
by arranging the layers according to left reduction:

mipl = rdllayerl = row(layerl ; ;") ;5 =,

200

2p

Figure 4a Design layerl (m = n = 2).

Figure 4b Design mipl.

Our next task is to distribute the multiply-ndders madd among the buses in the broad-
cast cell wirel; this transformation does not substantially improve performance by itself,
but it cnables further transformations such as pipelining and serialisation 10 be applied.
Using equations such as wirel = fstfork; fstvuwirel;sndwy, zip = (map wirel)\zip~! and
Jork; zip = map fork, we abtain leyer2 (Figure 5a) which has a more uniform layout:

fayer2 = snd{map sndzero) ; row,, node2 ; =,
node2 = wire2 — (col, madd2;fstth); fstxy,
wire2 = map (wirel;m~)\ zip~!,

madd2 = fstv(madd; s~);sndr,.

It can be shown that snd sndzero; node2 = nodel, and the size and performance of fayerl
and leyer2 are identical if area and delay of wires are ignored.

Pipelining and serialisation

Since mip2 = row {layer2 ; 73~} ; w3, we can use the row version of Equation 1 to pipeline
it and Equation 2 to serialisc it; one possibility is shown in Figure 5b. There are further
opportunities in transforming the architecture of Jeyer2, and we shall consider some of these
next.

If all the coefficients w;’s are hardwired in node2, we can eliminate the wire2 block to give
node3, which behaves like snd (fst [w; |0 < i < n]); node2 while having a simpler structure.
Given that icol { P, @, R) describes a column of heterogeneous compotients with P below @
below R, then

node3
madd3.~

icol (madd3;{0 < ¢ < n),
fst (fork; fet (™" snd V1ey)) 5 madd?2.

To produce a faster circuit, a theorem similar 1o Equation 1 can be used 10 pipeline noded;
the resulting design, noded = icol (madd3;; stD)0 < i < n), is shown in Figure 6.

On the other hand, if we want 1o reduce the number of multiply-adders in la yer, theorems”
such as Equation 2 can be used to serialise it. Giventhat m = ap such that 1 < <m
and z sndfb {{z, y), v}, we can reduce the number of columns in layer2 by a factor of a by

20

input rl layer2)

it

Figure 5a Design layer2 (m = n = 2), Figure 5b Pipelined and serialised mip2.

.
mﬂdd3|/ L‘IEG_I:
............ -
o i |madd
Jork;fst {m~!;snd Luy)
laich —

Fipure 6 Design noded (n = 2).

serialising it horizontally to obiain

layerS = pre'layer5 ; raw, nodeS ; snd (map (fstD; fork™)) ; =y,
node5 wire5 e (col, ({sty madd2; fstth)); fstmy,
prelayer5 = [map(sndft; fst cmz,), map sndzcro),

Il

wire5 = map (fstv (wirel; ;™))\ zip~".

An example of layer5 will look like the one in Figure 7 without the vertical feedback wires
and the associated latches. Instantiating leyerS with a = m and p = 1 givesa design which
is similar to that described by Baji and Inouchi (1992).

Another possibility is to reduce the number of rows of cells in fayer2 by a factor of b
(where r = bgand 1 < b < n) by serialising it vertically; this gives

fayer6 = snd(map sndzero) ; row,, node6 ; 7,
node6 = pre'node6 ; wire2 « (col, (fsth madd2)) ; pest'node6,
pre‘node6 = snd (snd (sndfb; fst emz,)),
post'nodeb = st (ma;fstD; fork™; th).

Notice that the critical path is also reduced by a factor of b. Instantiating layer6 with b = n
and ¢ = 1 gives n design which is similar 10 that described by Skubiszewski (1992),

202

vy
- =
=] b

fach output

Figure 7 Design layer? (sc = gem,,,m=n=6,a=b=3,p=¢=2).

Finally, we describe the design fayer7 (Figure 7), obtained by serialising layer2 harizon-
tally by a factor of « and then veriically by a factor of b:
layer7 = pre'layer? ; row, node7 ; snd {map (fstD%; fork™")) ; my,
node? = pre'node6 ; wireS & (col, (fstvh madd2)) ; post'node6,
pre‘lager? = [map(sndfb;fst scm, .), map andzero],

where scmy,, = slows(gmz,) is a component that repeatedty extracts for b cycles the first
element of a pair and for the next (a — 1)b cycles the second element; for instance

(“' 1 (mr w)s (Il, yl)! (-‘-'2. !n).---)&ﬂ_u (--- s F0s Tny 129 14 B4, U8, 36, T, ylo---)-

A design similar 1o layer? can be obtained by first serialising layer2 vertically and then
horizontally; it will look like lzyer? but with more latches on the vertical wires than on the
horizontal wires. Note that the multiplier can itself be serinlised: one such strategy can be
found in Murray et af (1987).

‘The features of our designs are summarised in Table 1; note that T'., and T correspond to
the combinational delay of cell madd and th, and wire delays are assumed 1o be insignificant,
Such tables, when they are reasonably complete, can be used in checking whether designs
can be appropriately parametrised to meet requirements for a specific application. Promising
designs can then be implemented on Field-Programmatle Gate Arrays using the prototype
compilers for various dialects of Ruby (Luk and Page 1991),

EXAMPLE

In this section we report some experimentat results from software simulations which can be
used to guide the construction of hardware accelerators for neural systems.

The benchmark problem we examined was learning the parity of some set number of
binary inputs (Tesauro and Janssens 1988); we concentrated on the 4-parity problem, We

203

Table 1 Comparison of perceptron designs for computing th (L; w;; x z,}, where th isa
threshold functionand 0 £ i < mand0 < j < n.

Design Seriali- Minimum Number of Number Number Number
sation cycle inputs and of madd ofth of Jatches
factor time oulputs inafmy inaray inarmay

fayer2 1 T +Ta m+n+mn mn m 0

layerd 1 AToc + T m+n mn n 0

layerd 1 MAK(Toea;, Tin} m+n mn m mn

layer5 a e + T {m +na+mn)fa mnfa mfa n

layer6 b max(nTwa/t, T) (n+mb+mn)ib mnfb m nib

layer7 ab max(nTma/B,Ta) (na-+mb+mn)fab mnfab mja (mfa)+n

studied three-lnyer feed-forward perceptrons with 12 units in the hidden layer, using the
standard sigmoid threshold function. For simplicity in simulation, no momentum term was
used in back-propagation training. For the same reason we used incremental learning, back-
propagating error and vpdating connection weights after each presentation of a training case.

A network simulator was written in C, using a fixed-point representation for integers. The
results of all arithmetic operations were clipped to within a range determined by the number of
bits being employed. The sigmoid function was evaluated using floating point exponentiation
and division, but the resuit was appropriately quantised. Two cuestions regarding this fixed-
point approximation are: What is the minimum acceptable range? What is the minimum
acceptable precision?

Investigations into the minimum range revealed that no clipping occurred when five bits
(including the sign bit) were used for representing integers, and the amount of clipping that
occurred when four bits were employed had no significant effect on training.

To investigate precision, we trained nets with different fixed-precisions, but all with 4
bits for sign and integer. Training was considered to have succeeded when all outputs were
within 0.4 of their desired values, If success had not been achieved within 2000 epachs, the
net was regarded as having failed to train. Table 2 gives the (hypergeometric) mean number
af epochs for training, and the number of times that training failed in a series of 100 trials.
The number of bits given is the fofal number in the fixed-point representation. Performance
is satisfactory with 13 bits or more; with fewer, training fails too often.

Table 2 Effect of precision on training time.

Bits 17 16 15 14 13 12 11 10
Averageepochs 192 189 185 183 176 191 280 557
Failures 0 1 2 5 10 27 51 76

Alhough at least 13 bits are required for training, fewer are needed when applying a net.
This was investigated by training a network with 15-bit fixed-point numbers, then truncating
those weights successively down to 6 bits (Table 3). The second line of the table gives
the percentage of trinls in which there was no deterioration in performance. ‘Truncation
has a steady cumulative effect down 1o 8 bits, after which performance collapses. A more

2

sympathetic approach is to train the network to a greater degree; outputs must be within 0.2
of their desired values for success during training, but only within the 0.4 threshold when
testing (Table 3, third line). We now see no deterioration in performance down 1o 9 bits, and
the success rate at 8 bits is acceptable. The effect of reducing the range for execution was
also explored: a reduction to 3 integer bits always significantly reduced the success rates.

Table 3 Effect of wuncation on execution.

Bits 15 14 i3 12 11 10 9 8 7 6
% (threshold 0.4) 100 91 89 88 77 60 68 62 11 0
% (threshold 0.2) 100 100 100 100 100 100 100 97 46 0

Thus, for wraining, we found that o minimum of 13 bits are required for the numerical
representation, with 4 integer bits. For execution of a pre-trained network, however, as few
as 8 bits may be sufficient. These results agree with those of other studies (Holt and Hwang
1932),

We then used our compiler and timing analysis tools to estimate the speed of multipli-
crs implemented in Field-Programmable Gate Arrays manufactured by Algotronix Limited
(Algotronix 1990). Using a simple shift-and-add architecture, the maximum clock frequency
was found 1o range from 1.1 MHz for multiplying two 13-bit numbers, to 1.8 MHz for multi-
plying two 8-bit numbers, 10 7.5 MHz for multiplying two 2-bit numbers. A fully-pipelined
multiplier, operating in a bit-serial or in a bit-parallel fashion, can run at 16 MHz; this would
be autractive for applications such as video processing which demands high-throughput while
telerating large lntency. A more detailed evaluation of various ways of implementing neural
structures on a number of hardware platforms is currently being undertaken.

Note that the threshold function th can be implemented as a look-up table. An example
of how this was achieved is given in Cox and Blanz (1992).

CONCLUDING REMARKS

We have described a method of developing parametrised descriptions of neural networks with
different trade-offs in size and performance. Our framework provides a basis for theores
and computer-based tools to systematise and formalise design expertise, so that a variety of
architectures can be generated and evaluated rapidiy. Future work will include conducting
further casc studies, enhancing our libraries of components and transformations, and extending
them to handle optimisations such as weight sharing (Boser et af 1992).

ACKNOWLEDGEMENTS

‘The support of Rank Xerox (UK) Limited, the U.K. Science and Engineering Research Council
(GR/F47077), Scattish Enterprise and Algotronix Limited is gratefully acknowledged.

205

REFERENCES

Algotronix Limited, CAL 1024 Datasheet, 1990.

Baji, T. and Inouchi, H., “Systolic Processor Elements for a Neural Network”, US Patent
5,091,864, 25 February 1992,

Boser, B.E., Sackinger, E., Bromley, J., IeCun, Y. and Jackel, L.D., “Hardware Requirements
for Neural Network Pattern Classifiers”, JEEE Micra, February Issue, pp. 32-40, 1992,

Cox, C.E. and Blanz, W.E., “Ganglion— A Fast Ficld-Programmable Gate Array Implemen-
tation of a Connectionist Classifier™, JEEE J. Solid-State Circuits, vol. 27, pp. 288-299,
1992,

Holt, J.L. and Hwang, J.N., “Finite Precision Error Analysis of Neural Network Hardware",
10 appear in JEEE Trans. Neural Networks, 1992,

Jones, G. and Sheeran, M., “Circuit Design in Ruby”, in Formal Methods for VLSI Design,
1. Staunstrup (ed), North-Holland, pp. 13-70, 1990.

Luk, W, “Systematic Serialisation of Array-Based Architectures”, 1o appear in Integration,
Special Issue on Algorithms and VLSI Architectures, 1992,

Luk, W, and Page, I., “Parametrising Designs for FPGAs”™, in FPGAs, W. Moore and W. Luk
(ed), Abingdon EE&CS Books, pp. 284-295, 1991,

Murray, A.F., Smith, A.V.W. and Buder, Z.F,, “Bit-Serial Neural Networks", Proc. BIPS Conf.,
pp. 573-583, 1987.

Skubiszewski, M., “A Hardware Emulator for Binary Neural Newworks”, Proc. FPL 92,
Vienna, 1992,

Tesauro, G. and Janssens, B., “Scaling Relationships in Back-Propagation Learning”, Com-
plex Systems, vol. 2, pp. 39-84, 1988.

=1

