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Abstract

Design automation or computer-aided design (CAD) for field pro-
grammable gate arrays (FPGAs) has played a critical role in the rapid
advancement and adoption of FPGA technology over the past two
decades. The purpose of this paper is to meet the demand for an up-to-
date comprehensive survey/tutorial for FPGA design automation, with
an emphasis on the recent developments within the past 5–10 years. The
paper focuses on the theory and techniques that have been, or most
likely will be, reduced to practice. It covers all major steps in FPGA
design flow which includes: routing and placement, circuit clustering,
technology mapping and architecture-specific optimization, physical
synthesis, RT-level and behavior-level synthesis, and power optimiza-
tion. We hope that this paper can be used both as a guide for beginners
who are embarking on research in this relatively young yet exciting area,
and a useful reference for established researchers in this field.
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1
Introduction

The semiconductor industry has showcased the spectacular exponen-
tial growth of device complexity and performance for four decades, pre-
dicted by Moore’s Law. Programmable logic devices (PLDs), especially
field programmable gate arrays (FPGAs), have also experienced an
exponential growth in the past 20 years, in fact, at an even faster pace
compared to the rest of the semiconductor industry. For example, when
FPGAs were first debuted in the mid- to late-80s, the Xilinx XC2064
FPGA had only 64 lookup tables (LUTs) and it was used as simple glue
logic. Now, both Altera’s Stratix II [10] and Xilinx’s Virtex-4 chips [207]
offer up to over 200,000 programmable logic cells (i.e., LUTs), plus a
large number of hard-wired macro blocks such as embedded memories,
DSP blocks, embedded processors, high-speed IOs, and clock synchro-
nization circuitry, representing an over 3,000 times increase in logic
capacity. These FPGA devices are being used to implement highly com-
plex system-on-a-chip (SoC) designs. To support the design of such
complex programmable devices, computer-aided design (CAD) plays
a critical role in delivering high-performance, high-density, and low-
power design solutions using these high-end FPGAs. We witnessed the
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196 Introduction

establishment of FPGA design automation as a research area and a dra-
matic increase in research activities in this area in the past 17–18 years.
However, there is lack of comprehensive references for the latest FPGA
CAD research. Most existing books (e.g., [23, 27, 93, 151, 188]) and
survey/tutorial papers (e.g., [28, 52]) in this area are 10–15 years old,
and do not reflect vast amount of recent research on FPGA CAD. The
purpose of this paper is to meet the demand for a comprehensive sur-
vey/tutorial on the state of FPGA CAD—with an emphasis on the
recent developments that have taken place within the past 5–10 years
and a focus on the theory and techniques that have been, or most likely
will be, reduced to practice. We hope that this paper can be useful for
both beginners and established researchers in this exciting and dynamic
field.

In the remainder of this section we shall first briefly introduce some
typical FPGA architectures and define the basic terminologies that will
be used in the rest of this paper. Then, we shall provide an overview
of the FPGA design flow.

1.1 Introduction to FPGA Architectures

An FPGA chip includes input/output (I/O) blocks and the core pro-
grammable fabric. The I/O blocks are located around the periphery
of the chip, providing programmable I/O connections and support for
various I/O standards. The core programmable fabric consists of pro-
grammable logic blocks and programmable routing architectures. Fig-
ure 1.1 shows a high-level view of an island-style FPGA [23], which
represents a popular architecture framework that many commercial
FPGAs are based on, and is also a widely accepted architecture model
used in the FPGA research community. Logic blocks represented by
gray squares consist of circuitry for implementing logic. Logic blocks
are also called configurable logic blocks (CLBs). Each logic block is
surrounded by routing channels connected through switch blocks and
connection blocks. The wires in the channels are typically segmented
and the length of each wire segment can vary. A switch block con-
nects wires in adjacent channels through programmable switches such
as pass-transistors or bi-directional buffers. A connection block connects
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Fig. 1.1 An island-style FPGA [23].

the wire segments around a logic block to its inputs and outputs,
also through programmable switches. Notice that the structures of the
switch blocks are all identical. The figure illustrates the different switch-
ing and connecting situations in the switch blocks (the structures of
all the connection blocks are identical as well). In [23] routing archi-
tectures are defined by the parameters of channel width (W ), switch
block flexibility (Fs – the number of wires to which each incoming wire
can connect in a switch block), connection block flexibility (Fc – the
number of wires in each channel to which a logic block input or out-
put pin can connect), and segmented wire lengths (the number of logic
blocks a wire segment spans). Modern FPGAs also provide embedded
IP cores, such as memories, DSP blocks, and processors, to facilitate
the implementation of SoC designs.

Commercial FPGA chips contain a large amount of dedicated inter-
connects with different fixed lengths. These interconnects are usu-
ally point-to-point and uni-directional connections for performance
improvement. For example, Altera’s Stratix II chip [10] has vertical or
horizontal interconnects across 4, 16 or 24 logic blocks. There are ded-
icated carry chain and register chain interconnects within and between



198 Introduction

logic blocks as well. Xilinx’s Spartan-3E chip [206] has long lines, hex
lines, double lines, and direct connections between the logic blocks.
These lines cross different numbers of logic blocks. Specifically, the
direct connect lines can route signals to neighboring tiles vertically,
horizontally, and diagonally. For example, Figure 1.2 shows the direct
connect lines (a) and hex lines (b) between a CLB and its neighbors in
the Spartan-3E chip. The use of segmented routing makes the FPGA
interconnect delays highly non-linear, discrete, and in some cases, even
non-monotone (with respect to the distance). This presents unique chal-
lenges for FPGA placement and routing tools because a simple inter-
connect delay model using Manhattan distance between the source and
the sink may not work well any more. Accurate interconnect delay mod-
eling is a mandate for meaningful performance-driven physical design
tools for FPGAs.

Further down the logic hierarchy, each logic block contains a
group of basic logic elements (BLEs), where each BLE contains a

(a)

(b)

Fig. 1.2 Direct connect lines (a) and hex lines (b) in Xilinx Spartan-3E architecture [206].
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Fig. 1.3 A logic block and its peripheries.

LUT1 and a register. Figure 1.3 shows part of a logic block with a
block size N (the logic block contains N BLEs). The logic block has I

inputs and N outputs. These inputs and outputs are fully connected
to the inputs of each LUT through multiplexers. The figure also shows
some details of the peripheral circuitry in the routing channels.

In addition to logic and routing architectures, clock distribution
networks is another important aspect of FPGA chips. An H-tree based
FPGA clock network is shown in Fig. 1.4 [131]. A tile is a logic block.
Each clock tree buffer in the H-tree has two branches. There is a
local clock buffer for each flip-flop in a tile. Both clock tree buffers
in the H-tree and local clock buffers in the tiles are considered to
be clock network resources. Chip area, tile size, and channel width
determine the depth of the clock tree and the lengths of the tree
branches.

1 We focus on the LUT-based FPGA architecture in which the BLE consists of one k-input
lookup table (k-LUT) and one flip-flop. The output of the k-LUT can be either registered
or un-registered. We want to point out that commercial FPGAs may use slightly different
logic architectures. For example, Altera’s Stratix II FPGA [10] uses an adaptive logic
module which contains a group of LUTs and a pair of flip-flops.
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There is another type of programmable logic device called complex
programmable logic device (CPLD). The general architecture topology
of a CPLD chip is similar to that of island-based FPGAs, where rout-
ing resources surround logic blocks. One attribute of CPLD is that its
interconnected structures are simpler than those of FPGAs. Therefore,
the interconnect delay of CPLD is more predictable compared to that
of FPGAs. The basic logic elements in the CPLD logic blocks are not
LUTs. Instead, they are logic cells based on two-level AND-OR struc-
tures, where a fixed number of AND gates (also called p-terms) drive
an OR gate. The output from the OR gate can be registered as well.
For example, Fig. 1.5 shows such a structure (called macrocell) used
in Altera’s MAX7000B CPLD [6]. Each macrocell has five p-terms by
default. It can borrow some p-terms from its neighbors. The intercon-
nect structure PIA (programmable interconnect array) connects differ-
ent logic blocks together.

1.2 Overview of FPGA Design Flow

As the FPGA architecture evolves and its complexity increases, CAD
software has become more mature as well. Today, most FPGA ven-
dors provide a fairly complete set of design tools that allows auto-
matic synthesis and compilation from design specifications in hardware
specification languages, such as Verilog or VHDL, all the way down
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Fig. 1.5 An example of CPLD logic element, MAX 7000B macrocell [6].

to a bit-stream to program FPGA chips. A typical FPGA design flow
includes the steps and components shown in Fig. 1.6.

Inputs to the design flow typically include the HDL specification
of the design, design constraints, and specification of target FPGA
devices. We further elaborate on these components of the design input
in the following:

• The most widely used design specification languages are Ver-
ilog and VHDL at the register transfer level (RTL) which
specify the operations at each clock cycle. There is a general
(although rather slow) trend toward moving to specification
at a higher level of abstraction, using general-purpose behav-
ior description languages like C or SystemC [182], or domain-
specific languages, such as MatLab [185] or Simulink [185].
Using these languages, one can specify the behavior of
the design without going through a cycle-accurate detailed
description of the design. A behavior synthesis tool is used
to generate the RTL specification in Verilog or VHDL, which
is then fed into the design flow as shown in Fig. 1.6. We shall
discuss the behavior synthesis techniques in Section 5.
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Fig. 1.6 A typical FPGA design flow starting from RTL specifications.

• Design constraints typically include the expected operating
frequencies of different clocks, the delay bounds of the sig-
nal path delays from input pads to output pads (I/O delay),
from the input pads to registers (setup time), and from reg-
isters to output pads (clock-to-output delay). In some cases,
delays between some specific pairs of registers may be con-
strained. Design constraints may also include specifications
of so-called false paths and multi-cycle paths. False paths will
not be activated during normal circuit operation, and there-
fore can be ignored; multi-cycle paths refer to signal paths
that carry a valid signal every few clock cycles, and therefore
have a relaxed timing requirement. Typically, the designer
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specifies the false paths and multi-cycle paths based on his
knowledge of the design, although recently attempts have
been made to automatically extract these paths from the
RTL designs [87]. Finally, the design constraints may include
physical location constraints, which specify that certain logic
elements or blocks be placed at certain locations or a range
of locations. These location constraints may be specified by
the designer, or inherited from the previous design iteration
(for making incremental changes), or generated automati-
cally by the physical synthesis tools in the previous design
iterations. We shall discuss the physical synthesis concept
and techniques in Section 4.

• The third design input component is the choice of FPGA
device. Each FPGA vendor typically provides a wide range
of FPGA devices, with different performance, cost, and power
tradeoffs. The selection of target device may be an iterative
process. The designer may start with a small (low capacity)
device with a nominal speed-grade. But, if synthesis effort
fails to map the design into the target device, the designer
has to upgrade to a high-capacity device. Similarly, if the
synthesis result fails to meet the operating frequency, he has
to upgrade to a device with higher speed-grade. In both the
cases, the cost of the FPGA device will increase—in some
cases by 50% or even by 100%. This clearly underscores
the need to have better synthesis tools, since their quality
directly impacts the performance and cost of FPGA designs.

We now briefly describe each step in the design flow shown in Fig. 1.6
and, following that, we present an outline of the remainder of this
paper. Given an RTL design, a set of design constraints, and the target
FPGA device, the overall FPGA synthesis process goes through the
following steps:

• RTL elaboration. This identifies and/or infers datapath
operations, such as additions, multiplications, register files,
and/or memory blocks, and control logic, which is elaborated
into a set of finite-state machines and/or generic Boolean
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networks. It is important to recognize the datapath elements
as most of them have special architectural support in modern
FPGAs, such as adders with dedicated fast-carry chains and
embedded multipliers.

• Architecture-independent optimization. This includes both
datapath optimization, using techniques such as constant
propagation, strength reduction, operation sharing, and
expression optimization; and control logic optimization,
which includes both sequential optimization, such as finite-
state machine encoding/minimization and retiming, and
combinational logic optimization, such as constant propa-
gation, redundancy removal, logic network restructuring and
optimization, and don’t-care based optimization.

• Technology mapping and architecture-specific optimization.
This maps: (i) the optimized datapath to on-chip dedicated
circuit structures, such as on-chip multipliers, adders with
dedicated carry-chains, and embedded memory blocks for
datapath implementation, and (ii) the optimized control logic
to BLEs. Note that datapath operations can be mapped to
BLEs as well if the dedicated circuit structures are not avail-
able or not convenient to use.

• Clustering and placement. Placement determines the loca-
tion of each element in the mapped netlist. Since most mod-
ern FPGAs are hierarchical, a separate clustering step may
be performed prior to placement to group BLEs into logic
blocks. Alternatively, such clustering or grouping may be car-
ried out during the placement process.

• Placement-driven optimization and incremental placement.
Once placement is available, interconnects are defined and
may become a performance bottleneck (since the delay of a
long interconnect can be multiples of a BLE’s delay). Fur-
ther optimization may be carried out in the presence of
interconnect delays, including logic restructuring, duplica-
tion, rewiring, etc. After such operations, an incremental
placement step is needed to legalize the placement again.
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The step of placement-driven optimization is optional, but
may improve design performance considerably.

• Routing. Global routing and detail routing will be performed
to connect all signal paths using the available programmable
interconnects on-chip.

• Bit-stream generation. This is the final step of the design
flow. It takes the mapped, placed, and routed design as input
and generates the necessary bit-stream to program the logic
and interconnects to implement the intended logic design and
layout on the target FPGA device.

Following sections present the algorithms and techniques used in
these steps in reverse order of the design flow. We start with routing
and placement (Section 2), then present techniques used in technol-
ogy mapping and architecture-specific optimization (Section 3). The
architecture-dependent optimization phase of FPGA design typically
shares techniques widely used for ASIC synthesis and optimization,
and we refer the reader to the available textbooks [79, 99] for details.
Section 4 presents the techniques used in physical synthesis of FPGA
designs, which cover the algorithms used in clustering and placement-
driven optimization. Section 5 presents the techniques used in RT-level
and behavior-level synthesis for FPGA designs. Section 6 discusses syn-
thesis techniques used for FPGA power optimization, which is a design
objective that has received a lot of interest in recent years. This design
objective cuts cross all design steps in the flow and interacts with per-
formance and area optimization. Finally, we conclude this paper and
touch on future trends of FPGA design automation in Section 7.



2
Routing and Placement for FPGAs

2.1 Routing

Routing is one of the most basic, tedious, yet important steps in FPGA
designs. It is the last step in the design flow prior to generating the
bit-stream to program the FPGA. FPGA routing is similar to the
general ASIC problem in terms of the objective—we need to success-
fully connect all signal nets subject to timing constraints. However,
FPGA routing is more restricted in the sense that it can use only
the prefabricated routing resources, including available wire segments,
programmable switches, and multiplexers. Therefore, achieving 100%
routability is more challenging.

FPGA routing typically goes through routing-resource graph gen-
eration, (optional) global routing, and detailed routing. The remainder
of this subsection describes these steps in detail.

2.1.1 Routing-resource graph generation

In order to model all the available routing resources in an FPGA, a
routing-resource graph is created as an abstract data representation to
be used by the global and detailed routers [147, 22]. Given an FPGA
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architecture, the vertices in the routing-resource graph represent the
input and output pins of the logic blocks as well as the wire segments in
the routing channels. The edges represent the programmable switches
that connect the two vertices. A unidirectional switch, such as a buffer,
is represented by a directed edge, while a bi-directional switch, such
as a pass transistor, is represented by a pair of directed edges. To
model the equivalent pins, we introduce a source vertex that connects
to all the logically equivalent output pins of a logic block, and a sink
vertex to connect from all the logically equivalent input pins of a logic
block. Figure 2.1 shows an example of a routing-resource graph for a
portion of an FPGA whose logic block contains a single two-input, one-
output LUT. In general, a node may have a capacity that indicates the
maximum number of nets that can use this vertex in a legal routing. In
our example, the source vertex has capacity one, while the sink node
has capacity two.

Since modern FPGAs may have millions of logic blocks, the routing-
resource graph can be very large. Its generation is typically done auto-
matically by a software program, which models the given FPGA, builds
the routing-resource graph for a basic tile of the architecture, and then
replicates the graph many times and stitches them all together to form
the routing-resource graph for the entire FPGA.

In many cases, we need to build the placement and routing tools
for an FPGA under development in order to provide quantitative

Fig. 2.1 Modeling FPGA routing architecture using a routing resource graph [23].
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evaluation of the choice of various architecture parameters before we
finalize the FPGA architecture. In this case, we need to generate a
routing-resource graph from a set of architecture parameters, as the
real FPGA model is not yet available. The typical set of parameters
needed for routing include [23]:

a) Number of logic block input and output pins.
b) Side(s) of the logic block from which each input and output

is accessible.
c) Logic equivalence between the various input and output pins.
d) Number of I/O pads that fit into one row or column of the

FPGA.
e) Relative widths of the horizontal and vertical channels.
f) Relative widths of the channels in different regions of the

FPGA.
g) Switch block topology used to connect the routing tracks.
h) Fc values for logic block inputs and outputs, as well as I/O;

pads (Fc represents the number of routing tracks in the chan-
nel that each input or output pin connects. The Fc value may
vary for an input pin, an output pin, or an I/O pad).

i) Wire segment types and distributions: for each segment type,
we need to specify segment length, fraction of tracks in the
channel with such type, type of switches, and population of
the switches on the segment, etc.

Parameters (a) to (f) are needed for global routing, and additional
parameters (g) to (i) are needed for detailed routing. A good routing-
resource generation tool should be able to: (i) detect any inconsistency
in architecture parameter specification, and (ii) provide reasonably
good assumptions of the missing parameter in case of partial architec-
ture specification (which is quite common in the early stage of architec-
ture exploration). One important contribution of the VPR placement
and routing tool [23] is that it provides a simple language for the user
to specify a reasonable set of architecture parameters for an FPGA
under investigation and generates the corresponding routing-resource
graph automatically.
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2.1.2 Global routing

Most IC routing tools go through global routing and detailed routing
steps. Global routing divides the available routing area into channels
or routing regions. It determines the coarse routing topology of each
net in terms of channels or routing regions that the net passes through,
typically with the objectives of minimizing overall congestion and sat-
isfying timing constraints of critical nets. Detailed routing generates
the design-rule-correct detailed routing geometry to implement every
net or subnet in each routing channel or region. The advantage of such
a two-step approach is obviously the reduction of problem complexity,
as the general routing problem is NP-hard, and it is highly complex to
determine the exact routing details of tens of thousands or even mil-
lions of nets directly in one step. The problem with such a two-step
approach, however, is the possible miscorrelation between global and
detailed routing, as the global router has to use a rough model for the
available routing resources in each channel or routing region, and does
not see the details of routing obstacles, pre-routed nets, etc. Such a
problem is more serious in FPGA routing since the detailed distribu-
tion of different types of wire segments and programmable switches may
greatly affect the success of detailed routing, but is hard to model dur-
ing the global routing step. Therefore, while a number of FPGA routers
still follow the two-step global and detailed routing approach, several
other FPGA routers perform global and detailed routing in a single step
and demonstrate good results. For completeness, we shall discuss the
global and detailed routing techniques used in FPGA designs in this
and the following section, and present the approaches for combined
global and detailed routing in Section 2.1.4.

For global routing, the routing-resource graph defined in the pre-
ceding section can be simplified, resulting in a coarse routing-resource
graph (or simply routing graph when there is no ambiguity), where we
represent each routing channel (as opposed to each wire segment) by a
vertex, with the capacity being the number of tracks in the channel. We
still represent each pin in a logic block by a vertex, and use the source
and sink vertices to represent the logically equivalent pins [23]. The
edges represent the available connections from the logic block input
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Fig. 2.2 An example of the coarse routing resource graph [23].

and output pins to the channels and available connections between
adjacent channels. Figure 2.2 shows an example of the coarse routing
resource graph for the portion of the FPGA which is being modeled.

Given the coarse routing-resource graph G, the FPGA global rout-
ing problem is to determine the routing of each net on the graph G
such that: (i) all the channel capacity constraints are satisfied, and (ii)
the signal timing constraints on all the nets are satisfied. We shall defer
the discussion on signal timing consideration in FPGA routing to Sec-
tion 2.1.5 and focus on routability issues in this section and next two
sections.

In fact, given the abstract graph-based formulation, the FPGA
global routing problem is very similar to that of traditional metal-
programmable gate-array (MPGA) or standard cell designs. Therefore,
many ASIC global routing techniques may be used for FPGA global
routing. The early FPGA routers CGE [29] and SEGA [130] adopted
the global router LocusRoute [165] for standard cell designs. But by far,
the most successful FPGA global routing approach, like the one used in
PathFinder [147] and VPR [22, 23], is based on the negotiation-based
global router [155] for standard cell designs.

The basic framework used in the PathFinder and VPR routers is
based on the iterative routing. At each iteration, all nets are routed,
each using the minimum cost based on the current costs associated with
the vertices in the routing graph, even though the solution may lead to
over-congestion in some routing channels. Then, we readjust each ver-
tex cost based on whether the corresponding channel has overflowed
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in the current iteration and previous iterations. Then, all nets are re-
routed based on this new cost function so that congestion, hopefully,
can be reduced or eliminated. This process is repeated until all con-
gestion is removed or some pre-defined stopping criteria (such as the
maximum number of iterations) is met. Specifically, the cost function
in VPR for using a routing resource n when it is reached from routing
resource m is the following [23]:

Cost(n) = b(n) ∗ h(n) ∗ p(n) + BendCost(n,m)

where the terms b(n), h(n), and p(n) relate to the base cost, histori-
cal congestion, and present congestion. The term BendCost(n,m) dis-
courages the bends in the routing solution. The base cost remains
unchanged throughout the routing process. The present congestion
penalty term p(n) depends on the amount of overflow at resource n,
while the historical penalty term h(n) accumulates the congestion
penalty in the previous iterations. The exact forms of these functions
are available in [23]. During each iteration, routing of each net is based
on maze expansion on the routing graph. For multi-pin nets, maze
expansion is first carried out to connect a pair of closest pins in the
net. Then, partial routes that connect a subset of terminals in the same
net are used for further expansion to connect the next nearest pin. It
was shown in [23] that this scheme works remarkably well, and the
same approach can be easily extended to combined global and detailed
routing (see Section 2.1.4) to produce highly competitive results.

Given the similarity between FPGA and standard cell global
routing, we expect that some recent advances in standard cell global
routing, such as multi-commodity flow based global routing [3] and mul-
tilevel global routing [56], can be successfully extended to FPGA global
routing as well, although we have not seen such attempts reported in
relevant literature.

2.1.3 Detailed routing

In this section we present the detailed routing algorithms used in a
two-step approach for FPGA routing. The following section presents
the combined global and detailed routing approach. Given a global
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routing solution, the detailed routing step implements each route in the
coarse routing-resource graph in the detailed routing-resource graph so
that there is no resource conflict. Since there are different types of
wire segments and programmable switches in a channel, the number of
possible ways to implement each route in the coarse routing graph is
still quite large.

The detailed routers used in CGE [26] and SEGA [130] go through
two phases. In the first phase, for each global route, the router enumer-
ates all the possible detailed routes in the routing-resource graph that
go through the same set of channels, and adds them into an expansion
graph. For example, given the global route from (0,4) to (4,0) (as shown
in Fig. 2.3), three possible detailed routes are available and added
to the expansion graph. In the second phase, the router’s algorithm
repeatedly: (i) selects the detailed route of the lowest cost (defined
later), (ii) removes the other alternative detailed routes of the selected
route for the same net, and (iii) removes the detailed routes of other
nets that conflict with the selected route until all the global routes
are implemented by the detailed routes. Note that operation (iii) may
result in some nets being unroutable. To avoid this, when a detailed
route becomes the only alternative for a global route, it is called an
essential route, and essential routes are routed with high priority. In

Fig. 2.3 Expansion of a global (coarse) route into three detailed routes [130].
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general, a cost is associated with each detailed route p in the expansion
graph, which reflects the number of segments used, the waste of long
segments by short connections, the number of alternative paths to
p, and the impact that the selection of p has on other paths in the
expansion graph. The exact formulation of the cost function is available
in [130]. Since all the detailed routes are enumerated in Phase 1, it
is also possible to use the iterative deletion approach as introduced
in [67] in Phase 2 to select the proper detailed route for each global
route, although this approach was not attempted in [26] and [130].

Another approach to FPGA detailed routing uses the Boolean satis-
fiability (SAT) formulation [156, 157]. Given a global routing solution,
the SAT-based detailed router divides each net into several horizon-
tal and vertical net segments. Then it generates the connectivity con-
straints and exclusivity constraints using Boolean expressions in the
conjunctive normal form, so that its truth assignment gives a legal
detailed routing solution. The connectivity constraints ensure the exis-
tence of a connecting path for each two-pin net through a sequence of
connection and switch boxes, and model the flexibility in using the dif-
ferent wire segment and programmable switches on the path defined by
the global route. For example, given the global route of net N shown in
Fig. 2.4(a) from the source (SRC) logic block (also called CLB in [156])
to the destination (DST) logic block, the Boolean expression Ca in
Fig. 2.4(b) specifies that net N can be assigned to any of the three
tracks in the vertical channel i. Similarly, the Boolean expression Sb

encodes the constraint that if a route enters from track j at the top of
switchbox b, it must exit from the right, also on track j. On the other
hand, the exclusivity constraints ensure that different nets will not share
the same routing resource. For example, given the three nets A,B, and
C in the horizontal channel in Fig. 2.4(c), the Boolean expression Em

encodes the constraints that net A cannot share a track with net B or
net C. After connectivity and exclusivity constraints are generated for
all nets, they are given to a SAT-solver, such as GRASP [173], as used
in [156]. If a satisfiable solution is found, we have a detailed routing
solution, otherwise, we are certain that the given global routing solu-
tion cannot be implemented in the current architecture. In theory, this
approach provides an exact formulation to the FPGA detailed routing
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Fig. 2.4 Examples of connectivity constraints and exclusivity constraints [157].

problem. The experimental results in [156] indeed reported consider-
ably smaller routing track usage when compared to the SEGA detailed
router [130]. In general, the runtime complexity is a concern for the
SAT-based approach, especially for large designs, as the SAT problem
is NP-complete. However, the recent progress in efficient SAT-solvers
(e.g., [219]) will make this approach more scalable.

2.1.4 Combined global and detailed routing

In order to avoid the possible mismatch between global and detailed
routing due to the difficulty of approximating all available routing
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resources in FPGA designs, several FPGA routers combine global and
detailed routing in one step and produce very good results.

The early attempt was the greedy bin-packing (GBP)-based FPGA
router reported in [203]. It decomposes each multi-pin net into a set
of two-pin subnets. It also divides all wire segments in the under-
lying FPGA into a set of track domains, where each track domain
includes a set of wire segments that can be connected using pro-
grammable switches. Then, the GBP router greedily packs the two-
pin nets into the track domain based on the best-fit-decreasing (BFD)
bin-packing heuristic and a few other (heuristic) considerations in
selecting the nets for packing. This simple approach worked surpris-
ingly well and reported better routing results than those of CGE [26]
and SEGA [130]. The GBP heuristic was further enhanced with
another “orthogonal” greedy growth heuristic for packing the nets into
track domains. The resulting router, named orthogonal greedy cou-
pling (OGC) [204], reported an improved routing result over that of
GBP [203].

Another approach to combined global and detailed routing was the
simulated evolution-based router named Tracer-fpga, reported in [125].
It first routes every net on the (detailed) routing-resource graph using
the classical maze routing expansion algorithm. When routing a net,
it will consider the existence of already-routed nets and try to avoid
routing violations. If not possible, it will select a route with the min-
imum number of routing violations. After this stage of initial routing
of all the nets, Tracer-fpga goes through the rip-up and re-routing
stage based on simulated evolution. Each routed net is assigned a
cost based on its routing tree length and the number of routing vio-
lations involved. The simulated evolution scheme selects a subset of
nets for rip-up and re-route based on their costs. A net with a higher
cost will have a higher probability of being selected for re-routing
in the presence of already-routed nets; the objective here is to min-
imize the routing cost and violation. This process is repeated a num-
ber of times until a solution free of routing violation is obtained, or
some predefined stopping criteria is met. Note that the probabilis-
tic scheme used by simulated evolution may occasionally choose a
“good” net (free of routing violation) for re-routing, which makes this
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approach less greedy and more robust. This approach reported better
routing results than those of CGE [26] and SEGA [130], as well as
GBP [203].

Up to this point, however, the most successful router that com-
bines global and detailed routing is the VPR router [22, 23] which uses
the negotiation-based approach presented in Section 2.1.2. It applies
exactly by the same global routing engine for combined global and
detailed routing on the detailed routing-resource graph. Through care-
ful evaluation and selection of various parameters in the negotiation-
based routing algorithm, such as assignment of base routing cost,
penalty factors for historical and present congestions, etc., the authors
of [22] developed a highly optimized and robust FPGA routing tool
that has been widely used in the community. The experimental results
reported in [23] show that VPR consistently requires fewer numbers of
routing tracks compared to all other FPGA routers in the literature
at that point of time, including CGE [26], SEGA [130], GBP [203],
OGC [204], IKMB [5], and Tracer-fpga [125].

Other than using maze expansion for routing tree construction of a
multi-pin net in the routing-resource graph, one may use graph-based
Steiner heuristics to construct a near-optimal Steiner tree in the graph.
In [5], two graph-based Steiner heuristics, IKMB and IZEL were devel-
oped. Both use the idea of iterated Steiner tree construction. IKMB
is based on the heuristic of Kou, Markowsky, and Berman [117], and
IZEL is based on a more recent heuristic of Zelikovsky [218] which has
a performance bound of 11/6 from the optimal Steiner tree. The imple-
mentation of IKBM in a FPGA router [5] leads to a smaller routing
track usage compared to those of CGE [26], SEGA [130], and GBP
[203], but falls behind those of Tracer-fpga [125] and VPR [22], even
though both Tracer-fpga and VPR use maze expansion for the routing
tree construction. This is not necessarily a negative reflection of the
effectiveness of the graph-based Steiner heuristics, since many other
implementation details, such as the choice of cost functions and cost
updating schemes (which are well done in VPR), will affect the routing
solution quality considerably. It would be interesting to try replacing
the maze expansion engine in VPR with a graph-Steiner-based algo-
rithm to better measure the impact.



2.1. Routing 217

2.1.5 Timing optimization in routing

So far we have focused only on the routability issue in routing. It
is important to perform timing optimization in routing since routing
delays in FPGA designs are significant, largely due to the extensive
use of programmable switches. We can group timing optimization tech-
niques roughly into four categories: routing order optimization, routing
tree topology optimization, slack distribution, and net weighting.

Timing constraints are typically specified as the maximum path
delay constraints from the primary inputs and/or FF outputs to pri-
mary outputs and/or FF inputs. Given a mapped and placed circuit,
one can perform static timing analysis to compute the signal arrival
times and required times at every pin in the design, and then com-
pute the slack at every pin and every source–sink pair in each net.
The nets with smaller slacks are more critical. The simplest form of
timing optimization is to order the nets by their timing criticality:
timing-critical nets are routed first so that they can avoid long detours.
This simple approach is used in [125] and almost every timing-driven
router.

The next level of timing optimization is to optimize the routing
tree topologies of the timing-critical nets. For example, the work in [5]
extended the A-tree algorithm [62] used for timing-driven IC routing
and proposed that two graph Steiner arborescence (GSA) heuristics be
performed on the FPGA routing-resource graph. This routes a timing-
critical net by an arborescence, which is a routing tree with the short-
est path from the source to every sink in the routing graph (for delay
minimization), and also tries to minimize the total routing cost of the
arborescence. The timing-driven FPGA router in [36] uses a bounded-
delay minimum-cost spanning tree formulation, where the delay of each
route is estimated by the number of programmable switches it goes
through. However, it shows that the problem is NP-hard, and presents
a heuristic based on the methods in [18] and [60]. Both PathFinder [147]
and VPR [22, 23] use a delay penalty term in the routing cost func-
tion in their iterative negotiation-based routing framework to balance
the delay and congestion optimization. In particular, VPR uses the
Elmore delay model, which is more accurate. When routing net i to
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its sink j, the modified routing cost function at each vertex n in the
routing graph is

Cost(n) = Crit(i, j) ∗ delay(n,topology)

+[1 − Crit(i, j)] ∗ b(n) ∗ h(n) ∗ p(n)

where Crit(i, j) is a balance factor in the interval [0,1]. Depending on
the criticality of sink j of net i in the design, delay(n, topology) is
the Elmore delay at the vertex n given the partial routing topology
constructed so far, and the terms b(n), h(n), and p(n) are the same as
defined in Section 2.1.2. If Crit(i, j) is 0 (for non-critical nets), we ignore
the delay term completely; however, if Crit(i, j) is 1, we completely
ignore the congestion term, which may not be good. Therefore, VPR
chooses the balance factor in such a way that for the most timing-
critical nets, the corresponding Crit(i, j) is slightly below 1 (in fact,
0.99 in its implementation).

Another consideration of timing optimization in routing is slack
distribution. If we do not distribute slacks in advance, the nets that
are routed earlier may use more slacks than those that are routed later.
Early work used the zero-slack algorithm [100] introduced for custom IC
designs for slack distribution. An improved algorithm, called the limited
bumping algorithm, was presented in [90] and applied to FPGA routing.
It presents a general heuristic and allows the slacks to be distributed
based on the net’s estimated load capacitance, fanout numbers, etc.
In fact, it was recently shown that the slack distribution problem can
be solved optimally under some reasonable objective functions [94],
although we have not seen such a method being applied to FPGA
routing or placement in the literature.

In general, it is difficult to determine the best way to allocate slacks
to different nets in the design. An alternative approach is to assign
weights to the nets based on their timing criticality so that they can
compete for slacks and routing resources based on those weights. There
are conceivably many ad hoc heuristics for weight assignment, but
the method presented in [124] gives a systematic way for net weight
assignment in FPGA routing. It formulates the timing-driven rout-
ing problem as a constrained optimization problem, and solves it by
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Lagrangian relaxation. The Lagrangian relaxation approach transforms
the timing-constrained routing problem into a sequence of Lagrangian
subproblems. The Lagrangian multipliers, which are updated during
each iteration, can be viewed as the weights of the source–sink pairs of
all the nets. This guides the router to properly allocate timing slacks
and routing resources. Experimental results show an improved critical
path delay for 13 out of 17 benchmarks with comparable runtimes when
compared to the VPR router in the timing-driven mode.

2.2 Placement and Floorplanning

Placement has a significant impact on the performance and routability
of circuit design in nanometer designs, because a placement solution,
to a large extent, defines the amount of interconnect in the design,
which now becomes the bottleneck of circuit performance. The inter-
connect performance bottleneck is even worse in FPGA designs since
the programmable switches incur more delays. A comprehensive sur-
vey on modern placement techniques was recently compiled in [61],
and we do not want to duplicate the effort. In this section, we focus on
FPGA placement, which was not thoroughly covered in [61]. We divide
the existing approaches to FPGA placement in four categories: sim-
ulated annealing-based placement, partitioning-based placement, ana-
lytical method-based placement, and fast placement and floorplanning.

2.2.1 Simulated annealing-based approach

The well-known VPR package for FPGA placement and routing [22, 23]
uses the simulated annealing method as its optimization engine for
placement. The basic operation (move) is the exchange of two logic
blocks, with one of them possibly being an empty logic block. VPR
follows the basic template of simulated annealing, but with several
placement-specific enhancements like:

a) A new temperature updating scheme, which decreases the
temperature faster when the move acceptance rate is very
high or very low, so that the annealing process spends more
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time at the most productive temperature region—when a
significant portion of moves, but not all, are being accepted.

b) A limitation on the range of cell exchanges so that the move
acceptance rate is as close to 0.44 as possible and for as long
as possible.

c) A linear congestion model, based on the cost function, to
handle cases where the channel capacity is non-uniform in
the given FPGA architecture. The model shows that this
cost function can be computed as efficiently as the traditional
half-perimeter bounding box based model, but with good
improvement for routability optimization in the case of non-
uniform channel capacity.

d) A faster method for incremental net bounding box updat-
ing, with some small memory overhead for additional
bookkeeping.

The timing-driven mode [145] of the VPR placement tool carries
out timing optimization by including an additional timing cost term to
the objective function. The timing cost is the summation of the delay
times and the timing criticality over all connections in the design, where
the criticality of a connection depends on its timing slack. Since every
accepted move may change delays in a number of connections, which
may in turn change the slack distribution, static timing analysis is
required to recompute all the slacks after each accepted move. But this
is too costly in terms of runtime. The VPR placement tool chooses
to update slacks after a number of moves (typically at the end of each
temperature iteration), which leads to shorter runtime and more robust
optimization (by avoiding frequent changes of the coefficients in the cost
function).

Adding two terms for two very different objectives (in this case,
timing and wirelength) usually requires careful scaling. The VPR place-
ment tool uses the idea of self-normalization, where the changes of tim-
ing cost and wirelength of a move are scaled by the total timing cost
and total wirelength at the end of the previous temperature iteration,
respectively. This ensures that the relative importance of timing and
wirelength is captured in the cost function, independent of their actual
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values and measuring units. Overall, the VPR placement tool provides
very good results and is widely used in the FPGA research community.

Given the timing cost term in the objective function, it is clear
that the VPR placement tool minimizes the weighted delays of all
connections (as part of the objective function), where the weight of a
connection depends on its slack. But it ignores another important con-
sideration in timing optimization—path sharing. Intuitively, a connec-
tion appearing in many critical paths should be given a higher weight
for optimization. This is difficult to capture and compute in general, as
there might be an exponential number of paths going through a con-
nection, each with a different timing criticality. A proper solution has
recently been proposed [115]. The algorithm, named PATH, can prop-
erly scale the impact of all paths by their relative timing criticalities
(measured by their slacks), respectively. It was shown in [115] that for
certain discount functions, this method is equivalent to enumerating all
the paths in the circuit, counting their weights, and then distributing
the weights to all edges in the circuit. Such computation can be car-
ried out very efficiently in linear time, and experimental results have
confirmed its effectiveness. Compared with VPR [145] under the same
placement framework, PATH reduces the longest path delay by 15.6%
on average with no runtime overhead and only a 4.1% increase in total
wirelength. Note that this weight scheme is not limited to the use of
an annealing-based placer. It can be used by any placer that optimizes
the weighted delays of all connections as part of its objective function.

2.2.2 Partitioning-based approach

Min-cut or partitioning-based placement is one of the earliest
approaches to circuit placement, and it has also been applied to FPGA
placement [4, 142]. In this section, we briefly highlight the key features
of a recent partitioning-based FPGA placement tool, named PPFF,
and reported in [142].

a) PPFF uses the state-of-the-art multilevel partitioner
hMetis [110] as its partitioning engine.

b) PPFF performs recursive bi-partitioning in a breadth-first
manner. At each level of the partitioning hierarchy, it
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considers terminal alignment (i.e., trying to align termi-
nals of a net in the same horizontal or vertical channel) in
addition to the traditional cut-size minimization objective.
It argues that the terminal alignment is helpful for FPGA
placement in general, and shows that incorporating terminal
alignment in the timing-driven VPR placement tool can also
lead to a slight improvement in delay reduction.

c) In order to facilitate terminal alignment, PPFF optimizes
the partitioning order of the regions in the same level of
partitioning hierarchy, and shows that the ordering problem
is equivalent to that of linear placement with the minimum
sum of incoming edges, and that the problem can be solved
optimally by a simple greedy algorithm.

d) PPFF estimates the delay of each net by computing this
on its minimum span of the net at the current level of the
partitioning hierarchy and performing table lookup of delay
values stored in a pre-computed table (obtained by analyzing
some routed placement solutions).

e) At the end of partitioning-based placement, PPFF goes
through a legalization step and a post-optimization step of
low-temperature annealing to further improve the solution
quality.

The experimental results in [142] report a slight degradation in the
solution quality of PPFF, with 3–4X improvement on runtime when
compared to the VPR placement tool.

2.2.3 Embedding-based approach

In this section, we briefly introduce one recent FPGA placement algo-
rithm based on graph embedding and metric geometry, named convex
assigned placement for regular ICs (CAPRI) [96]. CAPRI considers
the dependence of routing delays on the FPGA routing architecture.
Figure 2.5 illustrates the motivation for the approach [96]. The contour
lines in the figure join points on the chip surface that are equidis-
tant from the origin using geometric metrics such as (a) Euclidean
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Fig. 2.5 Contour plots showing points of equal distance (i.e., delay) from the origin using
the following metrics: (a) Euclidean distance, (b) Manhattan distance, (c) Delays along an
FPGA routing grid with two different kinds of route segments, and (d) Delays along routing
grid that mimics the Xilinx Virtex FPGA [96].

and (b) Manhattan distances, as well as delays measured in terms
of the number of routing switches on two different FPGA routing
architectures (c) and (d). These plots demonstrate that to model
delays accurately in FPGA placement, there is a need for a met-
ric that captures the delay contours of the FPGA routing architec-
ture, rather than the Euclidean or Manhattan metrics used in ASIC
placement.

CAPRI views the placement task as an embedding of a graph rep-
resenting the netlist into a chosen metric space. It first defines an ana-
lytic metric of “distance” in terms of the total delay through switches
on the FPGA routing architecture, and then uses it to construct a
metric space that captures FPGA performance. CAPRI then embeds
the netlist graph into this metric space based on the binary quadratic
assignment formulation (which is NP-hard), and solved the problem
with a heuristic technique based on matrix projections followed by
online bipartite graph matching. The resulting solution is a legal initial
placement, which tries to minimize delays on driver–sink connections
and is thus “good” from a global timing perspective. Subsequently,
CAPRI applies local optimization using an existing low-temperature
simulated-annealing in VPR for local optimization to improve specific
critical paths and routability.

When compared with running VPR alone, CAPRI shows an
improvement of 10.1% (median) and 11.1% (mean) in the post-routing
delay of top critical paths. Total placement runtime is improved by 2X,
and CAPRI itself is reported to take just 4.8% of this total runtime.
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2.2.4 Fast placement and floorplanning

As modern FPGAs reach close to a million logic blocks, more effi-
cient and scalable FPGA placement algorithms are needed. Multilevel
placement and floorplanning techniques are introduced to improve the
runtime of existing FPGA placement algorithms.

The Ultra-Fast Placement (UFP) algorithm in [166] aims at signifi-
cant runtime improvement of the VPR placement tool, which produces
good placement results but are not very scalable due to the use of sim-
ulated annealing. UFP uses multilevel optimization, and starts with
multilevel clustering. It requires cluster sizes at each level to be the
same (in fact, to be the powers of 2, such as 4,8,16,32, . . .) to facil-
itate pair-wise exchange at each level later on by simulated anneal-
ing. It shows experimentally, that the cluster sizes in the first three
levels should be (64, 4, 4), (64, 16, 4), or (256, 4, 4). The cluster-
ing algorithm starts with a cluster with a random seed occupying an
arbitrary slot in the cluster. Then, the algorithm grows the cluster
based on a connectivity-based scoring function. The score of adding
a logic block to the cluster is determined by two components: (i) the
strength of connections between the block and the cluster, measured
by the summation of the shared nets, with the smaller nets favored
over larger nets; and (ii) the number of nets that are absorbed if
the block is merged into the cluster. (We say a net is absorbed into
a cluster if all the blocks on that net belong to the cluster.) The
block with the highest score is added to the next available slot in
the cluster, and if the cluster is full, a new cluster is started with
a random seed. This process is repeated until all blocks are clus-
tered. The result is a clustered netlist with the absorbed nets removed.
Then, we may proceed to create the next level of clustering hierar-
chy. After the clustering hierarchy is created, low-temperature simu-
lated annealing is performed at each level of the clustering hierarchy.
When we de-cluster from a coarser level to a finer level, the position
of each cluster (or logic block) in the finer level is determined by the
mean of the positions of the I/O pads and the parent clusters that
are connected to it. The experimental result reported in [166] showed
smooth runtime and quality trade-off. At one extreme, UFP achieved
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over 50X speed-up over the VPR placement tool, with 33% wirelength
overhead.

To the best of our knowledge, UFP is the first reported multilevel
placement algorithm in the literature. Recently, multilevel placement
became a very active research topic, with several high-quality multilevel
placers developed for standard cell-based designs (e.g., [31, 69, 109]).
It is likely that the multilevel placement techniques developed in these
works can be used to further enhance the quality of UFP.

Another way of reducing placement runtime is through floorplan-
ning or hierarchical placement based on the design hierarchy specified
in the RTL designs (note that UFP applies to the flattened netlist
only). Such an approach was taken in [82] and [184]. Here, we briefly
outline the fast floorplan and placement system, named Frontier and
reported in [184]. It starts with a macro-based netlist of soft and hard
macros targeted to an FPGA device. Initially, the FPGA device is
decomposed into an array of placement bins, each having the same
physical dimensions. Then it groups the macros into clusters, with
each cluster being placed into a bin. Each cluster will accommodate
the volume of macro logic blocks and the physical dimensions of hard
macros inside a bin. If, there is an insufficient number of available bins
to place all clusters, following clustering bin sizes are increased and
clustering is restarted. After clustering, each cluster is assigned to a
physical bin location on the target device, and entire bin clusters are
subsequently swapped between physical bins using simulated anneal-
ing to minimize inter-bin placement cost, including connectivity to the
I/O pads. Since the number of bins allocated to a device is frequently
much smaller than the number of device logic blocks, this process pro-
ceeds rapidly. Following bin placement, hard and soft macro blocks are
placed within each bin in a space-filling fashion. All intra-bin placement
is based on inter- and intra-bin connectivity. Soft macros are resized at
this point to meet bin-shape constraints. After this step, detailed esti-
mates of the placement wirelength and post-route design performance
are carried out, taking into account the special features of the FPGA
device. These wirelength and performance estimates are used to evalu-
ate whether subsequent device routing will complete quickly, require a
long period of time, or ultimately fail, based on the estimation method
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in [180]. For floorplans that are impossible or difficult to route, another
low-temperature simulated annealing is performed on soft macros to
smooth wirelength inefficiencies. This approach reported a 2.6X speed-
up in the total placement and routing time compared to the place-
and-route system which was available at that time from Xilinx used
on multiple designs with 2,000 to 3,000 CLBs in the Xilinx 4000 series
FPGAs [184].

2.3 Combined Placement and Routing

Given the fact that it is hard to achieve 100% routability, especially for
the earlier generation of FPGAs (1990s), several attempts were made
to combine placement and routing, so that the placement solution is
assured to be routable. In this section, we briefly summarize the work
in this area.

The earliest attempt at combining placement and routing was
reported in [154], which embedded a fast router inside the inner loop of
a simulated annealing-based placement engine. After each placement
move, incremental routing was performed on the nets affected by the
move. Although an 8–15% performance improvement was reported over
the commercial FPGA place-and-route tool which was available at that
time from Xilinx, the runtime overhead was very high, ranging from
6X for the smallest design to 11X for the largest design.

Another approach to integrating placement and routing is to embed
global routing in a partitioning-based placement algorithm, so that
global routing is performed at every level of the placement hierarchy
during the recursive partitioning process. Such an approach is more
scalable, and was used in [4] and [187]. However, this approach has
not shown results that demonstrate the superiority of the combined
approach.

A more recent work in [35] combines a simple cluster growth placer
with a maze router. It places and routes nets one by one. For each
net being placed, it chooses a position to optimize a cost function with
three components: (i) the number of segments used (for delay mini-
mization), (ii) the type and length of the segments used (for both delay
and routability optimization), and (iii) the density of the channels (for
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routability optimization). Although it was shown that using this cost
function is helpful compared to the traditional metric of wirelength
and channel density minimization, there is no direct comparison of this
approach with the commonly used flow with separate placement and
routing.

In general, the research in the area of combined placement and rout-
ing has had only very limited success so far. With modern FPGAs that
have a much higher logic capacity and much richer routing resources,
one may question whether it is feasible to compute or even still neces-
sary to carry out simultaneous placement and routing.



3
Technology Mapping

FPGA technology mapping transforms a network of technology-
independent logic gates into one comprised of logic cells in the target
FPGA architectures. In a typical FPGA design flow, mapping is the
last step in which the design is transformed. As a result, technology
mapping has a significant impact on the quality (area, performance,
power, etc.) of the final implementation.

Technology mapping for FPGAs is a subject of extensive study.
Many algorithms have been proposed and various techniques have been
developed. Technology mapping algorithms can be classified in sev-
eral different ways. One classification is based on the optimization
objectives: area [72, 89, 152], timing [38, 46, 50, 58, 88, 152], power
[13, 42, 86, 121, 136, 195], and routability [167]. Another classification
is based on the type of transformation techniques employed during
mapping. Algorithms can be structural or functional. The structural
approach does not modify the input netlist other than logic duplica-
tion [46, 50]. It reduces technology mapping to a problem of covering
the input netlist with logic cells (e.g., K-LUTs) of the target FPGAs.
Due to their combinatorial nature, structural mapping algorithms are
efficient for large designs. Functional approach, on the other hand,

228
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treats technology mapping as Boolean transformation/decomposition
of the input design into a set of interconnected logic cells [126, 152].
Functional mapping mixes Boolean optimization with covering. It can
potentially explore a larger solution space than structural mapping.
However, functional mapping algorithms tend to be time-consuming,
which limits their use to small designs or small portions of a large
designs. Recently, algorithms have been proposed to explore functional
mapping in the context of structural mapping to take advantages of
both structural and functional approaches [43, 49, 148].

Technology mapping algorithms can also be classified according to
the types of input networks. Algorithms for combinational networks
assume fixed positions for sequential elements and only consider the
combinational logic between sequential elements [50, 85]. Algorithms
for sequential networks, on the other hand, may relocate the sequential
elements using retiming during mapping [71, 159]. Such algorithms can
explore a much larger solution space to derive mapping solutions with
better quality. Algorithms for combinational networks can further be
divided into those for general DAGs [50] and those for special networks
such as tree and leaf-DAGs [85, 89]. Algorithms for special networks can
be applied to general networks through partitioning, which obviously
can compromise the solution quality.

Recent advances in technology mapping try to combine mapping
with up-stream and/or down-stream optimization steps in the design
flow. Such integrated algorithms have the potential for exploring large
solution spaces to arrive at mapping solutions with better overall qual-
ity. Algorithms have been proposed to combine mapping with retim-
ing [71, 160, 70, 146], with synthesis and decomposition [43, 59, 148],
and with clustering and placement [139, 140].

We will be focusing on recent advances in FPGA technology map-
ping. For early technology mapping works, the reader is referred to the
excellent and comprehensive survey in [52].

3.1 Preliminaries

The input design to technology mapping is a network consisting of
logic gates and sequential elements. The network can be represented
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by a directed graph where the nodes denote logic gates. There is a
directed edge (i, j) if the output of gate i is an input to gate j. An
edge may have a weight that represents the number of sequential ele-
ments on the connection. A weight of zero means the connection is com-
binational without any sequential element. Most mapping algorithms
operate only on the combinational portion of the network which is a
DAG obtained by removing sequential elements. Each removed sequen-
tial element introduces a (pseudo) PI—the output of the sequential
element, and a (pseudo) PO—the input of the sequential elements.
When describing technology mapping for combinational circuits, we
make no distinction between a network and its combinational portion.
We also make no distinction between pseudo PIs/POs and the real ones.
The following concepts are defined mainly for combinational technology
mapping although many of them are applicable to sequential networks.
We use input(ν) to denote the set of nodes that are fanins of gate ν and
use output(ν) to denote the set of nodes that are fanouts of gate ν. We
use Oν to denote a fanin cone rooted at node ν. Oν is a sub-network
consisting of ν and some of its predecessors, such that for any node
u ∈ Oν , there is a path from u to ν that lies entirely in Oν . The maxi-
mum cone of ν, consisting of all the predecessors of ν, is called a fanin
cone of ν, denoted as Fν . A fanout-free cone is a cone in which the
fanouts of every node other than the root (node) are inside the cone,
i.e., all its paths converge to the root. For each node ν, there is a unique
maximum fanout-free cone [52], denoted MFFCv, which contains every
fanout-free cone rooted at ν. We use input(Oν) to denote the set of
distinct nodes outside of Oν and supplying inputs to one or more gates
in Oν . Oν is K-feasible if |input(Oν)| ≤ K. A cut is a partition (X,X ′)
of the fanin cone Fν of ν such that X ′ is a cone of ν. We call input(X ′)
the cutset of the cut. A cut is K-feasible (or a K-cut) if X ′ is a K-
feasible cone, or equivalently, X ′ is a K-LUT that implements ν with
the inputs in the cutset. For convenience, we will use cuts, cutsets,
cones, and LUTs interchangeably when the meaning is clear. Finally, a
Boolean network is t-bounded if |input(ν)| ≤ t for each node ν.

Most mapping algorithms are structural and view mapping as a
covering problem by covering a network of logic gates using K-feasible
cones which can then be implemented by K-LUTs. A mapping solution
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Fig. 3.1 Structural technology mapping: (a) Original network; (b) Covering using K-feasible
cones, (c) Mapping solution derived from the covering [141].

is simply a network of K-LUTs where there is an edge (Ou,Oν) if u is
in input(Oν) or equivalently, u is an input to the LUT selected for ν.
Figure 3.1 is an example of structural mapping. The original network
in (a) can be covered by two 4-feasible cones as indicated in (b). Note
that node x is included in both cones and will be duplicated. Some of
the nodes are completely covered and no LUTs are needed for them
in the final mapping solution. The corresponding mapping solution is
shown in (c).

3.2 Structural Mapping Framework

Structural mapping is done as part of a logic synthesis flow which typ-
ically consists of three steps. First, the initial network is optimized
using technology-independent optimization techniques such as node
extraction/substitution, don’t-care optimization, and timing-driven
logic restructuring. The optimized network is then decomposed into
a two-bounded network to give maximum flexibility for the ensuing
technology mapping step. Several decomposition techniques have been
proposed. They include the Huffman-tree-like AND/OR decomposition
algorithm dmig [46], and bin packing-based algorithms [89]. The final



232 Technology Mapping

step, called structural mapping, is to cover the two-bounded network
with K-LUTs to optimize one or more objectives, such as timing and
area among others.

Most structural mapping algorithms are based on dynamic program-
ming and consist of the following steps:

• Cut generation/enumeration
• Cut ranking
• Cut selection
• Final mapping solution generation

Cut generation produces one or more cuts for cut selection and mapping
solution generation. Cut ranking evaluates generated cuts to see how
good they are for timing and/or area. Cuts are normally evaluated
following a topological order of the nodes from PIs to POs. Cut selection
picks a “best” cut for each node based on the ranking info. It is typically
done in a reverse topological order from POs to PIs. Cut ranking and
selection may be done multiple times to refine the mapping solution
successively.

We will first discuss cut generation and general ideas in cut ranking.
Cut selection and enhancements to cut ranking will be discussed when
we present details of some of the mapping algorithms.

3.2.1 Cut generation

Early mapping algorithms mix cut generation and ranking to generate
one or a few “good” cuts for each node. The most successful example is
the FlowMap algorithm, which finds a single cut with optimal mapping
depth at each node based on max-flow computation [50, 48]. It com-
putes the optimal mapping depth of each node in the topological order
from the PIs to POs based on dynamic programming. At each node,
it uses max-flow computation to test if the current node can have the
optimal mapping depth as its predecessors or have to be incremented
by one, which were shown to be the only two possible mapping depths
at the node. FlowMap algorithm was the first polynomial-time algo-
rithm that computes a depth-optimal mapping solution for K-LUT
based FPGAs.
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Because K is a small constant in practice, most recent mapping
algorithms compute all K-cuts for each node before selecting cuts to
cover the nodes. With all cuts available during covering, we have the
added flexibility in selecting cuts to optimize multiple and/or complex
objectives.

For combinational mapping, cuts can be enumerated by a topolog-
ical traversal of the nodes from PIs to POs [72, 167]. The result of cut
enumeration is a set of K-feasible cuts for each node. For a PI, the set
of cuts contains only the trivial cut consisting of the node itself. For
an internal node ν with two fanins, u1 and u2, the set of cuts Φ(ν)
is computed by merging the sets of cuts of fanin nodes u1 and u2 as
follows:

Φ(ν) = {{ν} ∪ {c1 ∪ c2|c1 ∈ Φ(u1), c2 ∈ Φ(u2), |c1 ∪ c2| ≤ K}.

In other words, the set of cuts of a node can be obtained by the pair-wise
union of the cuts of its fanins and drop those that are not K-feasible.
For propagation purpose, we also add the trivial cut of each node to its
set of cuts. In practice, the set of cuts, Φ(ν), may contain dominated
ones which are supersets of other cuts. Dominated cuts can be removed
without impacting the quality of mapping solutions.

Once we have the set of all cuts for each node, a mapping algorithm
will select a cut for each node to cover the network. To help choose
cuts to cover the network, mapping algorithms evaluate and rank the
cuts based on the mapping objectives. Criteria for ranking cuts are
discussed in the following section.

3.2.2 Cut ranking — area

For LUT mapping, the area of a mapping solution can be measured by
the total number of LUTs. Area minimization for LUT mapping has
been shown to be NP-hard [85]. Therefore, it is unlikely that there is
an efficient and yet accurate way to rank cuts for area. The difficulty
of area estimation during mapping is mainly due to the existence of
multiple fanout nodes and their reconvergence [51].

In [72], the authors proposed the concept of effective area as a
heuristic to measure the area cost of a cut. (A similar concept called
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area flow was later proposed in [143].) The intuition of effective area
is to distribute the area cost of each node to its fanout edges to con-
sider logic sharing and reconvergence during area cost propagation. The
effective areas are computed in topological order from PIs to POs. For
each PI ν, its effective area a(c) is set to zero. The following formula is
used to compute the effective area of a cut:

a(c) =
∑
u∈c

[a(u)/|output(u)|] + Ac,

where Ac is the area of the LUT corresponding to the cut c. The area
cost of a non-PI/PO node is then the minimum area of its cuts:

a(ν) = min{a(c) |∀u ∈ Φ(ν)}.

It can be shown [72] that for duplication-free mapping based on
MFFCs, effective area is accurate in that there is a mapping solution
whose area is equal to the sum of the effective areas of the POs. Since
the effective area is computed by distributing the area of a node evenly
among its fanouts, it does not account for the situation where the node
may be duplicated in a mapping solution. When there is duplication,
effective area may be inaccurate. In the example shown in Fig. 3.2,
with K = 3, the LUT for u covers w. In this case, the LUT for w is
introduced solely for the LUT for ν. However, in effective area compu-
tation, only one half is counted for ν. As a result, the LUT for w is
under-counted. In this particular case, the effective area of the overall
mapping solution (sum of the effective areas of the POs) is 2.5 while
the mapping solution has three LUTs. In general, effective area is a
lower bound of the actual area [72].

Fig. 3.2 Inaccuracy in effective area when duplication is allowed [72].
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3.2.3 Cut ranking — timing

Because the exact layout information is not available during the tech-
nology mapping stage, most FPGA technology mapping algorithms
only consider the cell delays. The delay of a mapping solution is defined
as the total cell delays on a longest combinational path from PIs
to POs.

Most delay optimal combinational mapping algorithms use the
dynamic programming-based labeling process introduced in the
FlowMap algorithm [50]. The label at each node is the minimum arrival
time that can be achieved for the node in any mapping solution. The
label of a PI is set to zero assuming that the signal arrives at the PI
at the beginning of the clock edge. After the labels for all the nodes
in Fν except ν itself are found, the label of gate ν can be computed
by first calculating the label of each cut c of ν using the following
formula:

l(c) = max{l(u) + Dc |∀u ∈ c},

where Dc is the delay of the LUT corresponding to the cut c. Intuitively,
l(c) is the arrival time at ν if ν is covered using the cut c. The best
arrival time at ν is the smallest label among all its cuts, i.e.,

l(ν) = min{l(c) |∀c ∈ Φ(ν)}.

To obtain a delay optimal mapping solution, one can follow the reverse
topological order starting from POs going backward to PIs. At each
node, select a cut with the label, then trace back to the nodes in the
cut. This process is continued until we reach the PIs. At that point, a
complete mapping solution with best delay is obtained.

3.3 Structural Mapping Algorithms

In this section, we present recent advances in structural technology
mapping algorithms based on the framework presented in the preceding
section. For early mapping algorithms, the readers are referred to [52].
We will discuss mapping algorithms for area optimization first, then
for timing optimization.
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3.3.1 Area optimization

Area optimal mapping is an NP-hard problem [85]. The problem can
be formulated as a binate covering problem [152]. Exact solution of the
binate covering problem takes exponential time.1 For practical designs,
we have to resort to heuristics.

The PRAETOR algorithm [72] is an area-oriented mapping algo-
rithm based on cut enumeration and ranking. In addition to the area-
based cut ranking discussed earlier, the PRAETOR algorithm presents
a number of techniques for both additional area reduction and possible
runtime improvement. One technique is to encourage the use of com-
mon sub-cuts. A cut for a fanout of a node ν induces a cut for ν (maybe
the trivial cut consisting of ν itself). If two fanouts of a node induce
different cuts for the node, this will most likely result in area increase
due to the need to duplicate ν and possibly some of its predecessors. To
alleviate this problem, the PRAETOR algorithm sorts and selects cuts
with the same effective area in a predetermined order to avoid arbi-
trary selection. It assigns an integer ID to each node. Then, all cuts
with the same effective area are sorted according to the lexicographic
order based on the IDs of the nodes in the cuts. If we choose the first
cut with minimum effective area for each node, different fanouts of the
same node tend to use the same cut for the node. Therefore, the final
mapping solution will have a smaller area.

Another area reduction technique introduced in the PRAETOR
algorithm is to carry out cut selection twice. The purpose of the first
pass is to generate candidate LUT roots that will be declared non-
duplicable. Non-duplicable nodes will become cut boundaries. Any cut
that contains non-duplicable nodes will be dropped in the second pass
of cut selection. By doing so, we not only exclude those cuts with pos-
sible duplication, but also encourage cuts with less duplication. For
example in Fig. 3.3, in the first cut selection, we may generate a map-
ping solution as shown in (a) with four LUTs. In the second pass, the
cut including ν for u1 will be excluded from the set of cuts for ν1. As a

1 In the case of tree networks, area-optimal mapping can be solved efficiently using dynamic
programming [85]. An exponential algorithm can be used to solve the general problem
optimally for small designs, e.g., the ILP-based solution in [47].



3.3. Structural Mapping Algorithms 237

Fig. 3.3 Effect of excluding cuts with non-duplicable nodes [72].

result, we remove the duplication of ν and at the same time encourage
the cut including a for u1 to finally arrive at the mapping solution in (b)
with three LUTs. Experimental results show that the PRAETOR algo-
rithm can significantly improve area over previous algorithms. More-
over, it can achieve results that are only 14% larger than the effective
areas, which, as mentioned earlier, is the lower bound on the optimal
areas.

The IMap algorithm proposed in [143] is another mapping algo-
rithm that targets for area reduction. The two enhancements to the
basic framework are: 1) it iterates between cut ranking and cut selec-
tion multiple times; and 2) it adjusts the area ranking between succes-
sive iterations using history information. In the effective area formula,
we use |output(ν)|, i.e., the number of fanouts of ν in the initial net-
work, to divide up the effective area for the node ν. Ideally, it should be
the fanout count of the node, if it exists, in the final mapping solution,
which is not available until cut selection is done. In IMap, between iter-
ations, the fanout count estimation is also updated by using a weighted
combination of the estimated fanout count and the real fanout count
in previous iterations. The formula is as follows:

estimated fc(ν) = (estimated fcprev(ν) + α |output(LUTν)|)/(1 + α),

where estimated fc(ν) is the estimated fanout count for current itera-
tion, estimated fcprev(ν), the estimated fanout count for the previous
iteration; output(LUTν) is the actual fanout count of the previous map-
ping solution; and α is a weighting factor. Note that for nodes that are
fully covered in the previous mapping solution, i.e., no LUT is gen-
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erated for them, is empty. At the beginning, estimated fc(ν) is set to
|output(ν)|. The following formula is used for the area cost of a cut c

of ν:

a(c) =
∑
u∈c

[a(u)/eatimated fc(u)] + Ac.

The authors suggest setting α to be between 1.5 and 2.5 when the
number of iterations is limited to 8. When applying the enhanced area
cost on delay-oriented mapping, the authors show good improvement
in area compared to previous delay-oriented mapping algorithms.

In [141], the authors present a mixed structural and functional area
mapping algorithm based on solving a sequence of SAT problems. The
algorithm starts with an existing mapping solution (e.g., obtained from
a structural mapper described earlier). The key idea is a SAT formula-
tion for the problem of mapping a small circuit into the smallest pos-
sible number of LUTs. The algorithm iteratively selects a small logic
cone to remap to fewer LUTs using a SAT-solver. It is shown that for
some highly structured (albeit small) designs, area can be improved
significantly.

Most area optimization techniques are heuristics. A natural question
is how close or far away existing mapping algorithms are from optimal.
In [66], the authors construct a set of designs with known optimal area
mapping solutions (called LEKO examples). They tested existing aca-
demic algorithms and commercial tools on the LEKO examples. The
average gap from optimal varies from 5 to 23%, with an average of
15%. From the LEKO examples, they further derived the logic syn-
thesis examples with known upper bounds (LEKU). These examples
require both logic optimization and mapping. Existing FPGA synthesis
algorithms and tools perform very poorly on LEKU examples, with an
average optimality gap of over 70X. This indicates that further studies
are needed for area-oriented mapping and optimization.

3.3.2 Delay minimization

Timing optimization is important for FPGAs due to the performance
disadvantage introduced by programmability. FlowMap and its deriva-
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tives can find a mapping solution with optimal delay. Recent advances
in delay minimization focus on optimizing area while maintaining
performance.

DAOmap [38] is a mapping algorithm that guarantees optimal delay,
while at the same time reducing the area significantly compared to
previous delay-oriented mapping algorithms. The DAOmap algorithm
introduces three techniques to optimize area without degrading timing.
First, it enhances effective area computation to control potential node
duplications more effectively. Second, it exploits the extra timing slacks
on non-critical paths for area reduction. It uses an iterative cut selection
procedure to further explore and perturbs the solution space to improve
solution quality.

In DAOmap, the effective area for a cut c of node ν is enhanced
using the following formula:

a(c) =
∑
u∈c

[a(u)/|output(u)|] + Uc + Pu1 + Pu2

where Uc is the area contributed by the cut itself and Pu1 and Pu2 are
correction terms to account for potential duplication from the fanins
u1 and u2 of ν. Specifically, the following formula is used,

Uc = α|c|/(Nc + β(|output(ν)| + Rc)

where Nc is the number of nodes in the cone of the cut and Rc is
the number of reconvergent paths completely covered by c. Parameters
α and β are two weighting factors determined empirically. The intu-
ition of the formula is to encourage the use of a small cut (in terms
of the number of cut nodes) that covers a large cone. Obviously, such
cuts have fewer chances to introduce unnecessary logic duplication. The
correction terms Pui(i = 1 or 2) are introduced to gauge the potential
of node duplication at the fanin ui of ν. If ν has only one fanout, they
are set to zero; otherwise, Pui = Nci/|c|, where ci is the cut induced on
ui by c. The intuition is that the larger Nci is, the more likely the nodes
in ci will be duplicated. The size of the cut |c| is added as a normalizing
factor.

DAOmap first picks cuts with minimum timing cost for each node.
Among all cuts with minimum timing cost, it then picks a cut with
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minimum area cost. However, when there is extra slack (the difference
between required time and arrival time from the timing labels), it will
pick a cut with minimum area cost as long as the timing increase doesn’t
exceed the slack. Cut selection starts from POs and works backward
toward PIs.

Recognizing the heuristic nature of the area cost, DAOmap also
employs the technique of multiple passes for cut selection (i.e., map-
ping generation). Moreover, DAOmap adjusts area costs based on input
sharing to encourage using nodes that have already been contained in
other cuts. This reduces the chance that a newly picked cut cuts into
the interior of existing LUTs. Between successive iterations of cut selec-
tion, it also adjusts area cost to encourage using LUT roots with a large
number of fanouts in previous iterations. There are also a few other sec-
ondary techniques used in DAOmap. The interested reader is referred
to [38] for details.

Based on the results reported, DAOmap can improve the area
by about 13% compared to previous mapping algorithms for optimal
depth. It is also many times faster than previous flow computation
based mapping algorithms, mainly due to efficient implementation of
cut enumeration.

A more recent work [148] introduces several techniques that fur-
ther improve the area while preserving delay optimality. As DAOmap,
this algorithm also goes through several passes of cut selection. Each
pass selects cuts with better areas among the ones that do not violate
optimal timing. The basic framework is also based on the concept of
effective area (or area flow). However, it processes nodes from PIs to
POs, instead of from POs to PIs during cut selection. With this pro-
cessing order, the algorithm tries to use extra slack on nodes close to
PIs to reduce area cost. This is based on the observation that logic is
typically denser close to PIs. Delay relaxation is more effective following
the topological order from PIs to POs.

The algorithm [148] also uses a local heuristic for area recovery dur-
ing cut selection. It introduces the concept of exact area of a cut which
is defined as the number of LUTs to be added to the mapping solu-
tion if the cut is selected for the node. The algorithm tries to improve
the current mapping solution by selecting a cut with minimum exact
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area at each node without violating timing. An iterative procedure is
proposed to calculate the exact area for each cut. Experimental data
show 7% better area over DAOmap with the same timing.

The cut enumeration framework can also be used for technology
mapping for power minimization, which will be discussed in Sections 6.4
and 6.5.

3.4 Integrated Technology Mapping

Technology mapping is a step in the middle of a typical FPGA
CAD flow with optimization steps before and after it. We carry out
technology-independent optimization and logic decomposition before
technology mapping. We may do sequential optimization such as retim-
ing after (or before) mapping. A separate approach can miss the best
overall solutions even if we can solve each individual step optimally.
To obtain better overall solutions, it is desirable to combine some of
the optimization steps with mapping. In this section we discuss map-
ping algorithms that integrate with decomposition, logic synthesis, and
retiming. Mapping has also been integrated with clustering and place-
ment; these algorithms will be presented when we discuss layout-driven
synthesis.

3.4.1 Simultaneous logic decomposition and mapping

It is advantageous to decompose an input netlist into a two-bounded
one before technology mapping. This is because a mapping solution for
the original network can always be found in the decomposed one.

A network of complex gates (in SOP form) can be turned into a net-
work of simple gates (e.g., AND, OR, XOR, and INV gates) by express-
ing each SOP as a set of AND-OR gates (e.g., using the tech decomp
algorithm in SIS [169]). Structural decomposition then decomposes the
network of simple gates into two-bounded simple gates using associa-
tivity. The dmig algorithm is one such method; it tries to minimize the
depth of the decomposed two-input network using Huffman-tree con-
struction [52]. However, the resulting decomposition may not be the
best as far as the final mapping solution is concerned. This is because
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the depth of the two-bounded network is not an exact predictor for the
depth of the final mapping solution.

In general, different decompositions can significantly impact the
final mapping solution. To find the best mapping solution for the ini-
tial network, it is ideal that we combine decomposition with mapping
by finding a structural decomposition such that the final mapping solu-
tion of the decomposed network has minimum depth among all possible
decompositions of the input network. This problem was shown to be
NP-hard [59].

An algorithm for integrated structural decomposition and mapping
is proposed in [43]. The algorithm is based on the concept of choice
nodes that were originally introduced for combining decomposition and
technology mapping for standard cells [127, 128]. A choice node is not
a physical gate. It is introduced to group all functionally equivalent,
but structurally different decompositions of a node [127]. Each choice
node has a complement copy, both of which form a so-called ugate.
Fig. 3.4 shows an ugate formed by two choice nodes c1 and c2 that are
the complement of each other.

The algorithm essentially encodes all possible structural decompo-
sitions of the input network in a concise mapping graph. The map-
ping graph is formed by adding the choice nodes to represent the
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Fig. 3.4 An ugate example [43].
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Fig. 3.5 A mapping graph for all decompositions of function xyz [43].

decomposition choices. Figure 3.5 is a mapping graph that encodes
all possible decompositions of Boolean function f = xyz. By picking
one branch at each choice node in the mapping graph, we can retrieve
one decomposition of the function.

Cut generation and cut ranking can be extended to choice nodes.
For example, the set of cuts of a choice node is simply the union of the
sets of cuts of all its fanins. Similarly, the label of a choice node is the
smallest one among the labels of its fanins. The rest of the approach is
similar to a conventional mapping algorithm.

The algorithm does not actually generate a mapping solution
directly from the mapping graph. Instead, it determines a decompo-
sition from the mapping graph by selecting a decomposition with best
timing label at each node. After that, it applies a state-of-the-art map-
ping algorithm for a fixed decomposition to obtain the final mapping
solution. Significant timing and area improvements were observed com-
pared to separate decomposition and mapping [43].
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3.4.2 Simultaneous logic synthesis and mapping

Technology-independent Boolean optimizations carried out before tech-
nology mapping in a conventional flow can significantly change the
network passed to mapping; so does the final mapping solution. During
technology-independent optimization, we have freedom to change the
network structures, but accurate estimation of the impact to down-
stream mapping is not available. During technology mapping, we can
achieve optimal or close to optimal solutions using one of the algo-
rithms discussed earlier. However, we are stuck with a fixed network. It
is desirable to capture the interactions between logic optimization and
mapping to arrive at a solution with better quality.

Lossless synthesis has been proposed as way to consider technology-
independent optimization during mapping [148]. Lossless synthesis is
based on the concept of choice networks; this is similar to the mapping
graphs in [127, 128]. As mapping graphs, a choice network contains
choice nodes which encode functionally equivalent, but structurally dif-
ferent alternatives. The algorithm operates on a simple yet powerful
data structure called AIG which is a network of AND2 and INV gates.
A combination of SAT and simulation techniques are used to detect
functionally equivalent points in different networks and compress them

Fig. 3.6 Combining networks to create a choice network [148].
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to form one choice network. Figure 3.6 illustrates the construction of
a network with choices from two equivalent networks with different
structures. The nodes x1 and x2 in the two networks are functionally
equivalent (up to complementation). They are combined in an equiva-
lence class in the choice network, and an arbitrary member (x1 in this
case) is set as the class representative. Node p does not lead to a choice
because its implementation is structurally the same in both networks.
Note also that there is no choice corresponding to the output node o

since the procedure detects the maximal commonality between the two
networks.

Using structural choices leads to a new way of thinking about logic
synthesis: rather than trying to come up with a “good” final netlist
to use as an input to mapping, the algorithm in [148] accumulates
choices by combining intermediate networks seen during logic synthe-
sis to generate a network with many choices. In a sense, it does not
make judgments on the goodness of the intermediate networks or por-
tions of the networks and defers the decision to the mapping phase.
The best combination among these choices is selected during map-
ping. In the final mapping solution, different sections may come from
different intermediate networks. For example, the timing-critical sec-
tions of the final mapping solution may come from networks which
are optimized for timing, while the timing non-critical sections of the
final mapping solution may come from networks which are optimized
for area.

Cut generation and ranking techniques are extended to network
with choices as in the case of integrated decomposition and mapping.
Results reported in [148] show that the proposed algorithm can improve
both area and timing by 7% on a large set of benchmark designs over
mapping solutions produced using just one “optimized” network as the
input.

3.4.3 Simultaneous retiming and mapping

Retiming is an optimization technique that relocates flip-flops (FF)
to improve the performance or area of a design while preserving its
functionality [129]. Retiming can shift FF boundaries and change the
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(a) (b)

Fig. 3.7 A retiming example: (a) The initial design; (b) The retimed design.

timing of a design. For the design (a) in Fig. 3.7, if we relocate the FFs
as indicated, we arrive at the design in (b). If we assume each gate has
one unit of delay, the original design has a clock period of three, while
the retimed design has a clock period of one. The number of FFs is also
reduced from four to three.

If we apply retiming after mapping, mapping may optimize the
wrong paths, because the critical paths seen during mapping may not
be critical after retiming. If we do retiming before mapping, retiming
will be carried out using less accurate timing information since the
design is not mapped. In either case, we cannot account for the impact
of retiming on the cut or LUT generation as logic can be shifted from
one side of FFs to the other. All of these point to the importance of
combining retiming and technology mapping.

In [159], the authors propose the first polynomial time mapping
algorithm that can find the best clock period in the combined solution
space of retiming and mapping. In other words, the mapping solution
obtained at the end is the best among all possible ways of retiming
and mapping a network. The algorithm is based on two important con-
cepts: sequential arrival times and expanded cones (circuits). Sequential
arrival times anticipate the impact of retiming on performance without
actually doing retiming. Expanded cones at a node make it possible to
form cuts across time frames. So cut generation is oblivious of register
boundaries.

Although the algorithm in [159] has polynomial time complexity, the
runtime can be high. An improved algorithm is proposed in [71] that
significantly reduces the runtime while still preserving the optimality
of the final mapping solution. Both algorithms are based on flow com-
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putation, as in FlowMap. To further improve runtime in practice, an
algorithm based on cut enumeration is proposed in [158]; this will be
discussed next.

FF boundaries are not fixed anymore with retiming. Cut genera-
tion is extended to go across FF boundaries to generate sequential cuts
[158]. In a sequential design, a gate may go through zero or more FFs in
addition to logic gates before reaching gate ν. To capture this informa-
tion, an element in a cut for a node ν is represented as a pair consisting
of the driving gate u and the number of FFs d on the paths from u to ν.
The element will be denoted by ud. Note that a node may reach a root
node through paths with different FF counts. In that case, the node
will appear in the cut multiple times with different d values. Here is the
formula relating the set of cuts of a node ν to its two fanins u1 and u2:

Φ(ν) = {{ν0} ∪ {cd1
1 ∪ cd2

2 |c1 ∈ Φ(u1), c2 ∈ Φ(u2), |cd1
1 ∪ cd2

2 | ≤ K},

where di is number of FFs from ui to ν and cdi
i = {ud+di |ud ∈ ci} for

i = 1,2.
Unlike the combinational case, the above formula does not give us a

direct way to compute all cuts because a general sequential design may
contains loops, so the sets of cuts are inter-dependent. A procedure is
proposed in [158] to determine the sets of cuts for all nodes through
successive approximation. The procedure starts with Φ(ν) containing
the trivial cut {ν0} for each node ν, and then updating cuts using the
above formula by going through all nodes in passes until no new cut
is discovered. Figure 3.8 shows an example. For the design on the left,
the table on the right shows three iterations in cut generation. In the
first iteration, every node has the trivial cut. Row 1 shows the new
cuts discussed in the first iteration. In iteration 2, two more cuts are
discovered, one for a and one for b. After that, further cut combination
does not yield any new cut, and the procedure stops. In practice, cut
generation stops very quickly. For example, cut generation stops in, at
most five iterations for all ISCAS89 benchmarks with K = 4.

To consider retiming effect, the concept of (timing) labels is
extended to that based on sequential arrival times [160, 159]. The label
of a cut c is now defined as follows:

l(c) = max{l(u) − d · φ + 1|ud ∈ c}
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Fig. 3.8 Example of iterative cut generation for sequential circuits [158].

where φ is the target clock period. The label of a gate ν is then
defined as,

l(ν) = min{l(c)|∀c ∈ Φ(ν)}.

The label for each PI is zero, and the label for each PO is that of its
driven gate.

An algorithm is proposed in [158] to find the labels for cuts and
nodes. Due to the cyclic nature of general sequential designs, the labels
cannot be determined in one pass, as in the case of combinational net-
works. They are computed through successive approximation by going
through the nodes in several passes. At the beginning, the labels for
all nodes are set to −∞ except PIs whose labels are always zero. The
successive improvement stops if either one of the POs has a label larger
than φ or no more change in the labels is observed. It is shown in [161]
that the initial design has a mapping solution with a clock period φ or
less among all possible retiming and mapping if the label of each PO is
less than or equal to φ.

After the labels for all nodes are computed and the target clock
period is determined to be achievable, we can generate a mapping solu-
tion. As in the combinational case, the algorithm generates a mapped
network starting from POs and going backward. At each node ν, it
selects one of the cuts that realizes the label of the node, and then
moves on to select a cut for u if ud is in the cut selected for ν. On the
edge from u to ν, d FFs are added. To obtain the final mapping solution
with the clock period φ, it retimes the LUT for each non-PI/PO node
ν by �l(ν)/φ� − 1.
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Heuristics are used to reduce the LUT counts in the mapping solu-
tion [158]. Experimental results show that the algorithm is very efficient
and consistently produces mapping solutions with better performance
than optimal combinational mapping followed by optimal retiming.

3.5 Specialized Mapping Algorithms

In previous sections, we discussed LUT mapping with a single value K.
In reality, FPGA devices typically contain heterogeneous resources e.g.,
embedded memory blocks and LUTs of difference input sizes. There
are also commercial FPGA architectures with logic cells that can only
implement a subset of functions of their inputs. In this section, we
briefly summarize mapping algorithms for these special architecture
features.

3.5.1 Mapping for FPGAs with heterogeneous resources

In this subsection, we summarize FPGA technology mapping algo-
rithms for heterogeneous resources. We first discuss mapping for archi-
tectures with different sizes of LUTs. Then, we examine the problem
of mapping logic to on-chip memory.

Mapping with different LUT sizes: There are a number of commer-
cial FPGA architectures that can support LUTs with several different
input sizes. The adaptive logic modules (ALMs) in Altera’s Stratix II
devices can be configured to two 4-LUTs, one 5-LUT and one 3-LUT,
and certain 6/7-LUTs. Other architectures such as Xilinx Virtex II,
Virtex 4 devices can also implement LUTs with different input sizes.

Without loss of generality, we assume there are two types of LUTs
with sizes K1 and K2 and delays d1 and d2, respectively. We further
assume K1 < K2 and d1 < d2. A number of mapping algorithms have
been proposed for mapping to such architectures: for area [72, 101, 107,
116], for delay [73, 76].

For area minimization, the PRAETOR algorithm discussed earlier
has also been applied to such architectures using different area costs
for different LUTs. Good improvements are observed over a previous
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algorithm. In the special case of tree networks, a polynomial optimal
algorithm has also been proposed based on dynamic programming [116].

For timing optimization, the algorithm proposed in [73] is an exten-
sion of FlowMap. As FlowMap, the algorithm is also based on flow
computation. The basic ideas in the algorithm can also be cast in the
cut generation framework by enumerating all K2 cuts. We can just
extend the timing cost by replacing Dc in the formula with d1 or d2

depending on the cut size. We set Dc to d1 if |c| ≤ K1; otherwise, we
set it to d2. With this simple modification, an algorithm for homoge-
neous LUT architectures can be used for architectures with different
LUT sizes.

When there are resource bounds on the available LUTs of differ-
ent sizes, the mapping problem becomes harder since mapping with
area bound is NP-hard in general. Two heuristic algorithms are pro-
posed for the case in which there can be at most r K2 LUTs [74].
The algorithm BinaryHM [74] employs a mapping algorithm that does
not consider resource limitation. It calls on the algorithm repeatedly
to bring resource utilization under control. The basic idea is as fol-
lows. Let DFM be the delay obtained using only K1 LUTs, and DHM

be the delay obtained using both K1 and K2 LUTs with no resource
limitation. Obviously, DFM and DHM are upper and lower bounds on
the delay with the resource limitation, respectively. If the solution with
delay DHM meets the resource bound, the best solution is found. If not,
one can increase d2, the delay of K2 LUT, and solve the unconstrained
version again, which should result in a mapping solution with fewer
K2 LUTs. Binary search is used, and the change in d2 is done through
adjusting the ratio of d1 and d2. The reader is referred to [74] for more
details.

Mapping with embedded memory blocks: On-chip memory has
become an essential component of high-performance FPGAs. Dedicated
embedded memory blocks (EMBs) can be used to improve clock fre-
quencies and lower costs for large systems that require memory. If a
design does not need all the available EMBs, unused EMBs can be used
to implement logic, since they typically can be configured as ROMs on
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most commercial FPGA devices, which essentially turns EMBs into
large multi-input multi-output LUTs.

EMBs usually have configurable widths and depths. They can be
used to implement functions with different numbers of inputs/outputs.
For example, a 2K-bit memory with configurations, 2048 × 1,1024 × 2,
and 512 × 4 can be used to implement an 11-input/1-output, 10-
input/2-output, or 9-input/4-output logic function. Using EMBs for
logic can reduce interconnect delays since they can potentially replace
many small LUTs. On the other hand, EMBs usually have big inter-
nal delays (memory access time). Care must be taken to map logic to
EMBs. Several mapping algorithms have been proposed to take advan-
tage of unused EMBs [75, 198, 200, 199]. Mapping logic to EMBs is
typically done as a post-processing step after LUT mapping. It starts
with an optimized mapping solution for LUTs and then packs groups
of LUTs for EMB implementation.

The algorithm SMAP in [198] maps one EMB at a time. It begins
by selecting a seed node. A fanin cone of the seed node is generated by
finding a d-feasible cut that covers as many nodes as possible, where d is
the bit width of the address line of the target EMB. Since d is consider-
ably larger than the typical LUT input size, flow-based cut generation
is used. After the cone is generated, the output selection process selects
signals to be the outputs of the EMB. Output selection tries to select
a set of signals so that the resulting EMB can eliminate as many LUTs
as possible. Each node is assigned a score that is equal to the number
of nodes in its MFFC within the cone. The w highest-scoring nodes are
selected as the EMB outputs, where w is the number of outputs of the
target EMB. The selection of the seed node is critical for this method.
The algorithm tests each candidate node and selects the one that leads
to the maximum number of eliminated LUTs. Heuristics are introduced
to consider EMBs with different configurations and to preserve timing.

Another algorithm, EMB Pack, presented in [75] takes a slightly dif-
ferent approach. It finds the logic to map to EMBs altogether instead
of one at a time, as in SMAP. The algorithm first selects a set of
maximum fanout-free subgraphs (MFFSs)—a generalization of MFFCs
with one or more outputs for possible EMB implementation. It goes
through each node to find a MFFS. For each node, it searches in the
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fanout cone of the node to find output nodes for the MFFS. MFFS
selection is transformed into a hyper-graph clustering problem. The
MFFSs selected may exceed the input bound of the target EMBs. If
this happens, an iterative procedure is used to remove nodes from the
MFFSs to reduce the input size. Finally, it selects a set of MFFSs among
all candidate MFFSs to maximize area improvement without increas-
ing the overall circuit delay. The selected MFFSs will be implemented
as EMBs.

3.5.2 Mapping for CPLDs

Complex programmable logic devices (CPLDs) are a class of pro-
grammable logic devices that are more coarse-grained than typical
FPGAs. Each CPLD logic cell (p-term block) is essentially a PLA that
consists of a set of product terms (p-terms) with multiple outputs. A
p-term block can be characterized by a 3-tuple (k,m,p) where k is the
number of inputs, p is the number of outputs, and m is the number of
p-terms for the block. The input size k is normally much larger than
that of FPGA logic cells. In this section we discuss mapping algorithms
for CPLDs.

Relatively speaking, there has been a lot less mapping algorithms
proposed for CPLDs. A fast heuristic partition method for PLA-based
structures is presented in [98]. The algorithm DDMap [118] adapts a
LUT mapper for CPLD mapping. It uses wide cuts to form big LUTs
and decomposes the big LUTs into p-terms allowed in target CPLDs.
Packing is used to form multi-output p-term cells. An area-oriented
mapping algorithm is proposed for CPLDs in [15]. The algorithm is
based on tree mapping. It uses heuristic partial collapsing and bin
packing to form p-term cells. In [57], the authors investigate an FPGA
architecture consisting of the k/m macrocell which is a p-term block
with one output. A mapping algorithm similar to the FlowMap algo-
rithm is proposed for this architecture.

A more recent mapping algorithm for CPLDs, PLAmap, is pro-
posed in [40]. Like most of mapping algorithms, it has two phases: the
labeling phase and the mapping phase. In the labeling phase, it finds
a minimal mapping depth for each node using logic cell (k,m,1), i.e., a
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singled out p-term block, assuming each logic cell has one unit delay.
The labeling procedure is based on Lawler’s clustering algorithm [123].
The labeling process follows topological order from PIs whose labels
are set to zero. At each node, let l be the max label of the nodes in its
fanin cone. The algorithm forms a logic cluster by grouping the node
with all nodes in its fanin cone that have the label l. If the cluster
can be implemented by a (k,m,1)-cell, the node is assigned the label
l; otherwise, the node gets the label l + 1 with a cluster consisting
only of the node itself. Note that this is a heuristic in that the label
may not be the best. This is because even if the cluster formed by
the node and its (transitive) fanins with the label l cannot be imple-
mented by a (k,m,1)-cell, a super-cluster (one containing the cluster)
may be – the so-called non-monotone property. The mapping phase is
done in reverse topological order from the POs. The algorithm tries to
merge the clusters generated in the labeling phase to form (k,m,p)-
cells whenever possible. Cluster merging is done in such a way that
duplication is minimized and the labels of the POs do not exceed the
performance target. There is also a post-processing packing to further
reduce p-term cell count. In commercial CPLDs, there is extra logic in
each p-term block for borrowing p-terms across blocks. PLAmap is also
extended to take advantage of such extra logic. Experimental results
show PLAmap out-performs commercial tools and other algorithms in
performance with none or very small area penalty.

P-term blocks or macrocells are suitable for implementing wide-
fanin, low-density logic, such as finite-state machines. They can poten-
tially complement fine-grain LUTs to improve both performance and
utilization. Both academic and commercial architectures have been
proposed that contain a mix of LUTs and P-team blocks or macro-
cells to take the advantages of different types of logic cells. Technol-
ogy mapping algorithms were proposed for such hybrid architectures
[111, 119, 138]. These algorithms are similar to the hybrid mapping
algorithms described earlier in that they try to identify sub-circuits to
be implemented using coarse-grain structures.



4
Physical Synthesis

In a conventional FPGA design flow, synthesis is separated from phys-
ical design. In the synthesis stage, the design is transformed from one
representation to another. Along the way, the design morphs from a
high-level generic representation to a netlist in terms of the logic cells
of the target FPGA device (a mapped netlist). Physical design places
the logic cells on the selected FPGA device and finally connects the
cells.

With continued shrinking of the feature size, the locations of the
cell and the wirings among them become the dominating factors on
the quality of the final implementation. It is common for interconnect
delays to take up to 70–80% of the total delay on the critical paths
of final designs these days. The conventional design flow cannot ade-
quately address this challenge. This is because the physical effects are
not considered during synthesis. On the other hand, we are limited by
the netlist from synthesis during physical design. As a result, we cannot
correct the “bad” synthesis decisions made earlier in the flow.

This is where physical synthesis comes into play. Physical synthesis
can mean different things for different people. However, at higher level,
physical synthesis can be viewed as techniques/methods that try to
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link physical design with synthesis. So synthesis can consider physical
impacts and physical design can introduce design transformations.

Although some physical synthesis techniques for standard cells can
also be applied to FPGAs, physical synthesis for FPGAs has its unique
constraints. For example, in FPGAs, we cannot size cells up and down
to trade off timing, area, and power. In the following, we review physical
synthesis techniques developed for FPGAs.

4.1 Logic Clustering

Most modern FPGA architectures contain a physical hierarchy logic
blocks for improved area-efficiency and speed. To implement a design
on such architectures, a logic clustering step is typically needed between
technology mapping and placement. Logic clustering transforms a
netlist of logic cells into a netlist of logic clusters each of which can
be implemented using a logic block.

A typical logic block contains N logic cells with I inputs and N

outputs. Here, N and I are fixed for the given architecture. There can
be other architecture constraints, such as control signals for sequential
elements, which have been omitted here for ease of discussion. The
logic clustering problem for FPGAs takes as input a mapped netlist
and produces a clustered netlist satisfying the cluster parameters.

One of the early FPGA clustering algorithms is VPack [22, 21].
The VPack algorithm forms one cluster at a time. At the beginning
of each cluster formation, VPack selects as a seed an unclustered logic
cell with the most used inputs and places this seed into the cluster.
It then calculates the attraction of each unclustered cell to the new
cluster. The attraction of a logic cell to a cluster is the number of
inputs and outputs that are shared by the cell and the cluster. The cell
whose addition doesn’t violate cluster constraints and has the largest
attraction value will be added to the cluster. The packing process is
repeated until we cannot add in new cells to the current cluster. At
that time, packing begins with a new cluster. The process terminates
when all logic cells have been assigned a cluster.

The objective of the VPack algorithm is to minimize the number
of clusters needed. Later, an enhanced algorithm called T-VPack was
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proposed to optimize timing [144]. The delay model used in T-VPack
can be described by three delay values: logic cell delay, intra-cluster
delay, and the inter-cluster delay. Usually, the inter-cluster delay is
much larger than the intra-cluster delay. The basic idea in T-VPack is
to reduce the inter-cluster connects on the critical paths.

T-VPack follows the general steps of VPack. It also forms one cluster
at a time and packs as many logic cells into each cluster as possible.
The main difference is in the selection of seeds and selection of logic
cells to absorb into partial clusters. Both selections are based on timing
criticality values. The criticality of the connection driving an input i

is defined as Connection Criticality(i) = 1− slack(i)/MaxSlack, where
MaxSlack is the largest slack of all interconnects and slack(i) is the
slack at input i. T-VPack selects as the seed an unclustered cell that
is driven by the most critical connection.

The concept of attraction is enhanced to include timing criticali-
ties. T-VPack defines the base criticality of an unclustered logic cell B

with respect to the cluster C currently being packed as the maximum
connection criticality of all the connections between B and cells C,
denoted by Base BLE Criticality(B), when the cluster is understood.
The criticality of B is defined using the following formula:

Critically(B) = Base BLE Critically(B)

+ε · total path affected(B),

where total path affected(B) is an estimate of the number of crit-
ical paths B is involved in and ε is a very small value (so
total path affected(B) acts a tie-breaker for the base criticality). The
new attraction formula incorporating timing is defined as follows:

Attraction(B) = α · Critically(B) + (1 − α) · Attractionarea(B)/G ,

where Attractionarea(B) is the attraction for area packing used in
VPack, G is a normalizing factor, and α is a trade-off factor that
determines the amount of attraction coming from timing vs. area. It is
recommended to set α to 0.75 for timing.

T-VPack performs much better for timing than VPack. Comparison
data also show T-VPack results in better final chip area after placement
and routing. This is because T-VPack has the tendency to completely
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absorb many low fanout nets into clusters. This reduces the number of
inter-cluster nets, which in turn, improves the routing area.

One problem with T-VPack is the delay model. It uses a sim-
plistic model since there is no accurate interconnect delay. To over-
come this problem, a simultaneous clustering and placement algorithm
is proposed in [45]. This algorithm can move cells among clusters
inside an annealing-based placement engine. It starts with an initial
clustered netlist and a random placement. During the annealing pro-
cess, it tries to remove suboptimal clustering structures by introducing
fragment-level moves in addition to block-level moves which move clus-
ters around. Fragment-level moves relocate cells among clusters with-
out changing the locations of the clusters. The integrated approach is
particularly effective when utilization is high and a large amount of
unrelated packing occurs. Unrelated packing means logic that is not
directly connected is packed into the same clusters to reduce number
of clusters. Experimental results show significant improvement in tim-
ing and area compared to a separate approach using T-VPack followed
by VPR.

Clustering has a significant impact on the routability of a design. A
routability-driven clustering algorithm is presented in [25]. The algo-
rithm prioritizes a set of factors that can impact routability, then incor-
porates those factors to form an routabilty-oriented attraction formula
to guide the cell selection process. A typical clustering algorithm packs
as much logic into each cluster as possible. In practice, routability can
be improved if the clustered netlist matches the device structure. A
connectivity-based clustering algorithm is proposed that tries to achieve
“spatial uniformity” to reduce stress on routing [174]. The algorithm
is based on Rent’s rule and may purposely leave some clusters unsatu-
rated for better routability.

Some FPGA architectures have more than one level of hierarchy,
e.g., Altera APEX families have two levels of physical hierarchy. In [68],
the authors study the problem of performance-driven multi-level clus-
tering. They show that the problem is NP-hard and propose an effi-
cient heuristic for two-level clustering. The heuristic algorithm is based
on label computation, like many of the area-constrained performance-
driven clustering algorithms [123, 150, 164]. Experimental results show
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an average improvement of 15% delay reduction from the two-level
clustering algorithm after final place and route.

4.2 Placement-Driven Mapping

In this section, we examine physical synthesis techniques that com-
bine placement and technology mapping. One problem with technol-
ogy mapping in the traditional flow is the lack of accurate information
about interconnects. Many mapping algorithms use simple models that
are inaccurate when the design is placed and routed. For timing opti-
mization, most mapping algorithms use the unit delay model in which
the interconnect delays are totally ignored. “Good” mapping solutions
produced based on such inaccurate models may not be good after place-
ment. To overcome this problem, algorithms have been proposed to
combine placement and mapping.

A number of algorithms try to carry out placement and mapping
simultaneously. The MIS-pga algorithm [152] performs iterative logic
optimization and placement. The algorithm in [37] tightly couples tech-
nology mapping and placement by mapping each cell and assigning it
to a preferred location on a 2-D grid using a maximum weighted match-
ing formulation. Another approach [186] combines mapping, placement,
and routing by integrating mapping into a bi-partitioning-based place-
ment framework. The algorithm in [24] refines mapping solution dur-
ing placement using simulated annealing to move logic among LUTs to
improve routability. Ideally, such integrated approaches would generate
the best solutions. In practice, they have a serious limitation. Due to
the complexity of the combined problem, often simple mapping and
placement techniques are employed for ease of integration. Because of
this, the benefit of the combined approach is reduced.

Another approach to combining mapping and placement is by iter-
ating between mapping and placement (or placement refinement). The
design is first mapped and placed. Then, the netlist is back-annotated
and mapped again under the given placement. This process can be
repeated until a satisfactory solution is found. Figure 4.1 outlines the
major steps in an iterative mapping and placement algorithm for timing
optimization presented in [140]. The key step is the placement-driven
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Initial Design

Technology-independent logic
optimization

Generation of initial mapping
and corresponding placement

Placement-driven technology 
mapping

Placement legalization and
refinement

Logic decomposition into 2-
input gates

Fig. 4.1 One pass of iterative mapping and placement [140].

mapping problem that involves decomposing a mapped/placed netlist,
then mapping it again to improve timing. The mapping step may make
the placement illegal (e.g., two or more cells are placed at the same
location). The placement of the new mapped netlist is then legalized
and refined to produce a mapped/placed solution with potentially bet-
ter timing.

The algorithm uses table-lookup to estimate edge delays based on
placement locations. Given two locations, it looks up the estimated
delay for the wiring between the two locations in a pre-stored table.
This is more accurate and realistic than the “fixed” interconnect delays
used in earlier layout-based mapping algorithms [146, 216].

The decomposition method is a straightforward extension of the
dmig algorithm [46]. The only difference is that interconnect delays
are added to the arrival time propagation during the decomposition
process. New nodes inherit the locations of the LUTs from which they
are generated.

The mapping algorithm works in a fashion similar to typical cut enu-
meration based technology mappers. It has two phases namely label-
ing and mapping generation. The labeling phase is the same as in
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conventional mapping, except it adds interconnect delays into the label
propagation.

One difficulty in placement-driven mapping is that the new solution
may not be legal since it is possible to assign two or more cells to the
same location. Another difficulty is that timing predicted in the label-
ing phase may be invalid due to congestion in the new mapping solu-
tion. Congestion means many overlapping locations in a small region. It
requires many cell relocations to legalize the placement, which in turn,
perturbs the timing. To overcome this problem, the algorithm employs
an iterative process with multiple passes in the mapping phase. Each
pass uses the cell congestion information gathered during previous iter-
ations to guide the mapping decisions. Several techniques are proposed
to relieve congestion while trying to meet the labels at the POs. One
of the techniques is a hierarchical area control scheme to evaluate the
local congestion cost. In this scheme, the chip is divided into bins with
different granularities. Area increase is tallied in each bin. Penalty costs
will be given to bins with area overflows.

After the mapping phase completes, a mapping solution with a pos-
sibly illegal placement is generated. This is followed by a timing-driven
legalization step that moves overlapping cells to empty locations in their
neighborhood based on the timing slack available for the cell. Finally, a
simulated annealing-based placement refinement phase is carried out to
improve the circuit performance. Experimental results show the method
can improve timing by over 12% with little area penalty incurred by
remapping.

4.3 Placement-Driven Duplication

Logic replication is a simple, yet effective technique for improving tim-
ing. It can be used to distribute fanout load and isolate critical paths.
Logic replication can improve design quality without any real area cost
if it can be done using only the unused cells on the target device.

Recently, logic replication has been used to reduce interconnect
delays after placement. The idea is to use replication to straighten paths
that are otherwise circuitous (and therefore with big delays). Figure 4.2
shows an example. Suppose A, B, D, and E cannot be moved (e.g., pads
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Fig. 4.2 Straightening paths using replication [20].

with fixed positions). We further assume that delay is proportional to
the wirelength. To minimize the maximum path delay, we have to place
C at the middle of the region enclosed by the four fixed pads as shown
in the left of Fig. 4.2. Obviously, all paths between pads have detours
going through the middle cell C. This is bad for timing. On the other
hand, if we duplicate cell C and move C and its duplicate close to the
two sink pads A and E, we arrive at the placement shown in the right
of Fig. 4.2. The new placement is much better in delay. What happens
is that once we replicated C, we have the freedom to place the cell and
its duplicate differently to straighten paths and improve timing.

An iterative algorithm is presented in [20] that selectively replicates
cells and perturbs the placement to straighten circuitous paths for tim-
ing optimization. One of the key components of the algorithm is the
notion of local monotonicity. A cell, together with a fanin and a fanout,
is on a non-monotone local sub-path if the distance between the fanin
cell and the fanout cell is smaller than the sum of the distance from
the fanin to the cell and the distance from the cell to the fanout. Let
C be the cell and P and N be a fanin and a fanout of C, respectively.
The deviation of C on this sub-path can be defined as follows:

deviation(C ) = distance(P ,C ) + distance(C ,N ) − distance(P ,N ),

If deviation(C) > 0, then P , C, and N form a non-monotone sub-path.
The algorithm, starting from a placed design, iteratively selects one

cell on a non-monotone sub-path of a critical path to replicate. Cell
selection focuses on cells that are on critical paths and have non-zero
deviation. The cells with large deviations will have a high probability
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of being selected. After a cell is selected and replicated, it finds a new
location for the replicated cell to reduce the deviation. The fanouts
of the selected cell will then be distributed between the cell and its
replicate with the goal of improving timing. It could also happen that
all the fanouts go to the replicate. In this case, the cell is essentially
relocated.

The new location may not be legal since cells can overlap. Cell over-
laps are eliminated in the ensuing legalization procedure. The objective
of legalization is to produce a legal placement with minimal impact to
the performance of other paths. A procedure based on “ripple move,”
similar to the one in [105], is used. The algorithm terminates when it
fails to generate improvement for a certain number of iterations in a
row. Experiments show good performance improvement over the place-
ment results produced by the VPR algorithm.

One limitation of the preceding algorithm is that it only targets
local monotone sub-paths. While effective, it may not be able to remove
more global non-monotone sub-paths. Figure 4.3 demonstrates this lim-
itation. In this example, the sub-path s->a-> b and a->b- >t are both
non-monotone (based on rectilinear distance). However, the path from
s to t is not so.

An enhanced algorithm is proposed in [103] to overcome the limi-
tation of local monotonicity. The algorithm is also iterative. However,
it may replicate a set of cells in each iteration. The algorithm deter-
mines a timing-critical section of the design, then replicates the cells in
the critical section to generate a Replication Tree in which every node
has one fanout except the leaves which may have multiple fanouts (a
leaf-DAG). The algorithm then embeds the replication tree by adapt-
ing the dynamic programming procedure for S-tree embedding [102] to

Fig. 4.3 Limitation of local monotonicity [103].
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consider both timing and wirelength. Placement legalization is invoked
after embedding. The legalization procedure is the same as the previ-
ous algorithm except for the fact that both timing and wirelength are
considered. A delay reduction of over 14% was observed on a set of
benchmark designs, about twice the improvement from the approach
based on local monotonicity removal.

The previous algorithms carry out logic replication as a post-
optimization step after placement. An algorithm is presented in [44]
that integrates replication into a simulated annealing placement engine.
At the end of each annealing iteration, it performs a placement-driven
logic replication based on the current placement. The replication algo-
rithm has several unique features. It introduces the notion of feasible
region and super-feasible region to improve the critical path mono-
tonicity globally. An enhanced placement legalization procedure is
proposed that can take into consideration the complex architecture
constraints in real commercial FPGA architectures. Replication can
be carried out multiple times with this approach, which may result
in redundancies—multiple duplicates of the same nodes. An effective
technique is presented to remove redundancies globally while preserv-
ing timing. Experimental results show over 18% delay reduction over
VPR on average. With the path-counting-based net weighting scheme
in [115], the algorithm achieves over 25% delay reduction.

4.4 Other Techniques

There are many other physical synthesis techniques, from post-layout
pin permutation [80] to a general incremental physical synthesis frame-
work [178]. In this section, we briefly review a few other physical-aware
synthesis and optimization techniques.

Integrated retiming and placement : Traditionally, retiming is
applied during the synthesis stage where accurate estimate of inter-
connect delays is not available. In [175] an integrated retiming and
placement algorithm is presented. The algorithm has three compo-
nents: retiming-aware placement, retiming with minimal placement
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disruption, and incremental clustering and placement to legalize the
disrupted placement after retiming.

The algorithm first enhances the simulated annealing-based
FPGA placement algorithm VPR (see Section 2.2.1) to make it
retiming-aware. VPR is a net-weighting based timing-driven placement
algorithm that uses connection criticalities to weigh interconnection
delays with the objective of encouraging cells on critical connections
to stay together during placement. In the original VPR algorithm, the
criticality of an interconnection c is defined as follows: Critically(c) =
1.0 − β · slack(c), where slack(c) is the slack of the interconnection and
β is a scaling factor. To make VPR retiming-aware, the criticality for-
mula is enhanced by replacing slack(c) with CycleSlack(c). The cycle
slack of an interconnection is the maximum amount of delay that can
be added to the interconnection without violating a given performance
target under retiming. The notion of cycle slacks is similar to sequential
slacks computed using sequential arrival and required times [63, 159].

Once the retiming-aware placement step is completed, the next step
of the algorithm is to find and apply a retiming to improve performance
based on more accurate interconnect delays determined by the place-
ment. The algorithm finds a retiming using the standard formulation of
minimizing a weighted sum of the register counts on interconnections
subject to the timing requirements. The weights or costs of the inter-
connections are assigned in such a way that they discourage disruption
to the placements. The final step is incremental clustering and place-
ment to place the new registers introduced during retiming. This step
is based on a greedy iterative improvement method that moves logic
cells in an attempt to minimize a cost function. The reader is referred
to [175] for details on the cost function and the moves used. An average
of 19% performance improvement is reported compared to a sequential
approach in which retiming is done before placement.

SPFD-based rewiring : Rewiring is a technique that changes inter-
connections in a design by removing and adding wires without
touching logic cells, while preserving design functionality [83, 33,
34, 215, 64]. This technique is very attractive in physical synthe-
sis since it does not perturb placement. It can be used for timing
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improvement (replacing timing-critical connections with non-critical
ones) or routability improvement (replacing interconnections in con-
gested regions with those in less congested ones).

Most rewiring algorithms use ATPG-based redundancy addition
and removal and do not modify the functionality of any node in a
design during rewiring. However, they cannot take advantage of the
flexibility of K-LUT (which can implement any function with up to K

inputs). Set of pairs of functions to be distinguished (SPFD) [215] is
a rewiring technique that may change node internal functions during
rewiring. SPFD approaches can potentially find more rewiring opportu-
nities than ATPG-based approaches while possessing the same advan-
tage of no placement disruption.

A function f is said to distinguish a function pair (π1,π0) where
π1 	= 0,π0 	= 0,π1 · π0 = 0, if either one of the following two conditions
holds: π1 ≤ f ≤ π0 or π1 ≤ f ≤ π1. Intuitively, π1 ≤ f ≤ π0 means f

contains π1 and is outside of π0, namely, it separates or distinguishes
the two functions π1 and π0. A function f is said to satisfy an SPFD
P = {(π11,π10),(π21,π20), . . . ,(πm1,πm0)} if f distinguishes all the func-
tion pairs in P . The notion of SPFDs is a way to express don’t-care
conditions by providing flexibility for implementing functions [26].

A SPFD-based rewiring algorithm starts by computing the global
function of each pin in a design (a global function is defined in terms of
the PIs). It then determines the SPFD for each pin in topological order
from the POs. After the SPFDs for all pins are available, rewiring is
carried out next. As an example, for the partial design shown in the
left of Fig. 4.4, assume there is another node p′ with global function
g′ = x1 + x2. It can be shown that g′ can also satisfy the SPFD of p2. As

Fig. 4.4 SPFD-based rewiring [65].
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a result, we can connect p′ to p2 and remove the original wire connected
to p2. The internal function of G should be changed to p0 = p1 + p2 to
maintain the functionality of the design.

The original SPFD-based rewiring algorithm proposed in [215]
finds alternative wires locally. It requires the destination node of the
alternative wire to be the same as the target wire, as indicated in
Fig. 4.5. This obviously limits the effectiveness of the rewiring algo-
rithm. The global SPFD-based rewiring algorithm presented in [64] is
capable of finding global alternative wires that may not share the same
destination nodes as target wires. Let G1 be the destination node of
a target wire as shown in Fig. 4.5. The global rewiring algorithm may
add an alternative wire to a dominator, GD, of GI . A dominator of G1

is a node that is on all paths from G1 to POs. Comparitive results show
that ATPG-based rewiring can find alternative wires for around 10% of
the wires, while local and global SPFD-based rewiring can find alter-
native wires for 25% and 36% of the wires, respectively. This clearly
shows the potential of SPFD-based rewiring for LUT-based FPGAs.

Fig. 4.5 Global SPFD rewiring [65].

Integrated mapping and clustering : The quality of clustering
depends significantly on the mapping solution. To address this depen-
dency, mapping and clustering needs to be performed together. In [139]
an integrated mapping and clustering algorithm was proposed. The
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Fig. 4.6 Mapping and clustering.

algorithm can find a clustering solution with optimal delay under the
commonly-used clustering delay model described in Section 4.1.

Figure 4.6 is an example that illustrates the sub-optimality of sep-
arate mapping and clustering. We assume 3-input LUTs and a cluster
capacity of 3 (i.e. at most 3 LUTs in each cluster). For the example
netlist in (a), delay-optimal mapping generates a netlist with 5 LUTs,
and delay-optimal clustering afterwards produces a clustered netlist in
(b). The critical path contains three inter-cluster connections (count-
ing the edges between I/Os and clusters) and one intra-cluster con-
nection. On the other hand, with node duplication, we can obtain
another mapping solution with 6 LUTs as shown in (c) which results
in the clustered netlist in (d). The critical path of the second clustering
solution contains two inter-cluster connections and two intra-cluster
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connections. The latter solution is better than the one in (b) gen-
erated by separate delay-optimal mapping and clustering, assuming
inter-clustering is larger than intra-cluster delay as is the case in prac-
tice.

The proposed algorithm carries out mapping and clustering simul-
taneously. It first uses dynamic programming to determine the optimal
delay at each node while considering both mapping and clustering.
After the optimal delay at each node is determined, the algorithm gen-
erates mapping and clustering solutions simultaneously to realize the
optimal delays under the cluster capacity constraint. The paper also
presents a number of heuristics to reduce area overhead introduced by
duplication. Compared to a sequential approach using state-of-the-art
mapping and clustering algorithms, the proposed algorithm achieves
25% performance gain with 22% area overhead under the inter-/intra-
clustering delay model. After placement and routing using VPR, the
performance is still 12% better on a set of benchmark designs.



5
Design and Synthesis with Higher Level

of Abstraction

Modern SoC FPGA (or field-programmable SoC) contains embedded
processors (hard or soft), busses, memory, and hardware accelerators on
a single device. On one hand, these types of FPGAs provide opportuni-
ties and flexibilities for system designers to develop high-performance
systems targeting various applications. On the other hand, they also
immediately increase the design complexity considerably. To realize the
promise of this vision, a complete tool chain from concept to imple-
mentation is required [210]. System-level, behavior-level, and RT-level
synthesis techniques are the building blocks for this automated system
design flow. System-level synthesis compiles a complex application in
a system-level description (such as SystemC [182]) into a set of tasks
to be executed on various processors, or a set of functions to be imple-
mented in customized logic, as well as the communication protocols and
the interface logic connecting different modules. Such capabilities are
part of the so-called electronic system-level (ESL) design automation.
ESL design automation has caught much attention from the industry
recently. Many design challenges still remain in this level, such as the
standardization of IP integration, system modeling, performance esti-
mation, overall design flow, and verification methodology, etc. A key
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component of ESL design automation is behavior-level synthesis which
is a process that takes a given behavioral description of a circuit and
produces an RTL design to satisfy area, delay, or power constraints for
the hardware. It primarily consists of three subtasks namely: schedul-
ing, allocation, and binding. The next step after high-level synthesis is
RTL synthesis.1 Usually, input to an RTL synthesis tool includes the
number of data path components, the binding of operations to data
path components, and a controller (finite state machine) that contains
the detailed schedule (related to clock edge) of computational, I/O, and
memory operations. The output of the RTL synthesis provides logic
level implementations of the design that can be evaluated through the
optimization of the data path, memory, and controller components,
individually or in a unified manner. Section 1 introduced RTL design
and RTL elaboration steps.

System-level design is a vast area. It can include topics on soft-
ware/hardware partitioning and codesign, reconfigurable computing,
and synthesis for dynamically reconfigurable FPGAs, which are all
beyond the scope of this paper. Therefore, we will primarily focus on
behavior-level and RTL synthesis in this section. Continuing with the
bottom-up approach guided by design levels, as laid out in previous sec-
tions, we will introduce RTL synthesis first and behavior-level synthesis
second.

5.1 RTL Synthesis

RTL synthesis is a key step in the FPGA design flow, as shown in
Section 1. However, there are relatively few publications on this sub-
ject in relevant literature. Part of the reason is that RTL synthesis
for FPGAs can take advantage of existing RTL synthesis techniques
used in ASIC designs, which are already pretty mature. Meanwhile,
RTL synthesis for FPGAs does need to consider the specific FPGA
architecture features. For example, the regularity of FPGA logic fab-
ric offers opportunities for directly mapping datapath components to
FPGA logic blocks, producing regular layout, and reducing chip delay

1 Designers can skip high-level synthesis and directly write RTL codes for circuit design.
This design style is facing challenges due to the growing complexity of FPGA designs.
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and synthesis runtime. The synthesis tools also need to pay attention
to circuitry features enclosed in the logic blocks, such as the fast carry
chains, to achieve better performance for the design. In addition, most
of the modern FPGAs offer both hard structures, such as blocks of
memory and multipliers, and flexible soft programmable logic to pro-
vide domain-specific programmable solutions. These FPGAs are called
platform FPGAs or heterogenous FPGAs. Examples include Altera
Stratix II device families [10] and Xilinx Virtex-5 device families [209].
This brings new challenges for RTL synthesis to simultaneously target
both hard structures and soft logic. In this subsection, we will present
several research works and provide readers with the flavor of how these
issues have been addressed. We will first talk about datapath synthesis,
which deals with mapping datapath components to FPGA directly. We
then cover RTL synthesis for heterogeneous FPGAs. RTL synthesis for
FPGA power reduction will be discussed in Section 6.4.3. We believe
there are still many interesting research topics for further study in RTL
synthesis, such as retiming for glitch power reduction, resource sharing
for multiplexer optimization, and layout-driven RTL synthesis, just to
name a few.

5.1.1 Datapath synthesis

Large circuits typically contain a large portion of highly regular data-
path logic. The traditional gate/CLB-level CAD flow first implements
each datapath node with a datapath component, then flattens the dat-
apath components to gates (discarding information about regularity),
and feeds the resulting netlist to the gate-level design flow. It is unlikely
that an efficient bit-slice layout will be rediscovered during placement,
and the generated irregular layout leads to a difficult routing problem.
Moreover, once the circuit is flattened to gates, it is usually not possi-
ble to rediscover uses of specialized features of the CLBs in the FPGA,
such as the fast carry chain circuitry. Flattening to gates also leads to
a much larger problem size — there are many multiples of gates than
there are nodes in the DFG. To address this problem, datapath synthe-
sis algorithms preserve these datapath structures rather than flattening
them to gates. They also explore the specialized datapath features in
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an FPGA and try to map datapath operations directly to the available
modules in the FPGA. Datapath synthesis intrinsically needs to deal
with bit-slices for maintaining the regularity of the datapath and the
layout. Therefore, it is natural to be combined with packing, placement,
and routing tools to improve speed or area. The input of datapath syn-
thesis is a scheduled DFG or CDFG. Thus, the data storage elements
are already determined and need to be considered during synthesis.
There are several related works in this area.

In [114] a design strategy named SDI was presented. It is a
strategy for the efficient implementation of regular datapaths with
fixed topology on FPGAs. It employs parametric module generators,
a floorplanner based on a genetic algorithm, and a circuit compaction
phase through local technology mapping and placement. Figure 5.1
shows the design flow of SDI. The chip topology targeted by SDI
is characterized by a fixed tri-partite layout (Fig. 5.2). The large
middle section holds the regular part of the datapath. This part
consists of a horizontal arrangement of modules, each composed of
vertically stacked bit-slices. The area below the datapath is intended
to hold the controller. A small area above the regular section can
hold irregularities in the modules as cap cells, e.g., the processing of
overflow and carry bits in a signed adder.

Fig. 5.1 SDI design flow in [114].
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Fig. 5.2 On-chip topology shown in [114].

As shown in Fig. 5.1, the designs are expressed in the SDI netlist
format SNF, which is a textual netlist of module declarations, module
instantiations, and interconnections. Modules include arithmetic mod-
ules, logic, shifters, comparators, counters, storage elements, etc. SNF
associates values with module parameters such as bus widths, data
types, and optimization requests (speed vs. area).

The module generation procedure (PARAMOG) takes user-
specified parameters for each module instance and prepares a list of
possible layouts with different topologies. The FloorPlanner will read
the available layout topologies for all module instances of the datapath
and begin to linearly place instances in the regular region of the FPGA.
During this process, different concrete layouts are selected and evalu-
ated in context. The FloorPlanner is based on a genetic algorithm, and
thus considers various different layout choices and placements simul-
taneously. When FloorPlanner has finished its work and created a
suitable linear placement of module instances in the datapath area,
a compaction phase follows. Compaction is performed by merging all
logic (across module boundaries) within a logic equivalence class and
processing the resulting functions with classical logic synthesis and opti-
mization tools. Afterwards, since all placement information within an
equivalence class is lost during compaction, the CLBs in the classes
have to be replaced. One of the primary criteria for this placement is
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the restoration of a regular structure consistent with the one created by
PARAMOG. This placement (µPlacement) is based on an integer linear
programming (ILP) formulation of the problem. Afterward, a routing
tool available through Xilinx physical design tool PPR is used to finish
the routing for the design. The final result of SDI is a bit-stream ready
for downloading.

The paper showed two layouts of the same circuit (a 16-bit dat-
apath consisting of two instances of a sample combinational mod-
ule with a structure common to many bit-slices), one conventionally
generated by the Xilinx tool PPR, the other one processed by SDI.
Based on the layout, they showed that the SDI-generated solution is
more regular. The SDI layout is also less congested than the PPR
layout, and the routing delay in the critical path of the SDI solu-
tion is 13% shorter than the PPR layout. SDI also runs about two
times faster. Although FPGAs with fixed bit-slice topology enable effi-
cient datapath synthesis and faster optimization flow, it does imply
restrictions on the overall layout of the design. In general, it should
work well for data-intensive designs with simple control logic. How-
ever, for control-intensive designs, layout restriction can cause larger
wire delays due to the difficulty of distributing control logic flexibly on
the chip.

In [217] the authors proposed an enhancement to the module
compaction algorithm proposed in [114]. They observed that typical
datapath synthesis algorithms sacrificed area to gain regularity. They
proposed two word-level optimizations—multiplexer tree collapsing and
operation reordering. They reduced the area inflation to 3% to 8% as
compared to flat synthesis. Their synthesis results retained a significant
amount of regularity from the original designs.

In another follow-up work [30], the authors observed that the limi-
tation of [114] was that the module compaction step could not handle
specialized CLB features such as a fast carry chain, and thus did not
attempt to merge modules that used such features. Another limitation
of [114] was that only physically adjacent modules in the previously
determined floorplan were considered for compaction. To address these
issues, [30] presented a datapath mapping tool GAMA. GAMA consists
of the following optimization steps.



5.1. RTL Synthesis 275

Tree splitting. GAMA uses a tree-covering algorithm. Therefore, the
input design (control dataflow graph) must be split into a forest of trees.
Cycles are broken at appropriate places, usually at storage elements
demarking iteration boundaries. This produces a directed acyclic graph
(DAG), which will be further split into trees.

Tree covering. GAMA tries to take advantage of the compound mod-
ule present in typical CLBs. It is often possible to implement multiple
nodes from the DFG together in a compound module that is much
smaller and/or faster than if they were implemented separately. When
such compound modules exist, there may be many different ways in
which the DFG can be covered with module patterns from the library
of possible modules. The authors designed a dynamic programming
algorithm (similar to what was used in DAGON [112]) to find the best
cover in linear time for a tree. Each tree is passed to the tree-covering
algorithm separately. The trees are covered in the topological order
defined by the original design before tree splitting. Each tree covering
is optimal in terms of delay or area, but the overall solution is not
necessarily optimal. Relative module placement in the linear datapath
occurs simultaneously with tree covering.

Post-covering optimizations. This phase may consider rearranging
the modules after they have been placed by the tree-covering algorithm.
This allows layout possibilities that are not considered by the tree-
covering algorithm, such as intermingling the modules from different
trees.

Module generation. Finally, each specified module is generated. A
rich variety of functions can be implemented using a column of 4-input
LUTs augmented with fast carry chain circuitry. The generator, given
a pattern of DFG nodes, values of constant inputs, datapath width (in
bits), etc., creates the module. All modules are generated with the same
pitch and width (in bits).

Experimental results showed that for 32-bit datapath designs
mapped to the Xilinx 4000 architecture, GAMA gave compilation
speeds 3.24 times faster than compiling flattened netlists. Designs
generated by GAMA were roughly of the same quality or better than



276 Design and Synthesis with Higher Level of Abstraction

their flattened equivalents in terms of both CLB usage and critical
path delay.

5.1.2 Heterogenous FPGAs

In [108] the authors presented an RTL synthesis tool for heterogenous
FPGAs. Modern heterogenous FPGAs contain “hard” specific-purpose
structures such as blocks of memory and multipliers in addition to
the completely flexible “soft” programmable logic and routing. These
hard structures provide major benefits, yet raise interesting questions
in FPGA CAD and architecture. The authors presented a synthesis
tool, called Odin, and an algorithm that permits flexible targeting of
hard structures in FPGAs. Odin maps Verilog designs to two different
FPGA CAD flows: Altera’s Quartus, and the academic VPR CAD flow.
Figure 5.3 shows the overall design flow of Odin.

First, a front-end parser parses the Verilog design and generates a
hierarchical representation of the design. Second, Odin has an elabo-
ration stage that traverses the intermediate representation of a design
to create a flat netlist that consists of structures including logic blocks,
memory blocks, if and case blocks, arithmetic operations, and registers.
Each of these structures within the netlist is a node in the netlist. Third,
some simple synthesis and mapping is performed on this netlist. This
includes examining adders and multipliers for constants, collapsing mul-

Fig. 5.3 RTL synthesis flow for heterogenous FPGAs in [108].
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tiplexers, and detecting and re-encoding finite state machines to one-
hot encoding. Fourth, an inferencing stage searches for structures in
the design that could be mapped to hard circuits on the target FPGA.
These structures are connected sub-graphs of nodes that exist in the
design netlist. A matching algorithm is used to carry out this search.
This matching problem is a form of sub-graph isomorphism, which has
been used in instruction generation for configurable processor systems
[55] and other applications.

Finally, a binding stage guides how each node in the netlist will be
implemented. This is done by mapping nodes in the netlist to either
hard circuits, soft programmable logic, or a mixture of both. One way to
do this is to map structures to library parameterized modules (LPMs),
which, in later stages of the industrial CAD flow, will bind to an imple-
mentation on the FPGA whether it is a hard or soft implementation.
The output from Odin is a flat netlist consisting of connected complex
logic structures and primitive gates. The authors showed that the qual-
ity of their tool is comparable to Altera’s front-end synthesis tool. They
also showed that their binding/mapping results compared favorably to
those from Altera’s Quartus tool.

5.2 Behavior-Level Synthesis

The basic problem of high-level synthesis (or behavior-level synthesis)
is the mapping of a behavioral description of a digital system into a
cycle-accurate RTL design consisting of a datapath and a control unit.
A datapath is composed of three types of components: functional units
(e.g., ALUs, multipliers, and shifters), storage units (e.g., registers and
memory), and interconnection units (e.g., buses and multiplexers). The
control unit is specified as a finite state machine which controls the set
of operations for the datapath to perform during every control step. The
high-level synthesis process mainly consists of three tasks: scheduling,
allocation, and binding. Scheduling determines when a computational
operation will be executed; allocation determines how many instances
of resources (functional units, registers, or interconnection units) are
needed; binding binds operations, variables, or data transfers to these
resources. In general, it has been shown that the code density and
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simulation time can be improved by 10X and 100X, respectively, when
moved to the behavior-level synthesis from RTL synthesis [193, 194].
Such an improvement in efficiency is much needed for design in the deep
submicron era. However, most of the behavioral synthesis problems are
difficult to solve optimally due to various constraints, including latency
and resource constraints. Meanwhile, the subtasks of behavioral synthe-
sis are highly interrelated with one another. For example, the scheduling
of operations to control steps is directly constrained by resource alloca-
tion. Meanwhile, a performance/cost tradeoff exists in the design space
exploration. An area-efficient design with a smaller number of resources
will increase the total number of control steps to execute the desired
function. On the other hand, allocating more resources to exploit par-
allel executions of operations can achieve a higher performance, but at
the expense of a larger area.

Traditionally, people are more concerned with the area and power
of functional units and registers. As technology advances, the area and
power of multiplexers and interconnects have by far outweighed the
area and power of functional units and registers. Multiplexers are par-
ticularly expensive for FPGA architectures. It is shown that the area,
delay and power data of a 32-to-1 multiplexer are almost equivalent
to an 18-bit multiplier in 0.1µm technology in FPGA designs [41]. In
general, having a smaller number of functional units or registers allo-
cated, with a larger number of wide multiplexers and larger amount
of interconnects, may lead to a completely unfavorable solution for
both performance and the area/power cost. Tackling this increasingly
alarming problem will require an efficient search engine to explore a
sufficiently large solution space while considering multiple constraining
factors.

On top of these difficulties, behavioral synthesis also faces chal-
lenges on how to connect better to the physical reality. Without phys-
ical layout information, the interconnect delay cannot be accurately
estimated. Since interconnect delay is the dominate element to deter-
mining the performance of designs in submicron technology, ignoring
it will make it even more difficult for behavioral synthesis to deliver
satisfactory solutions. These unique challenges are driving the need for
developing new behavioral synthesis techniques and design flows that
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are able to overcome or mitigate negative impacts from the separation
of traditional high-level synthesis and low-level design. In addition,
there is a need of powerful data-dependence analysis tools to ana-
lyze the operational parallelism available in the design before we can
allocate proper amount of resources to carry out the computation in
parallel. Meanwhile, memory operations usually represent the bottle-
neck for performance optimization. How to carry out memory partition-
ing, bitwidth optimization, and memory access pattern optimization,
together with behavioral synthesis for different application domains
prompts unique challenges for delivering satisfiable quality of design
results. Given all these challenges, much research is still needed in this
area.

We will first present work in behavioral synthesis for multi-FPGA
systems. We then present some initial work on layout-driven behavioral
synthesis, which presented some promising results for improving design
quality. Finally, we briefly introduce some other techniques involved in
behavioral synthesis, including loop transformation, branch optimiza-
tion, and memory allocation. Behavioral synthesis for power minimiza-
tion will be presented in Section 6.4.4.

5.2.1 Behavioral synthesis for multi-FPGA systems

Due to the capacity limitation of FPGA devices, there has been work
on mapping large designs onto multiple-FPGA systems. The traditional
flow usually consists of two phases [84]. In the first phase, a synthesizer
is used to transform a design specification into a CLB-based netlist
by performing high-level compilation, RTL/logic synthesis, and CLB-
based technology mapping tasks. In the second phase, a circuit-level
partitioner is used to partition the CLB netlist into FPGA chips. This
method is mainly constrained by pin limitations on the FPGAs. In [168]
the authors experimented with multiple FPGA partitioning methods at
behavioral and structural levels. They observed that during structural
partitioning, the IO limitation can be reduced if the partitioner is able
to decompose and place portions of structural components, such as
multiplexers and controllers, into different FPGA chips.
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Fig. 5.4 The synthesis flow in [84].

In [84] the authors presented a new integrated synthesis and parti-
tioning method for multiple-FPGA applications. Their approach tried
to bridge the gap between high-level synthesis and physical partitioning
by exploiting the design hierarchy. The input to their system is a design
specification described in Verilog. Figure 5.4 shows their synthesis flow.

In the first step, a synthesizer performs RTL and FPGA synthesis
tasks, including hardware description language (HDL) compilation,
unit selection, unit/storage/interconnect binding, logic minimization,
and CLB-based technology mapping. The synthesizer uses a fine-
grained synthesis method to generate a structural tree, which can rep-
resent the structural hierarchy of the HDL description of a design. In
a structural tree, the root node represents the top-level design, each
intermediate node represents a higher-level design such as modules,
processes, and tasks, and each leaf node represents a circuit cluster.
A HDL description of the design is usually expressed as a set of hier-
archical interconnected modules. Each module may contain a set of
concurrent processes. From the hardware point of view, each process
can be implemented as an independent hardware block. Furthermore,
a process usually consists of a set of statements with input and output
signals. The outcome of the outputs is dependent on the executions of
the statements embedded in the process. To further decompose these
statements, each output can be represented as a function of a set of
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Fig. 5.5 (a) the design hierarchy; (b) the structural tree in [84].

inputs and internal signals in the process. Figure 5.5 shows a design
with (a) its functional hierarchy, and (b) the structural tree for the
design. The authors then map the nodes in the structural tree to a
hierarchical connected graph. Each module node in the structural tree
is mapped to a top-level node in the graph, while each process and
functional node is mapped to a second-level and a third-level node,
respectively. Figure 5.6 shows an example of their hierarchical con-
nected graph.

The authors then formulate their problem as follows: given a hierar-
chical connected graph Gand the CLB/IO-pin constraint of the FPGA
chips, find a minimum number of FPGAs to cover G. They used a
heuristic called hierarchical set-covering partitioning. The basic idea of
the covering method is to start the set-covering procedure from the
top-level nodes (i.e., module nodes). If no more feasible covers can be
found in the top level, then the set-covering process continues on the
nodes at the lower level. By exploiting the design structural hierarchy
during the multiple-FPGA partitioning, they showed that their method
produced fewer FPGA partitions with higher CLB and lower I/O-pin
utilizations.
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Fig. 5.6 A hierarchical connected graph mapped from a structural tree in [84].

Authors in [81] presented an overview of their COBRA-ABS high-
level synthesis tool. COBRA-ABS has been designed to synthesize
custom architectures for arithmetic-intensive algorithms, specified in
C, for implementation on multi-FPGA platforms. It performs global
optimization of high-level synthesis using simulated annealing, and
integrating all of the following operations: datapath partitioning over
multiple FPGAs, functional unit (FU) operation scheduling, FU selec-
tion and operator binding, FU allocation, register allocation, inter-
FPGA communication scheduling, and inter-FPGA communication
binding. COBRA-ABS synthesizes a custom very long instruction word
(VLIW) architecture for the given algorithm for implementation on
the specified FCCM. To illustrate the operation of this tool, a num-
ber of results for synthesis of a Fast Fourier Transform algorithm were
presented.

5.2.2 Layout-driven behavioral synthesis

In [214] a layout-driven behavioural synthesis approach was presented
to reduce the gap between predicted metrics during the synthesis and
the actual data after implementation of the FPGA. This allows more
efficient exploration of the design space and thus avoids unnecessary



5.2. Behavior-Level Synthesis 283

iterations through the design process. By producing not only an RTL
netlist but also an approximate physical topology of implementation
at the chip level, the solution would perform at the predicted metric
once it is implemented. The problem is formulated as follows: given
(1) a data flow graph (DFG), (2) maximum allowable clock period and
execution time, which are usually part of the system specification, and
(3) component power/performance tradeoff functions due to different
implementations, identify whether there is a feasible RTL datapath
solution or not. If there is a solution, perform scheduling and binding,
and generate an RTL netlist and its corresponding floorplan; otherwise,
report it to the user and output the best solution that can be achieved.
Figure 5.7 shows their overall design flow.

Fig. 5.7 Layout-driven high-level synthesis design flow in [214].
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The authors first estimate the resources required for a design and
use their physical-level estimation tool ChipEst-FPGA [213] to obtain
an approximate topology of the layout. They then obtain distance met-
rics between the different units and use this step to provide feedback to
the scheduling and binding task. Their scheduling and binding is carried
out as one control step at a time. Given timing and resource constraints,
they build a search tree encoding different binding and scheduling solu-
tions. They then apply pruning techniques to certain branches when
those branches lead to larger area or latency. Once a proper search
solution is found, the algorithm will record its scheduling-binding infor-
mation and proceed to do scheduling and binding for the next cycle.
This process will be repeated until all the cycles are processed. If the
scheduling-binding succeeds, the algorithm will then update the area
and timing information based on the component information in the
library and generate an optimized RTL netlist. At this point, if the
limit exceeds the maximum limit layout adjustment will be invoked to
re-run the ChipEst-FPGA on the updated RTL netlist. After layout
adjustment, if the cycle time still cannot satisfy the maximum clock
period constraint, the authors then relax the latency constraint and
redo the scheduling and binding until the latency hits a threshold or a
feasible solution is found. Experimental results showed that when using
this approach, the authors could find a result that satisfied the con-
straints, while the timing constraints were violated using a traditional
method (without layout information). They also found that intercon-
nection delay could contribute up to 55% on the circuit performance
for their benchmarks.

In [54] the authors presented layout-driven architectural synthesis
algorithms, including scheduling-driven placement, placement-driven
simultaneous scheduling with rebinding, distributed control genera-
tion, etc. The synthesis engine can target both microarchitecture
and FPGAs. To target designs in nanometer technologies, their tech-
nique supports multicycle on-chip communication (data transfers on
global interconnects can take multiple clock cycles). Their architecture
model—regular distributed register (RDR) divides the entire chip into
an array of islands. The island size is chosen so that all local com-
putation and communication within an island can be performed in a
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Fig. 5.8 Overall synthesis flow MCAS in [54].

single clock cycle. Signals traveling between two different islands will
take 1 to k clock cycles depending on the distance between these two
islands, where k is the maximum number of cycles needed to communi-
cate across the chip. Figure 5.8 shows their overall synthesis flow, which
is named architectural synthesis system for multi-cycle communication
(MCAS).

At the front-end, MCAS first generates the control data flow graph
(CDFG) from the behavioral descriptions. Based on the CDFG, it per-
forms resource allocation, followed by an initial functional unit bind-
ing. The objective of resource allocation is to minimize the resource
usage (e.g., functional units, registers, etc.) without violating the timing
constraint. It uses the time-constrained force-directed scheduling algo-
rithm [155] to obtain the resource allocation. After resource allocation,
it employs an algorithm proposed in [113] to bind operational nodes
to functional units for minimizing the potential global data transfers.
An interconnected component graph (ICG) is derived from the bound
CDFG. An ICG consists of a set of components (i.e., functional units)
to which operation nodes are bound. They are interconnected by a set
of connections that denote data transfers between components.
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At the core, this flow performs the scheduling-driven placement,
which takes the ICG as input, places the components in the island struc-
ture of the architecture using a simulated-annealing-based placer, and
returns the island index of each component. After the scheduling-driven
placement, both the CDFG schedule and the layout information are
produced. To further minimize the schedule latency, MCAS performs
placement-driven scheduling with rebinding. The algorithm is based
on the force-directed list-scheduling framework, and is integrated with
simultaneous rebinding.

At the back-end, MCAS performs register and port binding, fol-
lowed by datapath and distributed controller generation. The final out-
put of MCAS includes a datapath in structural VHDL format and a
set of distributed controllers in behavioral FSM style (these RT-level
VHDL files will be fed into logic synthesis tools), and floorplan and
multi-cycle path constraints for the downstream place-and-route tools.

To obtain the final performance results, Altera’s Quartus II version
2.2 is used to implement the datapath portion into a real FPGA device,
the StratixTM EP1S40F1508C5 [12]. All the pipelined multipliers are
implemented into the dedicated DSP blocks of the StratixTM device.
For data-flow-intensive examples, the authors obtained a 44% improve-
ment on average in terms of the clock period and a 37% improvement
on average in terms of the final latency compared to a traditional
non-layout-driven flow. For designs with control flow, their approach
achieved a 28% clock-period reduction and a 23% latency reduction on
average.

5.2.3 Other techniques

There are other types of studies on specific behavioral synthesis tasks
for FPGA designs, such as loop transformation, branch optimization,
memory allocation, module selection and resource sharing, and com-
munication optimization. We will briefly introduce these works.

Loop transformation. In [172] the authors tried to develop fast
and accurate performance and area models to quickly understand the
impact and interaction of program transformations. They presented
a combined analytical performance and area modeling approach for
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complete FPGA designs in the presence of loop transformations. Their
approach took into account the impact of I/O memory bandwidth and
memory interface resources (often the limiting factor in the effective
implementation of computations). The preliminary results revealed
that their modeling was accurate, and was therefore amenable to being
used as a compiler tool to quickly explore very large design spaces.

Branch optimization. In [177] the authors explored using the infor-
mation about program branch probabilities to optimize reconfigurable
designs. The basic premise is to promote utilization by dedicating
more resources to branches that execute more frequently. A hard-
ware compilation system was developed for producing designs that
were optimized for different branch probabilities. The authors proposed
an analytical queuing network performance model to determine the
best design from observed branch probability information. The branch
optimization space was characterized in an experimental study of two
complex applications for Xilinx Virtex FPGAs: video feature extrac-
tion and progressive refinement radiosity. For designs of equal perfor-
mance, branch-optimized designs require 24% and 27.5% less area. For
designs of equal area, branch optimized designs run up to three times
faster.

Memory allocation. In [95] the authors observed that FPGA-based
processors, like many conventional DSP systems, often associate small
high-performance memories with each processing chip. These memories
may be onboard embedded SRAMs or discrete parts. In the process of
mapping a computation onto an FPGA processor, it is necessary to map
the application’s data to memories. The authors presented an algorithm
that had been implemented in their NAPA C compiler to assign data
automatically to memories to produce a minimum overall execution
time of the loops in the program. The algorithm used a search technique
known as implicit enumeration to reduce the otherwise exponential
search space. They showed the correctness of their implementation.

Module selection and resource sharing. In [179] the authors
developed a synthesis methodology that generated pipelined data-path
circuits from a high-level data-flow specification. This methodology car-
ried out module selection (selecting a module implementation from
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a variety of circuit implementation options for each operation) and
resource sharing (i.e., resource binding) together. They used a module
library created for Xilinx Virtex-4 architecture. They presented two
types of algorithms. One was based on a recursive branch and bound
algorithm. However, the runtime complexity was high. Then they pre-
sented another algorithm based on iterative modulo scheduling with a
backtracking feature. Their objective was to minimize the area cost of
the resulting circuit while meeting a user-specified minimum through-
put constraint. They showed that even for small benchmark circuits,
combining module selection and resource sharing could offer significant
area savings relative to applying them alone.

Communication optimization. In [53] the authors proposed a
communication synthesis approach targeting systems with sequential
communication media (SCM). Since SCMs require that the read-
ing sequence and writing sequence must have the same order, dif-
ferent transmission orders may have a dramatic impact on the final
performance. The goal of their work was to consider behaviors
in communication synthesis for SCM, detect appropriate transmis-
sion order to optimize latency, automatically transform the behavior
descriptions, and automatically generate driver routines and glue log-
ics to access physical channels. They showed that solving the order
detection problem was equivalent to solving the resource-constrained
scheduling problem. Since the scheduling problem with resource con-
straints is NP-complete in general, they used a list-scheduling-based
heuristic algorithm to tackle this problem. To deal with loops in CDFG,
they completely expanded the loop iteration space and used iteration
reordering techniques to generate reconstructed loops and reduced asso-
ciated storage overhead. To get real simulation numbers, they devel-
oped a FIFO module in VHDL which resembled the behaviors of the
Xilinx FSL (Fast Simplex Link) [205]. The algorithm, named SCOOP,
achieved an average 20% improvement in total latency on a set of real-
life benchmarks compared to the results without optimization.



6
Power Optimization

With the exponential growth in the performance and capacity of
integrated circuits, power consumption has become one of the most
critical design factors in the IC design process. FPGAs are not power-
efficient. The post-fabrication flexibility provided by these devices is
implemented using a large number of prefabricated routing tracks and
programmable switches. Also, the generic logic structures in FPGAs
consume more power than the dedicated circuitry that is found in
an ASIC. It has been shown that a typical FPGA chip consumes
about 50 to 100X more power than a functionally equivalent ASIC
chip [120, 221]. It is projected that a high-end FPGA chip with 7 mil-
lion logic cells using 35 nm technology can consume close to 200 W
power [92]. This power dissipation level is almost equivalent to that
of a high-performance microprocessor using the same technology that
has 3.5 billion transistors and runs 20X faster [1]. The large power
consumption of FPGA chips limits its use in mainstream low-power
applications. Meanwhile, large power consumption and heat dissipa-
tion typically lead to higher costs for thermal packaging, fans, and
electricity, and also have a negative impact on signal integrity. The
growing demand of power reduction for FPGA designs has caught the

289
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attention of both industry and academia. A large amount of research
has been published in this area, especially in the past five years. We
will touch on power estimation, power breakdown, synthesis for power
minimization, and synthesis and design for novel power-efficient FPGA
architectures in this section. Low-power RTL and high-level synthesis
techniques will be discussed separately in the next section.

6.1 Sources of Power Consumption

There are three sources of power consumption in FPGAs: (1) switching
power, (2) short-circuit power, and (3) static power. The first two types
of power can only occur when a signal transition happens at the gate
output; together they are called dynamic power. There are two types
of signal transitions: one is the signal transition necessary to perform
the required logic functions between two consecutive clock ticks (called
functional transition); the other is the unnecessary signal transition due
to the unbalanced path delays to the inputs of a gate (called spurious
transition or glitch). Glitch power can be a significant portion of the
dynamic power. Static power is the power consumption when there
is no signal transition for a gate or a circuit module. As technology
advances to feature sizes of 90 nm and below, static power starts to
become a dominating factor in the total chip power dissipation.

Switching power can be modeled by the following formula:

Psw = 0.5f · V 2
dd ·

n∑
i=1

CiSi (6.1)

where n is the total number of nodes, f is the clock frequency, Vdd is
the supply voltage, Ci is the load capacitance for node i, and Si is the
transition density (switching activity) for nodei. Switching activity is
the average number of transitions (0 → 1 or 1 → 0) a signal switches
per unit time.

Short-circuit power is another type of dynamic power. When a
signal transition occurs at a gate output, both the pull-up and pull-
down transistors can be conducting simultaneously for a short period
of time. Short-circuit power represents the power dissipated via the
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direct current path from Vdd to GND during this period of time. It is
a function of the input signal transition time and load capacitance.

Static power is also called leakage power. There are primarily three
types of leakage power: sub-threshold leakage power, reverse-biased
junction leakage power, and gate leakage power. Sub-threshold current
is the weak inversion conduction current that flows between the source
and drain of a MOSFET when the gate voltage is below the threshold
voltage. Sub-threshold leakage is the dominant factor in leakage power.
It is exponentially related to threshold voltage and temperature, as
modeled by the following formula:

Isub ∝ W

L
exp

(
VGS − VTH

n · Vt

)
(6.2)

where W and L are the effective width and length of the device, Vgs

is gate voltage, Vth is threshold voltage, VT = kT/q is thermal voltage
(k and q are constants, and T is temperature), and n is a technology-
dependent parameter.

MOS transistors have reverse biased pn junctions from the
drain/source to the well. The reverse biased pn junctions give rise to
static current passing across the junctions. This leakage is a function
of junction area and doping concentration.

As gate oxide thickness scales down, there occurs an increased prob-
ability of direct tunneling current through the gate oxide. There are
three components of gate leakage namely: gate leakage between the
gate and the drain, between the gate and the substrate, and between
the gate and the source. Although gate leakage is becoming increasingly
important, it will have to be controlled with other techniques such as
high-k dielectrics. Figure 6.1 schematically illustrates the various types
of leakage currents.

6.2 Power Estimation

Power estimation is an important task for FPGAs. FPGA designers
rely on power estimation tools in order to predict the power consump-
tion of circuits and discover possible power violations during the design
process. Power estimation also serves as the foundation for power opti-
mization. It is well known that higher the design level the larger the
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Fig. 6.1 Various leakage currents.

impact of power reduction techniques. Therefore, power estimation is
required across the various levels in the FPGA design hierarchy in
order to effectively control and reduce the power consumption of the
end product.

As technology node scales down, power consumption in intercon-
nects becomes the dominant source in sub-micron FPGAs. They can
contribute 75–85% of the total power [120, 131] for most of the FPGA
designs. Consequently, power estimation for FPGAs must consider
routing interconnect capacitance. Interconnect estimation can be done
in different design levels. The estimation becomes increasingly accurate
as the design enters lower design levels. After placement and routing,
wire-capacitance can be more accurately captured and back-annotated
to the original netlist for better power estimation. However, there is a
tradeoff between accuracy and runtime complexity. Although high-level
interconnect estimation is not as accurate as low-level estimation, its
runtime is much faster, which will be beneficial when using high-level
synthesis to explore low-power design possibilities.

Most FPGA companies provide online spreadsheets for their cus-
tomers to estimate power dissipation for particular devices in early
design stages [7, 122, 208]. Some vendors, such as Xilinx and Altera,
have incorporated the power estimation feature in their CAD tools,
such as XPower [211] and PowerPlay [8], which can be launched after
placement and routing for a more accurate power analysis of the design.
We will introduce dynamic and static power estimation in Sections 6.2.1
and 6.2.2, and then we will briefly summarize the power estimation
works published in the literature.
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6.2.1 Dynamic power estimation

Dynamic power estimation is mainly concerned with switching activ-
ity estimation and load capacitance estimation (Formula 6.1). Both
gates (including buffers) and wires contribute capacitance in the circuit.
Gate-related capacitance is usually easy to obtain because FPGA chips
are already fabricated and their gate sizes are already known. Wire
capacitance estimation is more demanding. Gate-level power estimators
can first perform placement and routing for more accurate capacitance
extraction. The extracted capacitance can then be back-annotated to
the power estimation flow for better estimation. For high-level power
estimation, detailed placement and routing are usually not available.
These estimators will have to rely on wire-length estimation methods,
such as Rent’s rule-base methods, for the estimation of the total amount
of wires and wire capacitance involved in the design.

There are primarily three approaches reported in literature for
FPGA switching activity estimation namely: characterization through
board measurement, statistical model, and simulation model. The work
in used an emulation board embedded with a Virtex FPGA for power
measurement. The authors then calculated the average switching activ-
ity for logic elements using a power estimation formula published by
Xilinx. The formula is as follows [212]:

PINT = VCore · Kp · fMax · NLC · TogLC (6.3)

PINT is the internal power consumption caused by the charging and
discharging of the capacitance on each logic element that is switched.
VCore is the core voltage; Kp is a technology-dependent constant; fMax

is the maximum clock speed; NLC is number of logic elements used;
and TogLC is the average switching activity of all the logic elements.

Works in [136, 162, 171] used statistical models to estimate switch-
ing activity. The static probability of a signal x, denoted by P (x), is
defined as the probability that signal xhas the logic value 1. For each
LUT in the circuit, the function implemented in that LUT can be
expressed as a function y = f(x1,x2, . . . ,xn). For each input, xi, two
new Boolean functions fxi and fx′

i can be generated by setting input
xi to 1 and 0, respectively in f(x1,x2, . . . ,xn) (these functions are called
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cofactors of y with respect to xi). The Boolean difference of the output
with respect to an input, xi, can be calculated by:

∂y

∂xi
= fxi ⊕ fx′

i (6.4)

where ⊕ denotes the excusive-OR operation. The probability of this
Boolean difference, P (∂y/∂xi), is the static probability that a transition
inxi causes a transition at the output. The switching activity at the
output S(y) can be calculated as follows:

S(y) =
n∑

i=1

P

(
∂y

∂xi

)
S(xi) (6.5)

In [162] the authors assumed that all primary inputs have a static
probability of 0.5 and a switching activity of 0.5. Notice that this model
also assumes that the switching activities of input signals are not cor-
related, which is usually not the case. It is also hard for this model to
capture glitch power.

The third type of switching activity estimation is based on sim-
ulation. A sequence of random input vectors can be applied on the
primary inputs, and cycle-accurate gate-level simulation can be carried
out for the whole circuit. Combined with back-annotated delay infor-
mation available after placement and routing, this estimation model
is most accurate for switching activity calculation because it can also
capture activities due to glitches. Works in [131, 134] used this model.
The down side of this approach is its larger runtime.

After switching power is estimated, short-circuit power can be esti-
mated proportionally to the switching power. Some work used a fixed
ratio. For example, [162] assumed that short-circuit power is always
10% of the total dynamic power. Some work developed detailed mod-
els to evaluate the short-circuit power. For example, [134] used a linear
curve fitting method to derive the ratio between the short-circuit power
and the switching power. This ratio is a linear function of the input
transition time in the model. They reported that the short-circuit power
is a significant power component due to the large signal transition time
in FPGA designs. It can reach 70% of the global interconnect dynamic
power for certain designs [134].
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6.2.2 Static power estimation

We will introduce two approaches reported in the literature for FPGA
static power estimation: the analytical method and the macro-modeling
method. The analytical method estimates the values of various param-
eters involved in the calculation of the leakage. For example, the work
in [162] used a detailed formula (with similar parameters as presented
in Formula 6.2) to estimate the sub-threshold leakage. Given a specific
process technology, they estimated the values of various parameters,
such as the device width, channel length, and temperature. They also
made some assumptions in the calculation. For instance, they assumed
that the Vgs value was half of the threshold voltage Vth. They reported
that the average error between the estimated values and the simulated
results was 13.4%.

Micro-modeling mainly relies on SPICE simulation to achieve
estimation results. For example, the work in [134] used SPICE sim-
ulation with randomly generated input vectors to obtain the average
leakage power in the LUT. Since the number of all possible input vec-
tors increases exponentially with the number of inputs for LUTs, it is
infeasible to try all the input vectors for large-input LUTs. Therefore,
different input vectors were mapped into a few typical vectors with rep-
resentative Hamming distances and SPICE simulation was performed
only for these typical vectors to build macromodels in [134]. With this
model, [134] performed simulation for LUT sizes ranging from three
to seven and buffers of various sizes in global/local interconnects, and
then built the static power macromodels.

6.2.3 Power estimation works

We will briefly introduce several gate-level and high-level power
estimation publications in this subsection. In [120] people used a Xil-
inx XC4003A FPGA test board to carry out power dissipation mea-
surement, characterize capacitance of various FPGA components, and
report the power breakdown of these components. In [171], the authors
analyzed the dynamic power consumption and distribution for the Xil-
inx Virtex-II FPGA family. The work in [197] presented the power con-
sumption estimation for the Xilinx Virtex architecture using their emu-
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lation environment. Based on board measurement, the authors calcu-
lated the technology-dependent power factor Kp (Eq. (3)) and derived
their own power estimation formulas. They reported a 5% estimation
error for certain designs. However, they did not produce good estima-
tion results for designs that were dominated by large combinatorial logic
blocks like multipliers. The work in [162] presented a flexible FPGA
power model associated with architectural parameters. This model esti-
mates dynamic and leakage power for a wide variety of FPGA architec-
tures. The authors in [14] developed an empirical estimation model and
showed that estimation accuracy was improved by considering aspects
of the FPGA interconnect architecture in addition to generic parame-
ters, such as net fanout and bounding box perimeter length. The work
in [190] made a detailed analysis of leakage power in Xilinx CLBs. It
concluded that a significant reduction of FPGA leakage was needed to
enable the use of FPGAs in mobile applications. Authors in [131, 134]
developed a mixed-level FPGA power model that combines switch-level
models for interconnects and macromodels for LUTs and flip-flops. It
carried out gate-level simulation under real delay models and was able
to capture glitch power. Work in [134] reported high fidelity compared
to SPICE simulation, and the absolute estimation error was 8% on
average.

There is limited high-level power estimation work for FPGAs in
academia. Authors in [170] presented a high-level power modeling tech-
nique to estimate the power consumption of FPGAs. They captured the
relationship between FPGA power dissipation and I/O signal statistics.
Then they used an adaptive regression method to model the FPGA
power consumption. Experimental results indicated that the average
relative error was 3.1% compared to a low-level FPGA power simulation
method for FPGA components such as ALUs, adders, DSP cores, etc.
There was no report for power estimation for larger designs. Authors
in [41] developed a high-level power estimator. It used a fast switching
activity calculation algorithm, a Rent’s rule-based wire-length estima-
tion [78], and a resource characterization flow using DesignWare library
from Synopsys [181]. It takes into account various FPGA components,
such as LUTs, local and global buffers, MUXes, etc. Later on, the same
authors extended this power model to work on a real FPGA archi-
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tecture, Altera’s Stratix architecture [12], during high-level synthesis.
Some device-specific functional blocks are considered in the model, such
as memory blocks, DSP clocks, and I/O blocks. Experimental results
showed an 18.5% average estimation error [77] compared to Altera’s
gate-level PowerPlay power analyzer using real designs.

6.3 Power Breakdown

In the FPGA architecture evaluation work for power [134], the authors
concluded that logic block size = 6 and LUT input size = 7 represent the
min-delay architecture, and logic block size = 8 and LUT input size =
4 represents the min-energy architecture under the 100 nm technology.
The energy consumption difference between these two architectures is
48%, and the critical path delay difference is 12%. Figure 6.2 shows
the breakdown of various power sources for the min-energy architec-
ture [134].

Figure 6.3 presents the power breakdown for average designs using
Altera’s Stratix II FPGA architecture (90 nm technology) [11]. Total
device power is the sum of three components: core dynamic power, core
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Fig. 6.2 Power breakdown of the min-energy architecture in [134].
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Fig. 6.3 Power breakdown of average designs using Altera’s Stratix II FPGA in [11].

static power, and I/O power. Core dynamic power is the power dissi-
pated by the operation of the FPGA core fabric. Core static power is
the leakage power dissipated, which can be determined by stopping all
clocks (an operating frequency of 0 MHz). I/O power is the power dis-
sipated in the FPGA I/O cells when communicating with other chips.
This data was obtained by estimating the power consumption of 99
complete designs with the Quartus II software version 5.0 SP1 Power-
Play power analyzer [11]. We can observe that leakage power in this fig-
ure represents a smaller portion of the total power than what has been
shown in Fig. 6.2. We believe that the main reason for this is the archi-
tecture in [134] does not consider circuit-level optimization for leakage
power reduction. However, there are some circuit optimization tech-
niques for leakage power reduction in Stratix II FPGAs, such as higher
Vth and longer transistor length for non-speed-critical paths [9]. We
shall present leakage power minimization techniques in Section 6.5.1.

Figure 6.4 shows the power breakdown for Xilinx’s Spartan-3
devices [189]. Dynamic power is estimated at 150 MHz clock fre-
quency, 12.5% average switching activity, and typical configuration and
resource utilization as determined by user benchmarks. Static power
measures both subthreshold leakage and gate leakage [189]. The static
power is about 10% of the total power consumption. We can observe
that routing switches make up the largest part of the total dynamic
power, and both routing switches and configuration SRAM represent
significant parts of the total static power.
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Fig. 6.4 Power breakdown of average designs using Xilinx’s Spartan-3 in [189].

6.4 Synthesis for Power Optimization

In this section, we present low-power synthesis techniques for exist-
ing FPGA architectures, where performance is the main objective of
the architecture design. However, power efficiency can be a synthesis
objective with performance constraints. We will touch on technology
mapping, circuit clustering, RTL synthesis, behavioral synthesis, and
some other synthesis techniques for power minimization.

6.4.1 Technology mapping for low power

FPGA technology mapping for low power is a NP-hard problem [86].
Some heuristics have been proposed. These algorithms mainly worked
on reducing the overall switching activity of the design. The smaller
the total switching activity, the lesser the power consumption (Eq. (1)).
In [86], besides the NP-hard proof, the authors also presented a heuris-
tic for low-power mapping. They pointed out that the power consumed
by a LUT depended on the switching activity and the fanout number of
the LUT, and gave a formula to estimate the total power consumption
of a technology mapping solution. The main idea of their algorithm was
to hide nodes with higher switching activities inside LUTs (and hence,
LUTs would have smaller switching activity at their outputs). The goals
of most other algorithms were similar in terms of switching activity
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reduction. In [13] a cut-enumeration-based algorithm was designed to
keep nets with high switching activities out of the FPGA routing tracks.
It also considered switching activity when logic replication was needed
for optimizing mapping depth of the design. The authors reported that
the result of FlowMap-r[51]+MP-Pack[46] required 14.2% more power
than their algorithm when both were depth-optimal. When the map-
ping depth was relaxed by one level, they reported further power reduc-
tion by about 8% over the depth-optimal case for 4-LUTs and 10% for
5-LUTs. The authors in [193] and [121] used cut enumeration as well.
In [195] both run time and memory space were considered and only a
fixed number of cuts were performed. It reported up to a 14.18% power
savings compared to [86]. The mapping algorithm in [121] designed a
cost function for each cut, including switching activity, fanout num-
ber, node duplication consideration, etc. Authors reported an 8.4%
energy reduction over CutMap [58]. The authors in [136] used a net-
work flow formulation and carried out mapping while looking ahead at
the impact of the mapping selection on the power consumption of the
remaining network. An extension was also presented that computed
depth-optimal mapping. They reported a 14% power savings without
any depth penalty compared to CutMap.

6.4.2 Circuit clustering for low power

Clustering has traditionally been used in the VLSI industry to extract
underlying circuit structures and construct a natural hierarchy in the
circuits. In [164] the authors derived the first delay optimal clustering
algorithm under the general delay model. In [192] the authors presented
a low-power clustering algorithm with the optimal delay. Their algo-
rithm is power optimal for trees. They enumerated all clustering solu-
tions for a graph and selected a low-power clustering solution from all
delay optimal clustering solutions. It has been shown that logic cluster-
based FPGA logic blocks can improve FPGA performance, area, and
power [2, 22, 174]. Section 4.1 presented some clustering algorithms
optimizing FPGA area and performance. There are a few prior research
efforts on clustering for low-power FPGA designs as well. An FPGA
circuit-clustering work was reported in [121] as one of the optimization
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steps in power-aware CAD flow, which tried to attract nets with high
switching activity inside the logic blocks. It was 12.6% better than T-
VPACK [22] in terms of energy consumption. Researchers presented a
routability-driven clustering technique for area and power reduction in
FPGAs [174]. It used Rent’s rule-based estimation method to reduce
the potential routing complexity due to clustering. In [77] a delay-
optimal clustering algorithm was presented to improve FPGA perfor-
mance and reduce FPGA power. The algorithm was delay and power
optimal for trees. It also presented some heuristic to control duplica-
tions. The authors reported a 9% improvement on delay reduction with
a 3% power overhead compared to [121].

6.4.3 RTL synthesis for low power

In [201] the authors worked on RTL synthesis for FPGA power mini-
mization. They first characterized the power and performance data for
the functional units on their targeted FPGAs using board measure-
ment. For example, they characterized the power and delay of different
implementations of adders, such as ripple adder, carry lookahead adder,
conditional sum adder, etc. Then, their design flow took an RTL spec-
ification and began to tradeoff power with circuit speed by selecting
different implementations of components iteratively. Figure 6.5 shows
the optimization flow. They showed that their methodology was useful
for designing a low-power digital filter.

6.4.4 Behavioral synthesis for low power

As we have mentioned before, multiplexers are particularly expensive
for FPGA architectures. In general, when there is a smaller number
of functional units or registers allocated but there is a larger num-
ber of wide multiplexers and larger amount of interconnects, it may
lead to a completely unfavorable solution for both the performance
and the area/power cost. Tackling this increasingly alarming prob-
lem will require an efficient search engine to explore a sufficiently
large solution space considering multiple constraining factors—such as
resource allocation and binding, MUX generation, and interconnection
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Fig. 6.5 Power optimization flow presented in [201].

generation—for optimizing performance or cost, or studying the trade-
off between them.

With such a motivation, a behavioral synthesis engine for FPGA
power optimization was presented in [41]. Here, the power optimiza-
tion goal is to search a combined solution space for the subtasks in
behavioral synthesis so that the power of FPGA designs can be opti-
mized, and at the same time the performance/latency target can still be
met. To achieve this goal, the authors adopted a simulated annealing-
based algorithm. For each move during the annealing procedure, the
optimization engine generates the full data path to capture the over-
all cost, considering all the contributing factors in the design. The
cost function is the estimated power dissipation guided by the behav-
ioral level power estimator. The algorithm carried out resource selec-
tion, scheduling, function unit binding, register binding, and steering
logic and interconnection estimation simultaneously. Figure 6.6 shows
a block diagram of the power optimization engine.

There are five different types of moves performed during simulated
annealing. They are different functional unit binding operations. The
moves are listed below:

Reselect: Select another FU of the same functionality but with a dif-
ferent implementation. For example, select a carry look-ahead adder to
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Fig. 6.6 The power optimization engine in [41].

replace a Brent-Kung adder. The operations bound to the adder stay
unchanged.

Swap: Swap two bindings of the same functionality but with different
implementations. This is equivalent to two reselects between two FUs
in each direction.

Merge: Merge two bindings into one, i.e., the operations bound to the
two FUs are combined into one FU. As a result, the total number of
FUs decreases by 1. The two FUs have to be the same type.

Split: Split one binding into two. It is the reverse action of merge. As
a result, the total number of FUs increases by 1. The operations of the
original binding are distributed into the new bindings randomly.

Mix: Select two bindings, merge them, sort the merged operations
according to their slacks, and then split the operations. For example,
if there are N operations after sorting, operations 1 to N/2 will form
one binding and the rest of the operations will form another binding.

An interconnection optimization step was also designed to reduce
the interconnections between functional units and registers through
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multiplexer optimization. Experimental results showed that a power
reduction of 35.8% was achieved compared to the results of the Synop-
sys Behavioral Compiler [181].

6.4.5 Other techniques

There are also other works that focus on FPGA power minimiza-
tion. We introduce two of them here. In [16] the authors considered
active leakage power dissipation in FPGAs and presented a “no cost”
approach for active leakage reduction. Leakage power consumed by a
digital CMOS circuit depends strongly on the state of its inputs. This
leakage reduction technique leveraged a fundamental property of LUTs
which says that a logic signal in an FPGA design can be interchanged
with its complemented form without any area or delay penalty. The
authors applied this property to select polarities for logic signals so
that FPGA hardware structures spent the majority of time in low
leakage states. They optimized leakage power in circuits mapped into a
90 nm commercial FPGA. Results showed that the proposed approach
reduced active leakage by 25%, on average. In [106] the authors pre-
sented a method to re-synthesize LUT-based FPGAs for low power
design after technology mapping, placement and routing were per-
formed. They used the set of pairs of functions to be distinguished
(SPFD) method to express functional permissibility of each signal.
Using different propagations of SPFD to fan-in signals, they changed
the functionality of a CLB which drives a large load into one with
low transition density. Experimental results showed that their method
on an average could achieve, a 12% power reduction compared to the
original circuits, without affecting placement and routing.

6.5 Synthesis for Power-Efficient Programmable
Architectures

In this section, we present synthesis techniques for power-efficient
FPGA architectures, where low power is the main objective of the archi-
tecture design with performance being the secondary objective. For
example, this type of FPGA chip may support multiple supply voltages,
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multiple threshold voltages, and power gating features to reduce both
dynamic and leakage power.

As silicon technologies advance, smaller geometries become possi-
ble with lower Vdd. At the same time, threshold voltage Vth must
be reduced in order to maintain or improve circuit performance. This
decrease of Vth then drives significant increases in leakage power. As sil-
icon technologies move into 90 nm and below, leakage currents become
as important as active power in many applications. To reduce both
dynamic power and leakage power, deploying multiple Vdd and Vth

is a popular design technique. These techniques have been extensively
used for ASIC designs [17, 153, 176, 183, 191, 196]. Low-Vdd reduces
dynamic power, and high-Vth reduces leakage power, but each incurs a
longer signal delay. If low-Vdd and/or high-Vth are only applied to non-
critical paths carefully, the multi-Vdd/Vth technique has the advantage
of reducing power dissipation without sacrificing system performance.
Specific to FPGAs, multi-Vdd/Vth fabric and layout pattern must be
pre-defined, because FPGAs do not have the freedom of using mask
patterns to arrange different Vdd/Vth components in a flexible way (as
in ASICs). This brings unique challenges for FPGA designers. We will
introduce several recent research efforts in this area.

6.5.1 Leakage power reduction

Circuit design techniques can be applied to reduce leakage power for
FPGAs. As mentioned before, SRAM-based FPGAs use a large amount
of SRAM cells to provide programmability for both logic cells and inter-
connects. The work in [135] and [163] introduced high-Vth for SRAM
cell design. Increasing Vth for SRAM cells in FPGAs has no delay
penalty during normal operation of the FPGA. However, it will increase
the SRAM write access time and slow down the FPGA configuration
speed. It was shown that the Vth of SRAM cells could be increased to
achieve a 15X SRAM-leakage reduction with only a 13% configuration
time increase [135]. Figure 6.7 shows the schematic of a 4-LUT with
dual-Vth (denoted as Vt in the figure) regions, where Region I presents
the high-Vth region, and Region II for low-Vth region.
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Fig. 6.7 Two different Vth applied to a 4-LUT cell in [135].

The authors in [163] proposed several circuit enhancement tech-
niques for leakage power reduction, including redundant memory cells,
dual-Vth devices, and body biasing. Specifically, they targeted low-
leakage multiplexer designs because multiplexers are widely used in
SRAM-based FPGAs. Figure 6.8(a) shows a two-stage implementation
of a pass transistor-based multiplexer. It is composed of several smaller
multiplexers, and the same SRAM cell configures one pass transistor
from each multiplexer in stage 1. As a result, whenever there is an
enabled input-to-output path, the intermediate nodes, such as nodes 1,
2, 3, and 4, are driven to Vdd. Therefore, the drain-to-source voltage,
VDS of all disabled pass transistors is Vdd, and these pass transis-
tors still contribute leakage power. Figure 6.8(b) shows the schematic
after adding some redundant memory cells in the multiplexer design.
These SRAM cells can turn the inactive input-to-output paths off (e.g.,
the left upper portion in Fig. 6.8(b)) and reduce leakage power. These
SRAM cells can be implemented using high-Vth devices. In the authors’
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Fig. 6.8 (a) A two-stage traditional implementation of a pass transistor-based multiplexer;
(b) A two-stage multiplexer with redundant memory cells for turning off inactive circuit
portion in [163].

analysis, the Vth of transistors in SRAM cells is 25% higher than that of
typical devices. They reported a 2X leakage power reduction with a 15–
30% total chip area increase through use of this technique. They also
studied the performance/leakage-power tradeoff scenarios when Vth is
increased for the devices in routing switches.

The work in [91] divided the FPGA fabric into small regions and
switched on/off the power supply to each region using a sleep transistor
in order to reduce leakage energy. The regions not used by the placed
design were power gated. The authors presented a placement strategy
to increase the number of regions that could be power gated.

The authors in [189] described the design and implementation of
Pika, a low-power FPGA core targeting battery-powered applications
such as those in consumer and automotive markets. They used several
key leakage power reduction techniques. First, they applied low-leakage
configuration SRAMs by adopting mid-oxide, high-Vth transistors. This
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Fig. 6.9 Power gating architecture in [189].

corresponded to a reduction of 43% to the total standby power of the
FPGA core. Second, they applied power gating at the level of individ-
ual tiles (each tile consists of a CLB and a programmable intercon-
nect switch matrix). They used mid-oxide power gates and sized them
at the point of 10% performance degradation. They did not power
gate the configuration SRAM cells to enable a state-retaining standby
mode when all logic and routing were power gated. Figure 6.9 shows
their power gating architecture. Third, they made circuit modifications
to prevent high-current paths. A high-current path may be a short-
circuit path from supply to ground, or a high-leakage path that does
not go through a power gate (refer to [189] for details). They reported
that standby power was reduced by 99% when the chip was idle. The
power optimizations incurred a 27% performance penalty and 40% area
increase. They also reported that the core woke up from standby mode
in approximately 100 ns.

6.5.2 Dynamic power reduction

A dual-Vdd FPGA with pre-defined voltage patterns was studied
in [135]. Figure 6.10 shows the voltage patterns explored in this work.
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Fig. 6.10 Fixed dual-Vdd layout patterns in [135].

The architecture had the advantage of small area overhead and sim-
ple voltage regulation. The authors designed FPGA architectures with
the support of dual supply voltages and dual threshold voltages and
developed placement tools on top of the architecture. The placement
was based on a simulated-annealing method modified from the one
used in VPR [22]. The cell swapping during the simulated-annealing
process considered different voltage assignments on the physical loca-
tions of the CLBs. It tried to reduce power while avoiding deterioration
of the critical path delay. However, the authors found that it did not
provide good opportunities for power reduction while still maintain-
ing competitive circuit performance. This was due to the fixed volt-
age pattern that imposed strong constraints on the placement engine.
Later on, researchers proposed a new architecture that provided volt-
age configurability for each CLB [132]. They inserted two PMOS tran-
sistors between the high-Vdd and low-Vdd power rails and the CLB
(Fig. 6.11). Therefore, each CLB could be configured as driven by
either the low-Vdd or high-Vdd. The area overhead of sleep transis-
tors was 24% over the original CLB area with a 5% delay overhead.
The flexibility offered through this architecture helped the placement
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Fig. 6.11 Configurable Vdd for a logic block in [132].

engine to place cells on critical paths into CLBs configured to high-
Vdd, and cells on non-critical paths into CLBs configured to low-Vdd.
A total of 14% power reduction was reported [132]. In [133] the same
authors designed a dual-Vdd architecture to reduce the interconnect
power of FPGAs. They designed three Vdd states for interconnect
switches namely: high Vdd, low Vdd and power-gating. This is similar
to the technique used in [132], where each CLB can be Vdd-configured
or power-gated. The authors developed a design flow to apply high
Vdd to critical paths and low Vdd to non-critical paths and to power
gate unused interconnect switches. They reported a significant amount
of power savings. In [149], a partitioning algorithm for FPGAs with
pre-defined voltage patterns (voltage island configurations) was pre-
sented. This power-driven partitioner created partitions of critical and
non-critical CLBs and assigned these CLBs to different voltage islands
according to their timing criticalities, followed by placement and rout-
ing. It showed that a dynamic power gain as high as 47% was possible
with a 17% area/delay product penalty and a 30% power gain, with
an area/delay product penalty as low as 6% for different voltage island
configurations. In [104], the authors developed a technique to estimate
power reduction using dual-Vdd for mixed length interconnects, and
applied linear programming (LP) to solve slack budgeting to minimize
power for mixed length interconnects. Experiments showed 53% power
reduction on average compared to single-Vdd interconnects. Further-
more, this paper presented a simultaneous retiming and slack budgeting
algorithm to reduce power in dual-Vdd FPGAs considering placement
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and flip-flop binding constraints. The algorithm was based on mixed
integer and linear programming (MILP) and achieved up to 20% power
reduction compared to retiming followed by slack budgeting.

Low-power technology mapping and circuit clustering for FPGAs
with dual Vdds were presented in [42] and [39], respectively. In [42]
the authors used a cut-enumeration-based technique. They developed
a detailed delay and power model for LUTs and level converters using
different voltages. The algorithm built all the cases of LUT connec-
tions under dual-Vdd scenarios and generated one set of power and
delay results for each case to enlarge the low-power solution search
space. Their algorithm improved power savings by 11.6% on average
over the single-Vdd case when both algorithms produced optimal map-
ping depth. In [39] the authors used a solution curve propagation tech-
nique to examine the quality of different clustering solutions. They
built all the non-inferior delay-power-Vdd solution points for a node
with considerations of dual Vdds and level converter delay. The algo-
rithm is delay and power optimal for trees and delay optimal for DAGs
under the general delay model. A limitation of the work was that each
generated cluster (to be implemented by a logic block) was a single
output cluster, which could cause a large area overhead. Later on, the
authors extended the work to generate clustering solutions with mul-
tiple cluster outputs [77] while maintaining the optimal results. They
showed a 13.5% power reduction compared to the single-Vdd case on
average.



7
Conclusions and Future Trends

Tremendous advances have been made in FPGA design automation in
the past decade. In this survey paper, we try to cover important algo-
rithms and methodologies developed for various design tasks in modern
FPGA design flow, including routing and placement, clustering, tech-
nology mapping, physical synthesis, RT-level and behavior-level syn-
thesis, and power optimization. It is our hope that this paper can be
a useful reference for both beginning and established researchers and
tool developers in this field.

As the feature size continues to shrink and device capacity contin-
ues to increase in modern FPGAs, we are facing new challenges and
opportunities in FPGA design automation. We would like to conclude
the paper by listing some challenges and open problems in FPGA CAD
that we are facing now or will face in the near future.

Physical Design

1. The time spent for placement and routing is still the domi-
nating part of the entire FPGA compilation process. There is
a need for more scalable and efficient placement and routing
algorithms. We think that the interesting yet very challenging
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goals are full-chip physical design in one hour and full-chip
incremental physical design in five minutes. If these goals
can be achieved with little or no compromise on design
quality, it will be significant improvement on overall design
productivity.

2. In connection to the challenges stated above, we believe an
important means to achieve highly scalable placement and
routing algorithms is to make the best use of multi-CPU
computer systems which will be widely available very soon
as standard engineering workstations. Although there were
some early studies on parallel CAD algorithms (e.g., [19, 97]),
we believe that more work is needed to come up commercial-
strength parallel or distributed placement and routing algo-
rithms with good scalability and quality of results.

3. Process variation is an increasing concern in nanometer
designs (esp. 65 nm or below) (e.g., [32, 202, 220]), and
its impact to FPGA architectures and designs is not fully
understood. We hope that the regularity of the nanometer
FPGA architecture can hide a large portion of variability
effect from the designer. But in case it is not possible or
economically feasible to shield all variability effect by the
architecture optimization alone, it will be important to inves-
tigate novel physical design algorithms with consideration
of process variability and be able to perform statistical
optimization.

4. We expect that the future FPGAs to be designed in the
“ultimate CMOS technologies” (32 nm and below) may have
defects. On one hand, it is important to develop defect-
tolerant FPGA architectures. On the other hand, we believe
it is important to develop defect-aware physical design algo-
rithms which can work hand-in-hand with the defect-tolerant
architectures to continue to deliver high yield even in the era
of the ultimate CMOS technologies. The design of defect-
tolerant memory systems is well known (e.g., [137]) and
widely used, but it remains challenging to come up equally
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efficient defect-tolerant architecture and CAD algorithms for
logic design.

Logic Synthesis and Physical Synthesis

1. Although FPGA technology mapping has been a subject of
extensive research, recent studies indicate that there is con-
siderable room to improve [66]. This is especially true in the
combined solution space of logic optimization and technol-
ogy mapping. There were some initial efforts in integrating
logic optimization with mapping. However, more research is
needed to find effective and efficient ways to combine the two
to arrive at better mapping solutions. As semiconductor tech-
nologies advance, new FPGA architecture features are being
introduced to improve area utilization, performance, and/or
power. For example, architectures have been introduced or
proposed to use LUTs with large number of inputs or multi-
ple supply voltages. New mapping techniques are needed to
utilize these new architecture features.

2. Physical synthesis for FPGAs needs to consider the impact
on routing and routability. Most existing techniques stay at
the placement level and pay little attention to routing. As a
result, for high utilization situations (common in practice),
the predicted performance gain may not be realizable after
routing. Next generation interconnect-centric physical syn-
thesis techniques are needed to further improve predictability
of results. Another direction of research is to consider high-
level optimizations in physical synthesis. Local and simple
transformations such as logic replication and local remapping
can explore only a limited solution space during physical syn-
thesis. It is desirable to use physical information to influence
high-level optimizations/transformations, for example, deter-
mining datapath architectures, selecting on-chip resources to
implement memory, to name a few. Such physical synthe-
sis techniques can potentially bring in more improvement in
quality of results.
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Behavioral Synthesis

Nowadays, high-end FPGAs can implement large and complex SoC
designs which were originally only possible through ASIC implemen-
tation. These design applications may have dramatically different user
requirements in terms of performance, power, memory bandwidth, com-
putational throughput, etc. To meet these demands, we foresee that
next-generation FPGA chips will encompass a large number (in the
order of hundreds) of heterogenous cores (soft and hard) with support-
ing memory hierarchy and interconnect hierarchy. Sophisticated archi-
tecture features will surface as well, such as the architecture supports of
multi-cycle interconnect communication, core-level and/or logic block-
level multi-Vdd, core-level and/or logic block-level power/clock gating,
full-chip adaptive threshold voltage, full-chip error checking capability,
etc. Mapping different applications onto these architectures to fulfill
various design requirements will become a dauntingly complex task.
Behavioral synthesis will be in a critical need to tackle the design
complexity problem and improve design productivity. It will be an
important component of so called electronic system level design (ESL)
methodology to speed up high-quality hardware implementation and
enable fast and accurate design space exploration. We would like to
highlight two research directions in this context.

1. To address the speed, power, and interconnect challenges,
behavioral synthesis has to take meaningful physical infor-
mation from potential hardware implementation and layout
(physical planning). One direction is to incorporate physi-
cal planning in as early as possible, thus performing a com-
bined synthesis and layout optimization. The layout needs
to deal with the heterogeneity of the FPGA chip, core topol-
ogy, and the specific memory and interconnect structures.
The abundant silicon capacity can be utilized to improve
the interconnect performance and integrity either by inter-
connect pipelining or resource redundancy, which can also
be combined with system reliability design strategies. Lay-
out information will serve as a guideline for the synthesis
engine to determine the scheduling and binding solutions to
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exploit specific architecture features (such as power gating
and multi-Vdd) for better quality of design. The synthe-
sis engine will generate RTL implementations together with
physical and timing constraints, which can serve as guidelines
for the downstream physical design tools.

2. We need to model communication interfaces between differ-
ent components within the FPGA chip under different com-
munication protocols and topologies, such as point-to-point
connections, buses, or network-on-chips. A deeper under-
standing of efficient and robust communication synthesis is
much needed.



References

[1] International Technology Roadmap for Semiconductors, Executive Summary,
2003. http://public.itrs.net/ Files/2003ITRS/Home2003.htm.

[2] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicron
FPGA performance and density. In ACM International Symposium on FPGA,
February 2000.

[3] C. Albrecht. Provably good global routing by a new approximation algo-
rithm for multicommodity flow. In Proc. International Symposium on Physical
Design, pages 19–25, March 2000.

[4] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins. Placement and
routing for performance-oriented FPGA layout. VLSI Design: An Interna-
tional Journal of Custom-Chip Design, Simulation, and Testing, 7(1), 1998.

[5] M. J. Alexander and G. Robins. New performance-driven FPGA routing algo-
rithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15(12):1505–1517, December 1996.

[6] Altera. MAX 7000B Data Sheet. http://www.altera.com/literature/ds/
m7000b.pdf.

[7] Altera. PowerPlay Early Power Estimator. http://www.altera.com/support/
devices/estimator/pow-powerplay.html.

[8] Altera. PowerPlay Power Analyzer. http://www.altera.com/support/
devices/estimator/pow-powerplay.html.

[9] Altera. Stratix II 90-nm Silicon Power Optimization. http://www.altera.
com/products/devices/stratix2/features/st2-90nmpower.html.

[10] Altera. Stratix II Device Handbook. http://www.altera.com/literature/hb/stx2/
stratix2 handbook.pdf.

317



318 References

[11] Altera. White paper, “Stratix II vs. Virtex-4 Power Comparison & Estima-
tion Accuracy White Paper. http://altera.com/literature/wp/wp s2v4 pwr
acc.pdf.

[12] Altera, August 2002. Stratix Programmable Logic Device Family Data Sheet.
[13] J. Anderson and F. N. Najm. Power-aware technology mapping for LUT-based

FPGAs. In IEEE International Conference on Field-Programmable Technol-
ogy, 2002.

[14] J. Anderson and F. N. Najm. Interconnect capacitance estimation for FPGAs.
In IEEE/ACM Asia and South Pacific Design Automation Conference,
Yokohama, Japan, 2004.

[15] J. H. Anderson and S. D. Brown. Technology mapping for large complex
PLDs. In Design Automation Conf., 1998.

[16] J. H. Anderson, F. N. Najm, and T. Tuan. Active leakage power optimization
for FPGAs. International Symposium on Field Programmable Gate Arrays,
February 2004.

[17] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu.
Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI.
IEEE Transactions Electron Devices, 44:414–422, March 1997.

[18] B. Awerbuch, A. Bar Noy, N. Linial, and D. Peleg. Improved routing strategies
with succinct tables. J. Algorithms, 11(3):307–341, 1990.

[19] P. Banerjee. Parallel Algorithms for VLSI Computer-Aided Design. Prentice-
Hall, Inc., Englewoods-Cliffs, NJ, 1994.

[20] G. Beraudo and J. Lillis. Timing optimization of FPGA placements by logic
replication. In ACM/IEEE Design Automation Conference, pages 96–201,
2003.

[21] V. Betz and J. Rose. Cluster-based logic blocks for FPGAs: area-efficiency vs.
input sharing and size. In IEEE Custom Integrated Circuits Conference, pages
551–554, 1997.

[22] V. Betz and J. Rose. VPR: a new packing, placement and routing tool for
FPGA research. In International Workshop on Field-Programmable Logic and
Applications, pages 213–222, 1997.

[23] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[24] N. Bhat and D. D. Hill. Routable technology mapping for LUT FPGAs. In
IEEE International Conference on Computer Design, pages 95–98, 1992.

[25] E. Bozorgzadeh, S. Ogrenci, and M. Sarrafzadeh. Routability-driven packing
for cluster-based FPGAs. In Asia South Pacific Design Automation Conf.,
2001.

[26] R. K. Brayton. Understanding SPFDs: A new method for specifying flexibility.
In International Workshop on Logic Synthesis, 1997.

[27] S. Brown, R. Francis, J. Rose, and Z. Vranesic. Field-Programmable Gate
Arrays. Kluwer Academic Publishers, May 1992.

[28] S. Brown and J. Rose. FPGA and CPLD architectures: A tutorial. IEEE
Design and Test of Computers, 12(2):42–57, 1996.



References 319

[29] S. Brown, J. Rose, and Z. G. Vranesic. A detailed router for field-
programmable gate arrays. IEEE Trans. on Computer-Aided Design,
11(5):620–628, May 1992.

[30] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek. Fast module map-
ping and placement for datapaths in FPGAs. In International Symposium on
Field Programmable Gate Arrays, 1998.

[31] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for
circuit placement. In Proceedings of the Int’l Symposium on Physical Design.
San Francisco, CA, April 2005.

[32] H. Chang and S. Sapatnekar. Impact of process variations on power: full-chip
analysis of leakage power under process variations, including spatial correla-
tions. In Proc. of Design Automation Conf., June 2005.

[33] S. C. Chang, K. T. Cheng, N.-S. Woo, and M. Marek Sadowska. Postlayout
rewiring using alternative wires. IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems, 16(6):587–96, June 1997.

[34] S. C. Chang, L. V. Ginneken, and M. Marek-Sadowska. Circuit optimization
by rewiring. IEEE Transaction on Computers, 48(9):962–970, September 1999.

[35] Y. W. Chang and Y. T. Chang. An architecture-driven metric for simultaneous
placement and global routing for FPGAs. In Proc. Design Automation Conf.,
pages 567–572, 2000.

[36] Y. W. Chang, K. Zhu, and D. F. Wong. Timing-driven routing for symmet-
rical array-based FPGAs. ACM Trans. on Design Automation of Electronic
Systems, 5(3), July 2000.

[37] C. Chen, Y. Tsay, Y. Hwang, T. Wu, and Y. Lin. Combining technology
mapping and placement for delay-optimization in FPGA designs. In Int’l Conf.
Computer Aided Design, 1993.

[38] D. Chen and J. Cong. DAOmap: a depth-optimal area optimization mapping
algorithm for FPGA designs. In Int’l Conf. Computer Aided Design, 2004.

[39] D. Chen and J. Cong. Delay optimal low-power circuit clustering for FPGAs
with dual supply voltages. International Symposium on Low Power Electronics
and Design, August 2004.

[40] D. Chen, J. Cong, M. Ercegovac, and Z. Huang. Performance-driven mapping
for CPLD architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 22(10):1424–1431, October 2003.

[41] D. Chen, J. Cong, and Y. Fan. Low-power high-level synthesis for FPGA
architectures. International Symposium on Low Power Electronics and Design,
August 2003.

[42] D. Chen, J. Cong, F. Li, and L. He. Low-power technology mapping for FPGA
architectures with dual supply voltages. International Symposium on Field
Programmable Gate Arrays, February 2004.

[43] G. Chen and J. Cong. Simultaneous logic decomposition with technology
mapping in FPGA designs. International Symposium on Field-Programmable
Gate-Arrays, 2001.

[44] G. Chen and J. Cong. Simultaneous timing driven clustering and placement
for FPGAs. In International Conference on Field Programmable Logic and Its
Applications, pages 158–167, August 2004.



320 References

[45] G. Chen and J. Cong. Simultaneous timing-driven placement and duplication.
International Symposium on Field-Programmable Gate-Arrays, 2005.

[46] K. C. Chen, et al. DAG-map: graph-based FPGA technology mapping for
delay optimization. IEEE Design and Test of Computers, 9(3):7–20, Septem-
ber 1992.

[47] A. Chowdary and J. P. Hayes. Technology mapping for field-programmable
gate arrays using integer programming. In Int’l Conf. Computer Aided Design,
November 1995.

[48] J. Cong and Y. Ding. An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. In Int’l Conf. Computer
Aided Design, November 1992.

[49] J. Cong and Y. Ding. Beyond the combinatorial limit in depth minimization
for LUT-based FPGA designs. In Int’l Conf. Computer Aided Design, 1993.

[50] J. Cong and Y. Ding. FlowMap: an optimal technology mapping algorithm
for delay optimization in lookup-table based FPGA designs. IEEE Trans.
on Computer Aided Design of Integrated Circuits and Systems, 13(1):1–12,
January 1994.

[51] J. Cong and Y. Ding. On area/depth trade-off in LUT-based FPGA technology
mapping. IEEE Transactions on VLSI Systems, 2(2):137–148, 1994.

[52] J. Cong and Y. Ding. Combinational logic synthesis for LUT based field pro-
grammable gate arrays. ACM Trans. on Design Automation of Electronic
Systems, 1(2):145–204, April 1996.

[53] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Behavior and communi-
cation co-optimization for systems with sequential communication media. In
IEEE/ACM Design Automation Conference, 2006.

[54] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang. Architecture and synthe-
sis for on-chip multi-cycle communication. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pages 550–564, April 2004.

[55] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific instruction gen-
eration for configurable processor architectures. In International Symposium
on Field-Programmable Gate Arrays, February 2004.

[56] J. Cong, J. Fang, M. Xie, and Y. Zhang. MARS—a multilevel full-chip gridless
routing system. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(3):382–394, March 2005.

[57] J. Cong, H. Huang, and X. Yuan. Technology mapping and architecture eval-
uation for k/m-macrocell-based FPGAs. ACM Trans. on Design Automation
of Electronic Systems, 10:3–23, January 2005.

[58] J. Cong and Y. Hwang. Simultaneous depth and area minimization in
LUT-based FPGA mapping. International Symposium on Field-Programmable
Gate-Arrays, February 1995.

[59] J. Cong and Y. Hwang. Structural gate decomposition for depth-optimal tech-
nology mapping in LUT-based FPGA design. In ACM/IEEE Design Automa-
tion Conference, 1996.

[60] J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Provably
good performance-driven global routing. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 11(6):739–752, June 1992.



References 321

[61] J. Cong, T. Kong, J. Shinnerl, M. Xie, and X. Yuan. Large scale circuit
placement. ACM Transactions on Design Automation of Electronic Systems,
10(2):389–430, April 2005.

[62] J. Cong, K. S. Leung, and D. Zhou. Performance-driven interconnect design
based on distributed RC delay model. In Proc. ACM/IEEE 30th Design
Automation Conference, pages 606–611, June 1993.

[63] J. Cong and S. K. Lim. Physical planning with retiming. In IEEE International
Conference on Computer Aided Design, pages 2–7, 2000.

[64] J. Cong, Y. Lin, and W. Long. SPFD-based global reviewing. In International
Symposium on Field-Programmable Gate Arrays, 2002.

[65] J. Cong and W. Long. Theory and algorithm for SPFD-based global rewiring.
In International Workshop on Logic Synthesis, 2001.

[66] J. Cong and K. Minkovich. Optimality study of logic synthesis for LUT-based
FPGAs. In International Symposium on Field-Programmable Gate Arrays,
February 2006.

[67] J. Cong and B. Preas. A new algorithm for standard cell global routing. In
Proc. Int’l Conf. on Computer-Aided Design, pages 176–179, November 1988.

[68] J. Cong and M. Romesis. Performance-driven multi-level clustering with appli-
cation to hierarchical FPGA mapping. In Design Automation Conference,
2001.

[69] J. Cong and J. Shinnerl, editors. Multilevel Optimization in VLSI CAD.
Kluwer Academic Publishers, 2003.

[70] J. Cong and C. Wu. FPGA synthesis with retiming and pipelining for clock
period minimization of sequential circuits. In Design Automation Conference,
1997.

[71] J. Cong and C. Wu. Optimal FPGA mapping and retiming with efficient
initial state computation. Design Automation Conference, 1997.

[72] J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: enabling a gen-
eral and efficient FPGA mapping solution. International Symposium on Field-
Programmable Gate Arrays, February 1999.

[73] J. Cong and S. Xu. Delay-optimal technology mapping for FPGAs with het-
erogeneous LUTs. In Design Automation Conference, 1998.

[74] J. Cong and S. Xu. Delay-oriented technology mapping for heterogeneous
FPGAs with bounded resources. In Int’l Conf. Computer Aided Design, 1998.

[75] J. Cong and S. Xu. Technology mapping for FPGAs with embedded mem-
ory blocks. In International Symposium on Field-Programmable Gate Arrays,
1998.

[76] J. Cong and S. Xu. Performance-driven technology mapping for heterogeneous
FPGAs. IEEE Trans. on Computer-aided Design of Integrated Circuits and
Systems, 19(11):1268–1281, November 2000.

[77] Ph.D. Dissertation D. Chen. Design and synthesis for low-power FPGAs. Com-
puter Science Department, University of California, December 2005.

[78] J. A. Davis, V. K. De, and J. Meindl. A stochastic wire-length distribution for
gigascale integration (GSI)—Part I: derivation and validation. 45(3):580–589,
March 1998.



322 References

[79] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill,
Inc., 1994.

[80] Y. Ding, P. Suaris, and N. Chou. The effect of post-layout pin permutation
on timing. In Int’l Symposium on Field Programmable Gate Arrays, 2005.

[81] A. Duncan, D. Hendry, and P. Gray. An overview of the COBRA-ABS
high level synthesis system for multi-FPGA systems. In IEEE Symposium
on FPGAs for Custom Computing Machines, pages 106–115, April 1998.

[82] J. M. Emmert and D. Bhatia. A methodology for fast FPGA floorplanning. In
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
pages 47–56, February 21-23 1999.

[83] L. A. Entrena and K. T. Cheng. Combinational and sequential logic optimiza-
tion by redundancy addition and removal. IEEE Transaction on Computer
Aided Design of Integrated Circuits and Systems, 14(7):909–916, 1995.

[84] W. Fang and A. Wu. Multi-way FPGA partitioning by fully exploiting design
hierarchy. ACM Transactions on Design Automation of Electronic Systems,
5(1):34–50, January 2000.

[85] A. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table minimiza-
tion problem for FPGA technology mapping. IEEE Tran. on Computer Aided
Design of Integrated Circuits and Systems, 13(11):1319–1332, November 1994.

[86] A. H. Farrahi and M. Sarrafzadeh. FPGA technology mapping for power min-
imization. In International Workshop in Field Programmable Logic and Appli-
cations, 1994.

[87] FishTail. Design Automation. http://www.fishtail-da.com/.
[88] R. J. Francis, J. Rose, and Z. Vranesic. Technology mapping for lookup

table-based FPGA’s for performance. In Int’l Conf. Computer-Aided Design,
November 1991.

[89] R. J. Francis, et al. Chortle-crf: fast technology mapping for lookup table-
based FPGAs. In Design Automation Conference, 1991.

[90] J. Frankle. Iterative and adaptive slack allocation for performance-driven lay-
out and FPGA routing. In Proceedings of Design Automation Conference,
pages 536–542, 1992.

[91] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin, and T. Tuan.
Reducing leakage energy in FPGAs using region-constrained placement. In
ACM International Symposium on Field Programmable Gate Arrays, Febru-
ary 2004.

[92] V. George and J. Rabaey. Low-energy FPGAs—Architecture and Design.
Kluwer Academic Publishers, 2001.

[93] V. George and J. Rabaey. Low-Energy FPGAs: Architecture and Design.
Springer, June 2001.

[94] S. Ghiasi, E. Bozorgzadeh, S. Choudhury, and M. Sarrafzadeh. A unified the-
ory of timing budget management. In IEEE/ACM International Conference
on Computer-Aided Design, pages 653–659, November 2004.

[95] M. Gokhale and J. Stone. Automatic allocation of arrays to memories in
FPGA processors with multiple memory banks. In IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 63–69, April 1999.



References 323

[96] P. Gopalakrishnan, X. Li, and L. Pileggi. Architecture-aware FPGA place-
ment using metric embedding. In IEEE/ACM Design Automation Conference,
pages 460–465, 2006.

[97] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee. Parallel algorithms for
FPGA placement. In Proc. Great Lakes Symposium on VLSI (GVLSI 2000),
March 2000.

[98] Z. Hasan, D. Harrison, and M. Ciesielski. A fast partition method for PLA-
based FPGAs. IEEE Design and Test of Computers, December 1992.

[99] G. D. Hatchel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Kluwer Academic Publishers, 1996.

[100] P. S. Hauge, R. Nair, and E. J. Yoffa. Circuit placement for predictable perfor-
mance. In International Conference of Computer Aided Design, pages 88–91,
1987.

[101] J. He and J. Rose. Technology mapping for heterogeneous FPGAs. In Inter-
national Symposium on Field Programmable Gate Arrays, 1994.

[102] M. Hrkic and J. Lillis. S-Tree: a technique for buffered routing tree synthesis.
In Design Automation Conference, 2002.

[103] M. Hrkic, J. Lillis, and G. Beraudo. An approach to placement-coupled logic
replication. In ACM/IEEE Design Automation Conference, pages 711–716,
June 2004.

[104] Y. Hu, Y. Lin, L. He, and T. Tuan. Simultaneous time slack budgeting
and retiming for Dual-Vdd FPGA power reduction. In IEEE/ACM Design
Automation Conference, 2006.

[105] S. W. Hur and J. Lillis. Mongrel: hybrid techniques for standard cell place-
ment. In International Conference of Computer Aided Design, 2000.

[106] J. Hwang, F. Chiang, and T. Hwang. A re-engineering approach to low power
FPGA design using SPFD. In Design Automation Conference, 1998.

[107] M. Inuani and J. Saul. Re-synthesis in technology mapping for heterogeneous
FPGAs. In International Conference on Computer Design, 1998.

[108] P. Jamieson and J. Rose. A verilog RTL synthesis tool for heterogeneous
FPGAs. In International Conference on Field Programmable Logic and Appli-
cations, August 2005.

[109] A. B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality,
large-scale analytical placer. In ACM/IEEE Intl. Conf. on Computer-Aided
Design, pages 891–898, November 2005.

[110] G. Karypis and V. Kumar. Multilevel hypergraph partitioning. In Design
Automation Conference, 1997.

[111] A. Kaviani and S. Brown. Technology mapping issues for an FPGA with
lookup tables and PLA-like blocks. In International Symposium on Field Pro-
grammable Gate Arrays, 2000.

[112] K. Keutzer. DAGON: technology binding and local optimization by DAG
matching. ACM/IEEE Design Automation Conference, pages 341–347, 1987.

[113] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi. Behavior-to-placed RTL syn-
thesis with performance-driven placement. In Int. Conf. on Computer Aided
Design, pages 320–326, November 2001.



324 References

[114] A. Koch. Structured design implementation—a strategy for implementing
regular datapaths on FPGAs. In International Symposium on Field Pro-
grammable Gate Arrays, pages 151–157, 1996.

[115] T. Kong. A novel net weighting algorithm for timing-driven placement.
In IEEE/ACM International Conference on Computer-Aided Design, pages
172–176, 2002.

[116] M. R. Korupolu, K. K. Lee, and D. F. Wong. Exact tree-based FPGA technol-
ogy mapping for logic blocks with independent LUTs. In Design Automation
Conference, 1998.

[117] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees.
Acta Informatica, 15:141–145, 1981.

[118] J. L. Kouloheris. Empirical Study of the Effect of Cell Granularity on FPGA
Density and Performance. Ph.D. Thesis, Stanford University, 1993.

[119] S. Krishnamoorthy and R. Tessier. Technology mapping algorithms for hybrid
FPGAs containing lookup tables and PLAs. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 22(5), May 2003.

[120] E. Kusse and J. Rabaey. Low-energy embedded FPGA structures. In Proc.
of International Symposium on Low Power Electronics and Design, August
1998.

[121] J. Lamoureux and S. J. E. Wilton. On the interaction between power-aware
FPGA CAD algorithms. In IEEE International Conference on Computer-
Aided Design, November 2003.

[122] Lattice. Power estimation in ispMACH 5000B devices, May 2002.
[123] E. L. Lawler, K. N. Levitt, and J. Turner. Module clustering to minimize

delay in digital networks. Trans. On Computer, C18(1), 1969.
[124] S. Lee and D. F. Wong. Timing-driven routing for FPGAs based on

Lagrangian relaxation. In Proc. of International Symposium on Physical
Designs, pages 176–181, April 2002.

[125] Y. S. Lee and C. H. Wu. A performance and routability-driven router for
FPGAs considering path delay. In Proc. of Design Automation Conference,
pages 557–561, 1995.

[126] C. Legl, B. Wurth, and K. Eckl. A Boolean approach to performance-directed
technology mapping for LUT-based FPGA designs. In Design Automation
Conference, June 1996.

[127] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decomposi-
tion during technology mapping. In IEEE/ACM International Conference on
Computer-Aided Design, pages 264–271, 1995.

[128] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decomposi-
tion during technology mapping. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 16(8):813–834, 1997.

[129] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica,
6:5–35, 1991.

[130] G. Lemieux and S. D. Brown. A detailed routing algorithm for allocating wire
segments in FPGAs. ACM/SIGDA Physical Design Workshop, 1993.



References 325

[131] F. Li, D. Chen, L. He, and J. Cong. Architecture evaluation for power-
efficient FPGAs. In ACM International Symposium on Field Programmable
Gate Arrays, pages 175–184, Monterey, California, 2003.

[132] F. Li, Y. Lin, and L. He. FPGA power reduction using configurable Dual-Vdd.
In IEEE/ACM Design Automation Conference, pages 735–740, June 2004.

[133] F. Li, Y. Lin, and L. He. Vdd programmability to reduce FPGA interconnect
power. In IEEE/ACM International Conference on Computer-Aided Design,
pages 760–765, San Jose, November 2004.

[134] F. Li, Y. Lin, L. He, D. Chen, and J. Cong. Power modeling and characteristics
of field programmable gate arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(11), November 2005.

[135] F. Li, Y. Lin, L. He, and J. Cong. Low-power FPGA using dual-Vdd/Dual-Vt
techniques. In International Symposium on Field Programmable Gate Arrays,
pages 42–50, February 2004.

[136] H. Li, S. Katkoori, and W. K. Mak. Power minimization algorithms for LUT
based FPGA technology mapping. ACM Transactions on Design Automation
of Electronic Systems, 9(1):33–51, January 2004.

[137] R. Liberskind Hadas, N. Hasan, J. Cong, P. Mckinley, and C. L. Liu. Kluwer
Academic Publishers, 1992.

[138] E. Lin and S. Wilton. Macrocell architectures for product term embedded
memory arrays. Field Programmable Logic Applications, pages 48–58, August
2001.

[139] J. Lin, D. Chen, and J. Cong. Optimal simultaneous mapping and clustering
for FPGA delay optimization. In IEEE/ACM Design Automation Conference,
2006.

[140] J. Lin, A. Jagannathan, and J. Cong. Placement-driven technology mapping
for LUT-based FPGAs. In International Symposium on Field Programmable
Gate Arrays, pages 121–126, February 2003.

[141] A. Ling, D. Singh, and S. Brown. FPGA technology mapping: a study of
optimality. In Design Automation Conference, 2005.

[142] P. Maidee, C. Ababei, and K. Bazarga. Timing-driven partitioning-based
placement for Island style FPGAs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(3):395–406, March 2005.

[143] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuristics for area min-
imization in LUT-based FPGA technology mapping. In International Work-
shop of Logic Synthesis, 2004.

[144] A. Marquardt, V. Betz, and J. Rose. Using cluster-based logic blocks and
timing-driven packing to improve FPGA speed and density. In ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages 37–46,
1999.

[145] A. Marquardt, V. Betz, and J. Rose. Timing-driven placement for FPGAs. In
International Symposium on Field Programmable Gate Arrays, pages 203–213,
Monterey, Ca., February 2000.

[146] A. Mathur and C. L. Liu. Performance-driven technology mapping for lookup-
table based FPGAs using the general delay model. In International Workshop
on Field Programmable Gate Arrays, February 1994.



326 References

[147] L. Mcmurchie and C. Ebeling. PathFinder: A negotiation-based performance-
driven router for FPGAs. In Proceedings of International Symposium on Field-
Programmable Gate Arrays, February 1995.

[148] A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements to technol-
ogy mapping for LUT-based FPGAs. In International Symposium on Field-
Programmable Gate Arrays, 2006.

[149] R. Mukherjee and S. Ogrenci Memik. Evaluation of Dual Vdd fabrics for low
power FPGAs. In Asia-South Pacific Design Automation Conference, January
2005.

[150] R. Murgai, R. Brayton, and A. Sangiovanni Vincentelli. On clustering for
minimum delay/area. In Int’l Conf. Computer Aided Design, November 1991.

[151] R. Murgai, R. Brayton, and A. Sangiovanni Vincentelli. Logic Synthesis for
Field-Programmable Gate Arrays. Springer, July 1995.

[152] R. Murgai, et al. Improved logic synthesis algorithms for table look up archi-
tectures. In Int’l Conf. Computer Aided Design, November 1991.

[153] S. Mutoh, et al. 1-V Power supply high-speed digital circuit technology
with multi-threshold-voltage CMOS. IEEE Journal of Solid-State Circuits,
30(8):847–854, August 1995.

[154] S. K. Nag and R. A. Rutenbar. Performance-driven simultaneous placement
and routing for FPGAs. IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, 17(6):499–518, June 1998.

[155] R. Nair. A simple yet effective technique for global wiring. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, CAD-6(6):165–
172, March 1987.

[156] G. J. Nam, F. Aloul, K. A. Sakallah, and R. A. Rutenbar. A comparative
study of two Boolean formulations of FPGA detailed routing constraints.
IEEE Transactions on Computers, 53(6):688–696, June 2004.

[157] G. J. Nam, K. A. Sakallah, and R. A. Rutenbar. Satisfiability-based lay-
out revisited: detailed routing of complex FPGAs via search-based Boolean
SAT. In ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 167–175, February 1999.

[158] P. Pan and C. C. Lin. A new retiming-based technology mapping algorithm
for LUT-based FPGAs. In International Symposium on Field-Programmable
Gate Arrays, 1998.

[159] P. Pan and C. L. Liu. Optimal clock period FPGA technology mapping for
sequential circuits. In Design Automation Conf., June 1996.

[160] P. Pan and C. L. Liu. Technology mapping of sequential circuits for
LUT-based FPGAs for performance. In International Symposium on Field-
Programmable Gate Arrays, 1996.

[161] P. Pan and C. L. Liu. Optimal clock period FPGA technology mapping for
sequential circuits. ACM Transactions on Design Automation of Electronic
Systems, 3(3):437–462, 1998.

[162] K. Poon, S. J. E. Wilton, and A. Yan. A detailed power model for field pro-
grammable gate arrays. ACM Transactions on Design Automation of Elec-
tronic Systems, 10(2):279–302, April 2005.



References 327

[163] A. Rahman and V. Polavarapuv. Evaluation of low-leakage design techniques
for field programmable gate arrays. In International Symposium on Field Pro-
grammable Gate Arrays, February 2004.

[164] R. Rajaraman and D. F. Wong. Optimal clustering for delay minimization.
In Design Automation Conference, June 1993.

[165] J. Rose. Parallel global routing for standard cells. IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems, 9(10):1085–1095, Octo-
ber 1990.

[166] Y. Sankar and J. Rose. Trading quality for compile time: ultra-fast placement
for FPGAs. In International Symposium on Field Programmable Gate Arrays,
pages 157–166, 1999.

[167] M. Schlag, J. Kong, and P. K. Chan. Routability-driven technology mapping
for lookup table-based FPGAs. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 13(1):13–26, 1994.

[168] H. Schmit, L. Arnstein, D. Thomas, and E. Lagnese. Behavioral synthesis
for FPGA-based computing. In Workshop on FPGAs for Custom Computing
Machines, pages 125–132, 1994.

[169] E. M. Sentovich, et al. SIS: A system for sequential circuit synthesis.
Berkeley, CA, University of California, 1992. Dept. of Electrical Engineering
and Computer Science.

[170] L. Shang and N. K. Jha. High-level power modeling of CPLDs and FPGAs.
In IEEE International Conference on Computer Design, September 2001.

[171] L. Shang, A. Kaviani, and K. Bathala. Dynamic power consumption in virtex-
II FPGA family. In ACM International Symposium on Field Programmable
Gate Arrays, February 2002.

[172] K. R. Shayee, J. Park, and P. Diniz. Performance and area modeling of com-
plete FPGA designs in the presence of loop transformations. IEEE Transac-
tions on Computers, 53(11):1420–1435, November 2004.

[173] J. P. M. Silva and K. A. Sakallah. GRASP—a new search algorithm for satis-
fiability. In Proc. ACM/IEEE Int’l Conf. Computer Aided Design, November
1997.

[174] A. Singh and M. Marek Sadowska. Efficient circuit clustering for area and
power reduction in FPGAs. In ACM International Symposium on Field Pro-
grammable Gate Arrays, February 2002.

[175] D. Singh and S. Brown. Integrated retiming and placement for field pro-
grammable gate arrays. In International Symposium on Field Programmable
Gate Arrays, pages 67–76, February 2002.

[176] A. Srivastava, D. Sylvester, and D. Blaauw. Power minimization using simulta-
neous gate sizing, Dual-Vdd and Dual-Vth assignment. In Design Automation
Conference, 2004.

[177] H. Styles and W. Luk. Branch optimization techniques for hardware compila-
tion. In International Conference on Field Programmable Logic and Applica-
tions, 2003.

[178] P. Suaris, L. Liu, Y. Ding, and N. Chou. Incremental physical resynthesis for
timing optimization. In Int’l Symposium on Field Programmable Gate Arrays,
2004.



328 References

[179] W. Sun, M. Wirthlin, and S. Neuendorffer. Combining module selection and
resource sharing for efficient FPGA pipeline synthesis. In Int’l Symposium on
Field Programmable Gate Arrays, 2006.

[180] J. Swartz, V. Betz, and J. Rose. A fast routability-driven router for FPGAs.
In Int’l Symposium on Field Programmable Gate Arrays, pages 140–149, Mon-
terey, CA, 1998.

[181] Synopsys. http://www.synopsys.com/products/products matrix.html.
[182] SystemC. http://www.systemc.org.
[183] M. Takahashi, et al. A 60mW MPEG4 video codec using clustered voltage

scaling with variable supply-voltage scheme. Journal of Solid-State Circuits,
1998.

[184] R. Tessier. Fast placement approaches for FPGAs. ACM Transactions on
Design Automation of Electronic Systems, 7(2):284–305, April 2002.

[185] The MathWorks. http://www.mathworks.com/.
[186] N. Togawa, M. Sato, and T. Ohtsuki. Maple: a simultaneous technology map-

ping, placement, and global routing algorithm for field-programmable gate
arrays. In Int’l Conf. Computer Aided Design, 1994.

[187] N. Togawa, M. Sato, and T. Ohtsuki. A simultaneous placement and global
routing algorithm with path length constraints for transport-processing
FPGAs. In Asia South Pacific Design Automation Conf., pages 569–578, 1997.

[188] S. Trimberger. Field-Programmable Gate Array Technology. Springer, January
1994.

[189] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger. A 90nm low-power
FPGA for battery-powered applications. In International Symposium on Field
Programmable Gate Arrays, 2006.

[190] T. Tuan and B. Lai. Leakage power analysis of a 90nm FPGA. In Custom
Integrated Circuits Conference, 2003.

[191] K. Usami and M. Horowitz. Clustered voltage scaling for low-power design.
In International Symposium on Low Power Design, April 1995.

[192] H. Vaishnav and M. Pedram. Delay optimal clustering targeting low-power
VLSI circuits. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 18(6), June 1999.

[193] K. Wakabayashi. C-based behavioral synthesis and verification analysis on
industrial design examples. In Asian and South Pacific Design Automation
Conference, pages 344–348, January 2004.

[194] K. Wakabayashi and T.Okamoto. C-based SoC design flow and EDA tools: an
ASIC and system vendor perspective. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(12):1507–1522, December 2000.

[195] Z. H. Wang, E. C. Liu, J. Lai, and T. C. Wang. Power minimization in LUT-
based FPGA technology mapping. In Asia South Pacific Design Automation
Conference, 2001.

[196] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De. Design and optimization
of low voltage high performance dual threshold CMOS circuits. In Design
Automation Conference, 1998.



References 329

[197] K. Weiß, C. Oetker, I. Katchan, T. Steckstor, and W. Rosenstiel. Power esti-
mation approach for SRAM-based FPGAs. In ACM International Symposium
on Field Programmable Gate Arrays, February 2000.

[198] S. Wilton. SMAP: heterogeneous technology mapping for area reduction in
FPGAs with embedded memory arrays. In International Symposium on Field
Programmable Gate Arrays, 1998.

[199] S. Wilton. Heterogeneous technology mapping for area reduction in FPGAs
with embedded memory arrays. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 19(1), January 2000.

[200] S. Wilton. Heterogeneous technology mapping for FPGAs with dual-
port embedded memory arrays. In International Symposium on Field Pro-
grammable Gate Arrays, 2000.

[201] F. G. Wolff, M. J. Knieser, D. J. Weyer, and C. A. Papachristou. High-level
low power FPGA design methodology. In IEEE National Aerospace Confer-
ence, 2000.

[202] P. Wong, L. Cheng, Y. Lin, and L. He. FPGA device and architecture evalu-
ation considering process variation. In Proc. IEEE/ACM International Conf.
on Computer-Aided Design, November 2005.

[203] Y. L. Wu and M. Marek Sadowska. An efficient router for 2-D field pro-
grammable gate arrays. In Proc. of European Design Automation Conference,
pages 412–416, 1994.

[204] Y. L. Wu and M. Marek Sadowska. Orthogonal greedy coupling—a new opti-
mization approach to 2-D FPGA routing. In Proc. of Design Automation Con-
ference, June 1995.

[205] Xilinx. Website, http://www.xilinx.com.
[206] Xilinx. Spartan-3E Data Sheets. http://direct.xilinx.com/bvdocs/publications/

ds312.pdf.
[207] Xilinx. Virtex-4 Data Sheet. http://www.xilinx.com.
[208] Xilinx. Virtex-4 Web Power Tool Version 8.1.01. http://www.xilinx.com/

products/silicon solutions/fpgas/virtex/virtex4/index.htm.
[209] Xilinx. Virtex-5 Data Sheet. http://www.xilinx.com.
[210] Xilinx. white paper 205: hardware/software codesign for platform FPGAs.

http://www.xilinx.com/products/design resources/proc central/resource/
hardware software codesign.pdf.

[211] Xilinx. XPower Tool. http://www.xilinx.com/products/design resources/
design tool/grouping/power tools.htm.

[212] Xilinx. A simple method of estimating power in XC4OOOXL/EX/E FPGAs,
June 30 1997. Application Brief X014.

[213] M. Xu and F. J. Kurdahi. ChipEst-FPGA: a tool for chip level area and timing
estimation of lookup table based FPGAs for high level applications. In Asia
and South Pacific Design Automation Conference, January 1997.

[214] M. Xu and F.J. Kurdahi. Design Automation and Test in Europe. Layout-
driven high level synthesis for FPGA based architectures. 1998.

[215] S. Yamshita, H. Sawada, and A. Nagoya. A new method to express functional
permissibilities for LUT based FPGAs and its applications. In International
Conference on Computer Aided Design, pages 254–261, 1996.



330 References

[216] H. Yang and D. F. Wong. Edge-map: optimal performance driven technology
mapping for iterative LUT based FPGA designs. In Int’l Conf. Computer
Aided Design, November 1994.

[217] A. G. Ye, J. Rose, and D. Lewis. Synthesizing datapath circuits for FPGAs
with emphasis on area minimization. In International Conference on Field-
Programmable Technology, December 2002.

[218] A. Z. Zelikovsky. An 11/6 approximation algorithm for the network Steiner
problem. Algorithmica, 9:463–470, 1993.

[219] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In International Conference on
Computer-Aided Design, pages 279–285, 2001.

[220] Y. Zhan, et al. Statistical timing analysis: correlation-aware statistical timing
analysis with non-gaussian delay distributions. In Proc. of Design Automation
Conf., June 2005.

[221] P. S. Zuchowski, et al. A hybrid ASIC and FPGA architecture. In Interna-
tional Conference on Computer-Aided Design, November 2002.


