
Network of Excellence on High Performance Embedded Architectures and Compilers

roadmap

Reprinted with permission from Springer-Verlag:
K. De Bosschere, W. Luk, X. Martorell, N. Navarro, M. O’Boyle, D. Pnevmatikatos, A. Ramirez, P. Sainrat, A. Seznec, P. Stenström,

and O. Temam. "High-Performance Embedded Architecture and Compilation Roadmap"
Transactions on HiPEAC I, Lecture Notes in Computer Science 4050, pp 5-29, Springer-Verlag, 2007.

http://www.HiPEAC.net/roadmap

Message from the HiPEAC coordinator
Dear colleagues,

After a long process of brainstorming and discussing future research directions, I would
like to congratulate the HiPEAC community with the publication of the first HiPEAC
research roadmap. This special issue of the HiPEAC newsletter contains a reprint of the
HiPEAC research roadmap as it is printed in the first volume of the Transaction on HiPEAC.

Mateo Valero
Coordinator
UPC Barcelona
mateo@ac.upc.edu

place, and new insights emerge. If you
want to want to comment on the current
version of the roadmap, or if you want
to contribute to future versions, do
not hesitate to contact us at
roadmap@HiPEAC.net.

I am however convinced that this first
version of the roadmap will already influ-
ence our research agenda dramatically,
within HiPEAC and beyond. I therefore
invite our community to increase their
research efforts on the challenges men-
tioned in the roadmap, and to further
contribute to the fascinating domain of
high-performance embedded systems.

Mateo Valero
Coordinator

■

It has been a rewarding experience for
our community to have gone all the way
through the roadmapping process: gath-
ering input from our researchers, con-
fronting different visions, trying to struc-
ture the raw material into themes and
challenges, getting feedback from indus-
try and from external experts. Originally
started as a collection of individual
visions, it has now grown into the vision
of our network, materialized as a com-
prehensive list of short and long research
challenges grouped into 10 themes.

I would like to thank all who contributed
their precious time to this effort, more in
particular the theme coordinators for
gathering all the material, the companies
for providing feedback on earlier versions
of the roadmap, and Koen De Bosschere

for taking the lead and for bringing this
effort to a good end.

From the document it is clear that there
are many challenges ahead of us in the
design of future high-performance
embedded systems. Some of them are
familiar such as the memory wall, the
power problem, and the interconnection
bottleneck. Others are new like the prop-
er support for reconfigurable compo-
nents, fast simulation techniques for
multi-core systems, new programming
paradigms for parallel programming.

A roadmap cannot be a final document
by definition. This is the first version of
the HiPEAC roadmap, and we are com-
mitted to update the roadmap periodi-
cally in the future as new evolutions take

Message from the project officer
I am pleased to take the opportunity to
underline the role of the HiPEAC
research roadmap in FP7 - the European
Research Programme which will last for 7
years starting in 2007.

The HiPEAC roadmap has been one of
the key inputs for the elaboration of the
objective on Computing Systems, and
both share the same vision.

- The quest for the ultimate per-
formance on a single chip
uniprocessor is becoming a
dead-end; performance will be
scaled up by putting multiple
processors on a single chip and
utilizing thread-level parallelism.

The focus on multi-core architectures is
in line with this paradigm shift.
- Programming a (heterogeneous) multi-
core system requires an advanced pro-
gramming environment enabling the
user to express concurrency as well as to
automatically discover thread-level paral-
lelism. If not, it does not matter how
many cores are available – there will be
no performance gain. In FP7 we are look-

ing not only for new
architectures but also for
its corresponding sys-
tem-level software and
its programming envi-
ronments.
- The convergence of
digital devices (embed-

ded, desktop, media and mobile com-
puting) and markets (automotive, aero-
space, consumer electronics and medical
applications) offers an opportunity for
Europe to enter again the arena of gen-
eral-purpose computing by building on
the European strengths in embedded
computing. FP7 does not distinguish
between Embedded Systems and high-
end systems anymore. Computing
Systems are in FP7 a separate objective,
addressing low-end consumer electronics
as well as the high-end computing mar-
kets.

Up to date information is at
http://cordis.europa.eu/fp7/ict/

■

Mercè Griera i Fisa Merce.Griera-i-Fisa@ec.europa.eu
Please take note of the European Commission's new e-mail addresses!

High-Performance Embedded Architecture and

Compilation Roadmap

Koen De Bosschere1,2, Wayne Luk1,3, Xavier Martorell1,4, Nacho Navarro1,4,
Mike O’Boyle1,5, Dionisios Pnevmatikatos1,6, Alex Ramirez1,4,

Pascal Sainrat1,7, André Seznec1,8, Per Stenström1,9, and Olivier Temam1,10

1 HiPEAC Network of Excellence
http://www.HiPEAC.net

2 Ghent University, Belgium
3 Imperial College, UK

4 UPC, Spain
5 University of Edinburgh, UK

6 ICS FORTH, Greece
7 CNRS, France
8 IRISA, France

9 Chalmers, Sweden
10 INRIA Futurs, France

Abstract. One of the key deliverables of the EU HiPEAC FP6 Network
of Excellence is a roadmap on high-performance embedded architecture
and compilation – the HiPEAC Roadmap for short. This paper is the
result of the roadmapping process that took place within the HiPEAC
community and beyond. It concisely describes the key research challenges
ahead of us and it will be used to steer the HiPEAC research efforts.
The roadmap details several of the key challenges that need to be tack-
led in the coming decade, in order to achieve scalable performance in
multi-core systems, and in order to make them a practical mainstream
technology for high-performance embedded systems.
The HiPEAC roadmap is organized around 10 central themes: (i) sin-
gle core architecture, (ii) multi-core architecture, (iii) interconnection
networks, (iv) programming models and tools, (v) compilation, (vi) run-
time systems, (vii) benchmarking, (viii) simulation and system modeling,
(ix) reconfigurable computing, and (x) real-time systems. Per theme, a
list of challenges is identified. In total 55 key challenges are listed in this
roadmap. The list of challenges can serve as a valuable source of reference
for researchers active in the field, it can help companies building their
own R&D roadmap, and – although not intended as a tutorial document
– it can even serve as an introduction to scientists and professionals in-
terested in learning about high-performance embedded architecture and
compilation.

Key words: HiPEAC, roadmap, single core architecture, multi-core ar-
chitecture, interconnection networks, programming models and tools,
compilation, run-time systems, benchmarking, simulation and system
modelling, reconfigurable computing, real-time systems

P. Stenström (Ed.): Transactions on HiPEAC I, LNCS 4050, pp. 5–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.HiPEAC.net

6 K. De Bosschere et al.

Introduction

Modern embedded systems have computing resources that by far surpass the
computing power of the mainframes of the sixties. This has been made possible
thanks to technology scaling, architectural innovations, and advances in compi-
lation. The driving force was the ability to speed-up existing binaries without
much help of the compiler. However, since 2000 and despite new progress in
integration technology, the efforts to design very aggressive and very complex
wide issue superscalar processors have essentially come to a stop. The exponen-
tially increasing number of transistors has since then been invested in ever larger
on-chip caches, but even there we have reached the point of diminishing return.

Therefore, for the last five years, it has become more and more obvious
that the quest for the ultimate performance on a single chip uniprocessor is
becoming a dead-end. Although there are still significant amounts of unexploited
instruction-level parallelism left, the complexities involved to extract it and the
increased impact of wire-delay on the communication have left us with few ideas
on how to further exploit it. Alternatively, further increasing the clock frequency
is also getting more and more difficult because (i) of heat problems and (ii) of
too high energy consumption. The latter is not only a technical problem for both
server farms and mobile systems, but in the future, it is also going to become
a marketing weapon targeted at the growing number of environmentally-aware
consumers and companies in search of a greener computer.

For these and other reasons, there is currently a massive paradigm shift
towards multi-core architectures. Instead of scaling performance by improving
single core performance, performance is now scaled by putting multiple cores
on a single chip, effectively integrating a complete multiprocessor on one chip.
Since the total performance of a multi-core is improved without increasing the
clock frequency, multi-cores offer a better performance/Watt ratio than a single
core solution with similar performance. The interesting new opportunity is now
that Moore’s Law (which is still going to bring higher transistor density in the
coming years) will make it possible to double the number of cores every 18
months. Hence, with 4 cores of the complexity of high-performance general-
purpose processors already on a chip today, we can expect to fit as many as 256
such cores on a chip in ten years from now. The future scaling in the number of
cores is called the multi-core roadmap hereafter.

This paradigm shift has a profound impact on all aspects of the design of
future high-performance systems. In the multi-core roadmap, the processor be-
comes the functional unit, and just like floating-point units were added to single-
core processors to accelerate scientific computations, special-purpose computing
nodes will be added to accelerate particular application types (media processing,
cryptographic algorithms, digital signal processing, . . .) leading to heterogeneous
multi-cores. Heterogeneous multi-cores add a new design complexity issue, be-
cause special-purpose computing nodes can have a significant impact on the
memory hierarchy of the system. This will require specially designed communi-
cation paths for which bus-based interconnects are no longer suited.

High-Performance Embedded Architecture and Compilation Roadmap 7

On the multi-core roadmap, cheaper and more reliable high-performance
switched serial interconnects will be used. This trend is evident in all recent high-
performance interconnects such as PCI Express, ASI, FSB, HyperTransport.

Programming these (heterogeneous) multi-core systems requires an advanced
parallel programming environment enabling the user to manually express con-
currency as well as to automatically discover thread-level parallelism (in con-
trast to instruction-level parallelism) in sequential code. Automatically extract-
ing thread-level parallelism or auto-parallelization has been extensively studied
for scientific programs since the 1970s. Despite impressive gains for certain appli-
cations it is highly sensitive to the programming idiom. Common programming
languages featuring arbitrary pointer manipulations (like C or C++) make this
auto-parallelization extremely difficult. Due to this difficulty in exploiting par-
allelism and the easier option of waiting for the next technology generation to
provide greater performance, parallel computing has failed to deliver in the past.
However, now it seems that thread-level parallelism is the only route to perfor-
mance scalability together with customization. If we cannot extract sufficient
thread-level parallelism from the user’s code, it does not matter how many cores
are available – there will be no performance gain. This situation has implica-
tions far beyond architecture and compilation as it will affect all consumers
used to the steady improvement of application performance across computer
generations. Such improvements will no longer occur unless the application is
parallelized.

The increased computing power for a given power budget will pave the way
for new high-performance embedded applications: more demanding multimedia
applications, advanced online biomedical signal processing, software-defined ra-
dio, biometric data processing like voice processing and image recognition. Many
of these applications have hard or soft real-time requirements. This is challenging
in a multi-core system because all cores share common resources like the lower
level caches and the off-chip communication bandwidth – making it more difficult
to compute the worst case execution time. Due to the better performance/Watt
metric for multi-cores, they will also be used as elementary computing nodes in
supercomputers where they will be used to run traditional scientific workloads.
Hence, multi-cores will span the complete computational spectrum.

It is clear that this paradigm shift is so profound that it is affecting almost all
aspects of system design (from the components of a single core up to the complete
system), and that a lot of research and tool development will be needed before
it will be possible to bring many-core processors to the masses.

The remainder of this paper details several of the key challenges that need
to be tackled in the coming decade, in order to achieve scalable performance in
multi-core systems, and in order to make them a practical mainstream technology
for embedded systems. It is in the first place a roadmap for research and is not
meant to be a roadmap on industrial R&D. Furthermore it is a roadmap on high-
performance embedded architecture and compilation, hence it is about future
embedded hardware and tools to exploit that hardware in the broad sense. It is
neither a technology roadmap, nor an embedded application roadmap as these

8 K. De Bosschere et al.

aspects are already covered by other documents like the ITRS roadmap and the
ISTAG documents.

The roadmap is structured around 10 themes: (i) single core architecture, (ii)
multi-core architecture, (iii) interconnection networks, (iv) programming models
and tools, (v) compilation, (vi) run-time systems, (vii) benchmarking, (viii) sim-
ulation and system modeling, (ix) reconfigurable computing, and (x) real-time
systems. Per theme, a list of challenges is identified. More important challenges
are put higher in the list.

The fact that we distinguish 10 themes does not mean that these themes
are independent; it is just a way to structure this document. In fact, some of
the challenges have moved from one theme to another several times during the
roadmapping process. Other issues like power are popping up as a challenge in
different themes.

The description of the individual challenges is kept concise, and we have tried
to describe just the challenge, not the solutions as we did not want to impose our
vision on the possible solutions. For the same reason, we decided not to include
references per challenge.

1 Single Core Architecture

Many of the classical uniprocessor trade-offs of the last 20 years will have to be
reconsidered when uniprocessors are used as building blocks in a multi-core sys-
tem. Devoting precious silicon area to aggressive out-of-order execution hardware
might no longer lead to an optimal solution, and using the area to implement two
simpler cores can result in a better performance and/or lower power consumption
(in a sense we might be witnessing the CISC-RISC transition again – this time at
the core level). However, since many existing workloads are inherently sequential,
and since even a parallelized application will contain significant amounts of se-
quential code, giving up on single core performance might cause serious problems
for this class of applications. The research on processor micro-architecture must
therefore continue to focus on the trade-off between performance and complexity
of the micro-architecture. The following challenges are identified for future single
core architectures.

Challenge 1.1: Complexity Reduction

The aggressive out-of-order execution mechanism is very complex, its verification
is very time-consuming, its implementation is using up a lot of silicon area, and
its operation is consuming a lot of power. In order to make it a suitable candidate
as a basic building block in a multi-core system, its complexity has to be reduced,
without compromising the single-core performance too much.

Challenge 1.2: Power Management

Besides the creation of specialized hardware modules, Dynamic-Voltage-Frequen-
cy-Scaling (DVFS) has been a prevailing power managing technique so far. It not

High-Performance Embedded Architecture and Compilation Roadmap 9

only helps in reducing the dynamic power consumption, but it also helps fight-
ing static (leakage) power consumption. Unfortunately, scaling down the voltage
leads to an increase in the number of soft errors which creates a reliability prob-
lem in future systems. As a result, while DVFS has been an important technique
so far, it will be less attractive as we move along. Hence, novel techniques will be
needed to manage both dynamic and static power consumption in single cores.
If not, it is expected that future architectural designs will be more and more
constrained by leakage power consumption.

Challenge 1.3: Thermal Management

With the increasing integration density, power consumption is not the only con-
cern. Power density has also risen to very high levels in several parts of the
processor. Temperature hotspots are therefore becoming a major concern on
processors, since they can result in transient or permanent failure. The temper-
ature hotspots have also a major impact of the aging of the components. While
systems are now designed with a predetermined power budget, they will also
have to be designed with a fixed thermal envelope. In order to fix this issue, ar-
chitects first have to build reliable models able to represent both dynamic power
consumption and temperature behavior of modern cores. Then they have to
propose hardware/software solutions to optimize performance while respecting
the thermal envelope. Such proposals might include more uniform power den-
sity distribution through the chip, but also thermally-guided dynamic activity
migration.

Challenge 1.4: Design Automation for Special-Purpose Cores

Future embedded systems will take advantage of special-purpose hardware accel-
erators to speed up execution, and to dramatically reduce power consumption.
Such accelerators can be made available as independent IP blocks or can be cus-
tom designed. A major challenge in the custom design of special-purpose cores
is the fully automatic generation of the hardware and the software tools from a
single architecture description or an application.

Challenge 1.5: Transparent Micro-architecture

Modern execution environments such as just-in-time compilers, code morphers,
and virtualization systems rely on run-time information about the code being
executed. Most processors already provide a set of performance counters that are
used to steer the optimization or translation process. Given the raising popularity
of this type of applications, and in order to enable more advanced optimizations,
there will be a growing demand to provide more information about the dynamic
processor operation. An important issue is to come up with a standardized set
of performance counters in order to make the optimizations that use them more
portable.

10 K. De Bosschere et al.

Challenge 1.6: Software-Controlled Reconfiguration

Cores should provide a number of controls to the compiler to allow the latter
to better control the detailed operation of the processor (e.g. the ability to
power down particular components of the processor). The compiler has often
a better view on the behavior of a program than the core executing it (e.g. it
has information about the type of algorithm, the memory usage, the amount of
thread-level parallelism). By allowing the compiler to adapt or reconfigure the
core to the needs of the application, a better performance/Watt ratio can be
obtained.

Challenge 1.7: Reliability and Fault Tolerance

Electronic circuit reliability is decreasing as CMOS technology scales to smaller
feature sizes. Single event upsets will soon become a common phenomenon in-
stead of being extremely rare. Furthermore, permanent faults can occur due to
device fatigue and other reasons. Functionality must be added to the cores that
allow them to operate in the presence of transient and permanent faults perhaps
with degraded performance.

Challenge 1.8: Security

By putting multiple cores on one chip, security is getting increasingly important
for single cores. Hardware protection mechanisms are needed to help the soft-
ware staying secure and to prevent against on-chip attacks like denial-of-service
attacks against cores, the exploitation of hidden channels leaking information
between cores, etc.

Challenge 1.9: Virtualization

Virtualization is a technology that will gain importance. Hardware support is
needed to keep the virtualization layer slim, fast and secure. For some types of
applications, strong performance isolation guarantees will be required between
multiple containers.

2 Multi-core Architecture

A multi-core architecture is a MIMD (multiple-instruction multiple-data) mul-
tiprocessor using the terminology that has been prevailing for many decades. In
the last decade, chip multiprocessing (mostly heterogeneous, up to 6-8 cores) has
been commonly used in embedded SOCs, thus anticipating some of the trends
that have since then been adopted also by mainstream general-purpose proces-
sors. However, the ad-hoc programmability of such embedded system has been
far from satisfactory, and we now have enough transistors to integrate even more
complex cores on a single chip. Envisioning a multi-core microprocessor with 256

High-Performance Embedded Architecture and Compilation Roadmap 11

cores by 2015, several opportunities and system challenges arise at the architec-
ture level. Multi-core challenges are identified at the hardware and the software
level. Hardware challenges are discussed in this section, the software challenges
in the sections on programming models and compilation.

Challenge 2.1: Hardware Support for Parallel Programming

When moving on the multi-core roadmap, at some point traditional software-
based synchronization methods will no longer be feasible and new (hardware-
based) methods will have to be introduced. Transactional memory is one candi-
date, but it is probably just the initial approach. In fact, the hardware/software
interface, i.e., the instruction-set architecture has more or less stayed unal-
tered for several decades. An important challenge is to understand which hard-
ware/software abstraction can enhance the productivity of parallel software de-
velopment and then find suitable implementation approaches to realize it. In
fact, the abundance of transistors available in the next decade can find good use
in realizing enhanced abstractions for programmers.

Challenge 2.2: On-Chip Interconnects and Memory Subsystem

The critical infrastructure to host a large core count (say 100-1000 cores in ten
years from now) consists of the on-chip memory subsystem and network-on-chip
(NoC) technologies. Scaling these subsystems in a resource-efficient manner to
accommodate the foreseen core count is a major challenge. According to ITRS,
the off-chip bandwidth is expected to increase linearly rather than exponen-
tially. As a result, a high on-chip cache performance is crucial to cut down on
bandwidth. However, we have seen a diminishing return of investments in the
real-estate devoted to caches, so clearly cache hierarchies are in need of innova-
tion to make better use of the resources.

Challenge 2.3: Cache Coherence Schemes

At the scale of cores that is foreseeable within the next decade, it seems reason-
able to support a shared memory model. On the other hand, a shared memory
model requires efficient support for cache coherence. A great deal of attention
was devoted to scalable cache coherence protocols in the late 80s and the begin-
ning of the 90s and enabled industrial offerings of shared memory multiprocessors
with a processor count of several hundred, e.g., SGI Origin 2000. More recently,
the latency/bandwidth trade-off between broadcast-based (snooping) and point-
to-point based (directory) cache coherency protocols has been studied in detail.
However, now that we can soon host a system with hundreds of cores on a chip,
technological parameters and constraints will be quite different. For example,
cache-to-cache miss latencies are relatively shorter and the bandwidth on-chip is
much larger than for the “off-chip” systems of the 90s. On the other hand, design
decisions are severely constrained by power consumption. All these differences
make it important to revisit the design of scalable cache coherence protocols for
the multi-cores in this new context.

12 K. De Bosschere et al.

Challenge 2.4: Hardware Support for Heterogeneity

Multiple heterogeneous cores have their own design complexity issues, as special-
purpose cores have significant impact on the memory hierarchy of the system,
and require specially designed communication protocols for fast data exchange
among them. A major challenge is the design of a suitable high-performance and
flexible communication interface between less traditional computing cores (e.g.
FPGAs) and the rest of the multi-core system.

Challenge 2.5: Hardware Support for Debugging

Debugging a multi-core multi-ISA application is a complex task. The debugger
needs to be both powerful and must cause very low overhead to avoid timing
violations and so-called Heisenbugs. This is currently a big problem for existing
debuggers, since providing a global view of a multi-core machine is virtually
impossible without specialized hardware support. Much more so than a classic
single-core device, multi-core chips have to be designed to support debugging
tools. The proper hardware support is needed to non-intrusively observe an
execution, to produce synchronized traces of execution from multiple cores, to
get debug data into and out of the chip.

3 Interconnection Networks

Bus-based interconnects, like PCI or AMBA have been the dominant method for
interconnecting components. They feature low cost (simple wires), convenience
in adding nodes, and some reliability advantages (no active elements other than
end-nodes). However, they do not scale to high performance or to high number
of nodes as they are limited by higher parasitic capacitance (multiple devices
attached to the wires), arbitration delay (who will transmit next), turn-around
overhead (idle time when the transmitting node changes, due to the bidirec-
tionality of the medium), and lack of parallelism (only one transmission at a
time).

Point-to-point links do not suffer from arbitration delays or turn-around over-
heads. For external connections, high-speed serial link technology has advanced
and offers single link performance at the level of 6.25 GBaud in the immediate
future, making it the preferred solution to support high throughput applications.
Similarly, on-chip networks can use transmission lines and compensation or re-
timing techniques to minimize timing skew between long parallel wires, enabling
the use of wide paths. To further increase aggregate system throughput, multiple
links interconnected via switches offer parallelism, and hence even higher perfor-
mance. The switch is becoming the basic building block for wired interconnec-
tions, much like the microprocessor is for processing and the RAM is for memory.
Finally, embedded system components are slowly turning to packet-based trans-
fers, aiding in this way the convergence to switched-based interconnects. Lately
memory chips such as FBDIMM have appeared and directly support packet-style
transfers.

High-Performance Embedded Architecture and Compilation Roadmap 13

Future on-chip interconnects will connect hundreds of nodes (processors,
memories, etc) reaching the realm of today’s off-chip networks. To build these
networks we can use today’s ideas and techniques, adapting them to the re-
quirements and technologies of future embedded systems. The new applications,
requirements, level of integration and implementation technologies will also open
new possibilities for innovation and fresh ideas. In this context, the challenges
for the near future are the following:

Challenge 3.1: Interconnect Performance and Interfaces

Increasing levels of functionality and integration are pushing the size and the
performance requirements of future embedded systems to unprecedented levels.
Networks-on-chips will need to provide the necessary throughput at the low-
est possible latency. Besides implementation technology innovations, important
research areas include the long-standing, deep and difficult problems of intercon-
nection network architecture: lossless flow control and congestion management.
Recent research results in these areas have shown good progress: regional ex-
plicit congestion notification (RECN), and hierarchical request-grant-credit flow
control. New research directions are opening to fully exploit the implementation
technologies, for example techniques to exploit the different characteristics of
multiple metal layers to provide links with shorter latencies.

Network interface design and its related buffering issues are also important
for the system-level performance and cost. The simple bus interfaces of the past
are rapidly evolving to full-fledged, tightly coupled network interfaces. To im-
prove end-to-end application throughput, we need both a new breed of simplified
protocol stacks, and analogously architected network interfaces. The solutions
may include key research findings from the parallel computing community: user-
level protected communication protocols, network interface virtualization, and
communication primitives for remote DMA and remote queues.

Challenge 3.2: Interconnect Power Consumption and Management

Meeting the required interconnect performance at the lowest power consumption
is becoming increasingly important as the technology moves into the nanometer
scale. Power consumption is affected by many interconnect design parameters
such as implementation technology, link driver design, network topology, conges-
tion and buffer management. For example, power consumption for off-chip net-
works is dominated by chip crossings, suggesting higher-radix switches for lower
power consumption. In addition, power management functionality will extend
from the processing nodes to the system level, creating a need for NoC power-
management features and protocols. These features will enable performance for
power dissipation trade-offs according to system-level processing requirements.
Such features can also be used for thermal management that is also becoming
important in sub-micron technologies.

14 K. De Bosschere et al.

Challenge 3.3: Quality of Service

Embedded systems are often real-time systems, and in these cases, the intercon-
nection network has to provide guarantees in communication parameters such
as bandwidth and latency. Predicable interconnect behaviour is cornerstone to
providing these guarantees, and Quality of Service (QoS) differentiation can be
the vehicle towards this goal. The requirements can vary greatly from best effort,
soft- and hard-real time applications, and the entire range should be supported
in the most uniform and transparent way to aid component reuse. Effectiveness
in providing these guarantees (for example the size of buffers that hold low pri-
ority traffic) is also an important issue as it directly influences the interconnect
cost. A similar need for QoS is created by resource virtualization, where a single
system (even a single processor) is viewed as a set of virtual entities that operate
independently and must have a fair access to the network resources. This can be
achieved either through a physical partitioning of the network, or by virtualizing
the network itself using the traditional QoS mechanisms.

Challenge 3.4: Reliability and Fault Tolerance

Single event upsets will introduce uncertainties even in fully controlled environ-
ments such as on-chip networks. While traditional networking solutions exist for
dealing with transmission errors, they often come at a significant implementa-
tion cost. Efficient protocols that expose part of the necessary buffering to the
application and possibly to the compiler in order to jointly manage the required
space can offer an efficient solution to this problem. To deal with permanent
faults techniques such as automatic path migration and network reconfiguration
can be used. However, errors can affect not only the data links and switches, but
also the network interface logic which needs to be designed to tolerate this type
of upsets.

Challenge 3.5: Interconnect Design Space Exploration

To explore the large interconnect design space, and to create efficient intercon-
nect topologies, while at the same time providing support and guarantees for
Quality-of-Service requirements is a complex, time-consuming and error-prone
process. Many individual aspects of this process can however be automated and
provide feedback to the designer. However, there is a lack of integrated tool-
chains that will operate from the requirement level allowing early design-space
exploration, all the way to the implementation dealing with all the intermediate
parameters. Such tool-chains will improve productivity and allow for faster and
smaller designs and faster system verification.

Challenge 3.6: Protection and Security

Embedded systems traditionally have been “flat” systems with direct control of
all resources aminimal – if any – protection domains. The increase in the number

High-Performance Embedded Architecture and Compilation Roadmap 15

of nodes, the need for programmability and extensibility, and the ever-increasing
complexity are creating the need for support of protected operation. This func-
tionality can be implemented in the network interfaces but is an integral part
of and has to be designed in coordination with the overall system-level protec-
tion architecture. The system also needs modularity to support virtualization
features. At the next level is the interconnection of systems and devices, where
there is a need for secure communications.

4 Programming Models and Tools

Exploiting the parallelism offered by a multi-core architecture requires powerful
new programming models. The programming model has to allow the program-
mer to express parallelism, data access, and synchronization. Parallelism can be
expressed as parallel constructs and/or tasks that should be executed on each of
the processing elements. The data access and the synchronization models can be
distributed – through message passing – or can be shared – using global memory.

As a result, the programming model has to deal with all those different fea-
tures, allowing the programmer to use such a wide range of multiprocessors, and
their functionality. At the same time, the programming model has to be simple
for the programmers, because a large majority of them will now be confronted
with parallel programming. Therefore, to a certain extent, the simplicity of par-
allel programming approaches is becoming as important as the performance they
yield. For the programming of reconfigurable hardware, a combination of pro-
cedural (time) and structural (space) programming views should be considered.
Debuggers, instrumentation, and performance analysis tools have to be updated
accordingly to support the new features supported by the programming model.
This is important to reduce the time to market of both run-time systems, and
applications developed on multi-core processors.

Challenge 4.1: Passing More Semantics

A first challenge is how to get the correct combination of programming constructs
for expressing parallelism. Most probably, they will be taken from different pro-
gramming paradigms. OpenMP 3.0 will incorporate the task concept, and with
it, it will be easy to program in a pthreads-like way without the burden of having
to manually outline the code executed in parallel with other tasks. Incremen-
tal parallelization will be also possible, as OpenMP already allows it. Along
with this, new approaches at the higher level will include techniques from the
productivity programming models area: The definition of ”places” (X10), ”re-
gions” (Fortress), ”locales” (Chapel) or addressable domains from the language
perspective, allowing to distribute the computation across a set of machines in
clustered environments; Futures (X10, Cilk), allowing the execution of function
calls in parallel with the code calling the function.

16 K. De Bosschere et al.

Challenge 4.2: Transparent Data Access

A second challenge is to build a programming model that allows the programmer
to transparently work with shared and distributed memory at the same time.
Current attempts, like Co-Array Fortran, UPC, X10, Fortress, Chapel..., still
reflect in the language the fact that there are such different and separate ad-
dressable domains. This interferes with data access and synchronization, because
depending on where the computation is performed, different ways to access data
and synchronization must be used. As hardware accelerators can also be seen
as different execution domains with local memory, it is interesting to note that
solving this challenge will also provide transparent support to run on accelerators
(see also Challenge 5.4).

Challenge 4.3: Adaptive Data Structures

An observation is that at the low level all code is structured as procedures: (i)
programmers break the different functionality they put in the application as
subroutines or functions; (ii) parallelizing compilers outline as a subroutine the
code to be executed in parallel; (iii) even accelerators can be used through a
well-defined procedure interface, hiding the details of data transfer and synchro-
nization; and (iv) most hardware vendors already provide libraries with opti-
mized primitives in the form of procedures. But there is no such mechanism for
data structures. A mechanism is needed to allow the compiler and the run-time
system to tune – optimize – data structures, adapting them to the execution
conditions. In such a way that a data structure can be automatically distributed
in a cluster or accessed by a set of accelerators, while all data transfer involved is
managed by the run-time system. Knowing the restrictions on the arguments of
the procedures (atomicity, asynchrony ...) will also be needed to ensure correct
data transfers and manipulation.

Challenge 4.4: Advanced Development Environments

An easy to program multi-core system requires sophisticated support for thread-
ing management, synchronization, memory allocation and access. When different
threads run different ISA’s, a single debugging session must show all types of
machine instructions, and the information related to variables and functions,
and must be able to automatically detect non-local bugs like race conditions,
dangling pointers, memory leaks, etc. Debugging a multi-core system running
hundreds of threads is a major unsolved challenge, which will require hardware
support in order to be effectively solved.

Challenge 4.5: Instrumentation and Performance Analysis

Tools obtaining run-time information from the execution are essential for perfor-
mance debugging, and to steer dynamic code translation (Just-in-Time compila-
tion, code morphing,. . .). Hardware designs must take observability into consid-
eration. The amount of information that can possibly be generated by a multi-
core system is however overwhelming. The challenge is to find techniques to

High-Performance Embedded Architecture and Compilation Roadmap 17

efficiently analyze the data (e.g. searching for periods or phases), to significantly
reduce the amount of data, and to find effective ways to conveniently represent
the data generated by hundreds of threads.

5 Compilation

Modern hardware needs a sophisticated compiler to generate highly optimized
code. This increasing rate of architectural change has placed enormous stress on
compiler technology such that current compiler technology can no longer keep
up with architectural change. The key point is that traditional approaches to
compiler optimizations are based on hardwired static analysis and transforma-
tion which can no longer be used in a computing environment that is continually
changing. What is required is an approach which evolves and adapts to appli-
cations and architectural change along the multi-core roadmap and takes into
account the various program specifications: from MATLAB programs to old al-
ready parallelized code. For future multi-core based high-performance embedded
systems, the following challenges are identified.

Challenge 5.1: Automatic Parallelization

Automatic parallelization has been quite successful in the past for scientific pro-
grams, array-based programming languages (FORTRAN), and for homogeneous
shared memory architectures. This work has to be extended to a much wider
set of application types, to pointer-based programming languages, and to a wide
variety of potentially heterogeneous multi-core processors with different mem-
ory models. This requires the development of new static analysis techniques to
analyze pointer-based programs (maybe already parallelized) and manage the
mapping of memory accesses to systems without explicit hardware-based shared
memory. By providing hints or assertions, the programmer might be able to
considerably improve the parallelization process.

It will incorporate speculative parallelization to extract greater levels of
parallelism. Furthermore by adding certain architectural features, the compiler
could communicate its assumptions at run-time and enable the violations to be
detected by the hardware, causing more optimal overall program execution. Ex-
amples of these techniques include speculative load instructions, and speculative
multithreading. These ideas enable the compiler to make better optimization
choices without over-burdening the hardware with complexity. Finally, specula-
tive parallelization can be combined with dynamic optimization such that as the
program evolves in time, the (just-in-time) compiler can learn about the relative
success of speculation and dynamically recompile the code accordingly.

Challenge 5.2: Automatic Compiler Adaptation

Tuning the optimization heuristics for new processor architectures is a time-
consuming process, which can be automated by machine learning. The machine

18 K. De Bosschere et al.

learning based optimizer will try many different transformations and optimiza-
tions on a set of benchmarks recording their performance and behavior. From
this data set it will build an optimizing model based on the real processor per-
formance.

This approach can also be used for long running iterative optimization where
we want to tune important libraries and embedded applications for a particular
configuration. Alternatively, it can be used by dynamic just-in-time compilers
to modify their compilation policy based on feedback information. In addition,
if we wish to optimize for space, power and size simultaneously we just alter the
objective function of the model to be learned and this happens automatically.

Challenge 5.3: Architecture/Compilation Cooperation

The role compilation will have in optimization will be defined by the archi-
tectural parameters available to it. Longer term work will require strong com-
piler/architecture co-design opening up the architecture infrastructure to com-
piler manipulation or conversely passing run-time information to the architecture
to allow it to best use resources.

This is part of a larger trend where the distinction between decisions cur-
rently made separately in the compiler and in the hardware is blurred. If the
compiler has exact knowledge of behavior within an up-coming phase of a pro-
gram (a so-called scenario), then the hardware should be appropriately directed.
If, however, analysis fails, then the hardware should employ an appropriate gen-
eral mechanism possibly aided by hardware-based prediction. In between these
two extremes, the compiler can provide hints to the hardware and can modify
its behavior based on run-time analysis.

Challenge 5.4: Mapping Computations on Accelerators

Some approaches already offer access to accelerators through well defined inter-
faces, thus summarizing computation, data access and synchronization on a sin-
gle procedure call. This challenge seeks to enable the compiler to automatically
detect and map parts of the application code to such “accelerated” routines. This
may be easy for well-known procedures from the HPC environment, like FFT or
DGEMM, but there is no general solution yet for general application code. The
problem is especially challenging for less conventional computing nodes such as
FPGAs.

Challenge 5.5: Power-Aware Compilation

As the demand for power efficient devices grows, compilers will have to consider
energy consumption in the same way space and time are considered now. The
key challenge is to exploit compile-time knowledge about the program to use
only those resources necessary for the program to execute efficiently. The com-
piler is then responsible for generating code where special instructions direct the

High-Performance Embedded Architecture and Compilation Roadmap 19

architecture to work in the desired way. The primary area of interest of such
compiler analysis is in gating off unused parts or in dynamically resizing expen-
sive resources with the help of the run-time system. Another compiler technique
for reducing power is the generation of compressed or compacted binaries which
will stay important in the embedded domain.

Challenge 5.6: Just-in-Time Compilation

Given the popularity of programming languages that use just-in-time compila-
tion (Java and C# being very popular programming languages of the moment),
more research is needed in Just-in-Time compilation for heterogeneous multi-
core platforms. Since the compilation time is part of the execution time, the
optimization algorithms have to be both accurate and efficient. The challenge in
Just-in-Time compilation for heterogeneous multi-cores is not only to predict (i)
when to optimize, (ii) what to optimize and (iii) how to optimize, but also (i)
when to parallelize, (ii) what to parallelize, and (iii) how to parallelize. Appropri-
ate hardware performance counters or possibly additional run-time information
can help making these decisions.

Challenge 5.7: Full System Optimization

Given the component-based nature of modern software, the massive use of li-
braries, and the widespread use of separate compilation, run-time optimization,
and on-line profiling, no single tool has an overview of the complete application,
and many optimization opportunities are left unexploited (addresses, function
parameters, final layout,. . .). One of the challenges in full system optimization
is to bring the information provided at all these levels together in one tool, and
then to use this information to optimize the application. This will enable cross-
boundary optimization: between ISAs in a heterogeneous multi-core, between a
processor and reconfigurable hardware, between the application and the kernel.
An underlying technical challenge is often the design of scalable algorithms to
analyze and optimize a full system.

6 Run-Time Systems

The run-time system aims at controlling the environment of the embedded sys-
tem during system operation. It is concerned mainly with issues related to dy-
namic behavior that cannot be determined through static analysis (by the com-
piler). The run-time system consists of a collection of facilities, such as dynamic
memory allocation, thread management and synchronization, middleware, vir-
tual machines, garbage collection, dynamic optimization, just-in-time compila-
tion and execution resources management.

The current trend in embedded systems is to customize automatically or by
hand the operating systems developed for general-purpose platforms. There is a
large opportunity for improving operating system and run-time performance via

20 K. De Bosschere et al.

hardware support for certain features and functions (e.g., fault management and
resource monitoring). Operating system and runtime research should be more
closely coupled to hardware research in the future in order to integrate multi-
core heterogeneous systems (medium term challenges) and to seamlessly support
dynamic reconfiguration and interoperability (long term challenges).

Challenge 6.1: Execution Environments for Heterogeneous Systems

Runtimes and operating systems have to be aware that the architecture is a
heterogeneous multi-core. Currently, most specific accelerators are considered as
devices or slave coprocessors. They need to be treated as first class objects at all
levels of management and scheduling. The scheduler will map fine grain tasks to
the appropriate computing element, being processors with different ISA or even
specific logic engines. Memory will be distributed across the chip, so the run-
time needs to graciously handle new local storages and sparse physical address
spaces. Support for code morphing should be integrated. Hardware and software
will be co-designed, and compilers should generate multiple binary versions for
the software to run on and control the multiple cores.

Challenge 6.2: Power Aware Run-Time Systems

Allocation of resources should take energy efficiency into account, for example
the fair allocation of battery resources rather than just CPU time. Operating
system functionalities and policies should consider: disk scheduling (spin down
policies), security (adaptive cryptographic policy), CPU scheduling (voltage scal-
ing, idle power modes, moving less critical tasks to less power-hungry cores), ap-
plication/OS interaction for power management, memory allocation (placement,
switch energy modes), resource protection/allocation (fair distribution, critical
resources) and communication (adaptive network polling, routing, and servers).

Challenge 6.3: Adaptable Run-Time Systems

The run-time systems should (semi-)automatically adapt to different hetero-
geneous multi-cores based on the requirements of the applications, available
resources, and scheduling management policies. However, static application-
specific tailoring of operating systems is not sufficient. An adaptable operat-
ing system is still tailored down for specific requirements, but can be recon-
figured dynamically if the set of required features changes. We will need new
run-time systems that leverage the OS modularity and configurability to im-
prove efficiency and scalability, and provide support to new programming models
or compilers that exploit phase and versioning systems. Reliability, availability
and serviceability (RAS) management systems have to work cooperatively with
the OS/Runtime to identify and resolve these issues. Advanced monitoring and
adaptation can improve application performance and predictability.

High-Performance Embedded Architecture and Compilation Roadmap 21

Challenge 6.4: Run-Time Support for Reconfiguration

Run-time support for reconfigurable (RC) applications is hampered by the fact
that the execution model of dynamically reconfigurable devices is a paradigm
currently not supported by existing run-time systems. Research challenges in-
clude reconfigurable resource management that deals with problems such as re-
configuration time scheduling, reconfigurable area management and so on. The
need for real-time, light-weight operating systems support on RC platforms is
also emerging. The problem of multi-tasking in dynamically reconfigurable RC
context is largely unsolved. Transparent hardware/software boundaries are en-
visioned: a task can be dynamically scheduled in hardware or in software by
the run-time system, while the rest of the system does not need to be aware of
such activities. This challenge is about target-architecture and technology de-
pendent automated run-time system customization needed to allow fine-tuning
of RC-aware run-time systems.

Challenge 6.5: Fault Tolerance

Providing new levels of fault tolerance and security in an increasingly net-
worked embedded world by taking advantage of large degrees of replication and
by designing fence mechanisms in the system itself (as opposed at the appli-
cation level). Moreover, besides providing novel techniques that will increase
system reliability and security, research should consider methods for allowing
users/programmers to specify their intentions in this domain. Self-diagnosis
mechanisms should detect and repair defective components while maintaining
the system operation.

Challenge 6.6: Seamless Interoperability

Due to the very nature of embedded applications (communication with the en-
vironment is a key part in embedded computation) many existent embedded
devices are somehow (wired or wireless) connected. Mobility suggests support
for wireless connectivity, and in the future the majority of the embedded systems
platform will have a connection either with other similar devices through small
area networks or with bigger infrastructures via the Internet or other private
networks. Future embedded systems devices will gain enhanced new capabili-
ties using the networks: they will be able to upgrade themselves (automatically
or semi-automatically), maintain consistency with other devices (PCs, laptops),
and perform backups and other useful administrative tasks. At least a dozen
wireless networks along with their protocols and interfaces are available and
cover the wide range from personal- and small-area to medium and long dis-
tance networks, offering different trade-offs in features, throughput, latency and
power consumption. The challenge towards this goal is the seamless functional
integration of vastly different communication media and methods, and the au-
tomatic adaptation to network performance both at the level of interconnect
management as well as the application behaviour.

22 K. De Bosschere et al.

7 Benchmarking

The design of high-performance processor architecture is a matter of trade-
offs, where a sea of design options is available, all of them having some per-
formance/power/area impact. In order to reliably compare two design points,
we must use realistic applications. Such is the role of a benchmark suite, which
is a set of representative applications.

First of all, it is getting increasingly difficult to find useful benchmarks: re-
alistic applications are generally carefully protected by companies. Even inside
companies, strict Intellectual Property (IP) barriers isolate the application de-
velopment groups from the hardware development groups, who only get a vague
description of the real application needs. And then again, another set of IP bar-
riers isolate the hardware development groups from the research groups, who
only get access to distorted versions of the applications, or synthetic kernels. In
the absence of real applications, academia generally relies on micro-benchmarks
(kernels), synthetic applications or the widely spread SPEC benchmark suite.
However, they only model particular aspects of an application.

Secondly, different application domains have different computing require-
ments, and hence need their own benchmarks. There are already a number of
benchmark suites representing different application domains: SPEC for CPU
performance, Mediabench for multimedia, TPC-H, TPC-C for databases, etc.
The EEMBC embedded benchmark is already composed of different suites. As
new application domains emerge, new benchmarks will have to be added. Be-
sides the application domain, the software implementation technology is also
changing rapidly. Virtualization is gaining popularity, and an increasing number
of applications are being deployed for managed execution environments like the
Java virtual machine or .NET. Currently, there are very few good benchmarks
in this area.

Finally, the hardware is also evolving. Old benchmarks are not suited any-
more to evaluate hardware extensions like MMX, SSE, Altivec, or 3DNow and
hardware accelerators in general (including FPGAs). Since these hardware ac-
celerators are getting increasingly common in heterogeneous multi-cores, there is
a huge need for realistic benchmarks that can exploit these (parallel) hardware
resources.

In the benchmarking domain, there are three major challenges:

Challenge 7.1: Multi-core Benchmarks

Multi-cores (and especially heterogeneous multi-cores) are less standardized than
general-purpose processors. They can contain several special-purpose hardware
accelerators, and even reconfigurable components. Benchmarking such architec-
tures against one another is very difficult because there are almost no bench-
marks available that fully exploit the resources of such a platform (comput-
ing cores, but also the interconnections and memory hierarchy). This challenge
aims at creating a set of representative benchmark applications for this type of
processing architectures.

High-Performance Embedded Architecture and Compilation Roadmap 23

Challenge 7.2: Synthetic Benchmarks

Creating a good benchmark is a tough job. First one has to get full access to a re-
alistic, IP-free, relevant and representative application, and then this application
has to be adapted in order to make it platform independent. This challenge aims
at transforming an existing application into an IP-free and platform independent
synthetic benchmark with a given execution time. Such a methodology would
significantly facilitate the exchange of code between (departments of) compa-
nies, or between companies and academia. The fact that the execution time of
the synthetic benchmark can be chosen, will have a dramatic effect on simu-
lation time. One particularly challenging task is to come up with a synthetic
benchmark that models the behavior of an application that runs in a virtual
machine.

Challenge 7.3: Benchmark Characterization

Traditionally, benchmarks are divided in application domains: floating-point (sci-
entific) applications, CPU-intensive applications, media processing, digital sig-
nal processing kernels. Recently, some application domains have been added:
bio-informatics, gaming, software-defined radio,. . . There is no solid methodol-
ogy to characterize all these different types of benchmarks in such a way that
the characterization could be used to steer the selection of benchmarks or even-
tually prune the system design space. More research is needed to come up with
(mathematical) models describing benchmark behavior – including benchmarks
that run in a virtual machine.

8 Simulation and System Modelling

Simulation technology and methodology is at the crux of computer architecture
research and development. Given the steadily increasing complexity of modern
computer systems, simulation has become the de facto standard for making
accurate design trade-offs efficiently.

Simulation technology and methodology need to meet high standards. Com-
puter architects want simulation software to be fast, accurate, modular, ex-
tensible, etc. We expect these requirements to simulation software to expand
drastically in the multi-core era. We observe at least five major challenges for
the near future.

Challenge 8.1: Simulator Building

Being able to quickly build simulators by reusing previously built modules is a
first key challenge for future simulation technology. Too often until now, com-
puter architects have been building monolithic simulators which are hard to reuse
across projects. Modular simulators on the other hand, which provide an intu-
itive mapping of hardware blocks to software modules, enable the easy exchange
of architecture components.

24 K. De Bosschere et al.

Challenge 8.2: Simulation Modeling Capabilities

A related issue is that simulation software should be extensible in the sense
that novel capabilities of interest that crosscut the entire simulator should be
easy to add in a plug-and-play fashion. Example capabilities are architectural
power/energy modeling, temperature modeling, reliability modeling, etc. In ad-
dition, the modeling itself needs further research.

Challenge 8.3: Simulation Speed

Simulation speed is a critical concern to simulation technology. Simulating one
second of real hardware execution takes around one day of simulation time, even
on today’s fastest simulators and machines. And this is to simulate a single
core. With the advent of multi-core systems, the simulation time is expected
to increase more than proportional with the number of cores in a multi-core
system. Exploring large design spaces with slow simulation technology obviously
is infeasible. As such, we need to develop simulation technology that is capable
of coping with the increased complexity of future computer systems.

There are a number of potential avenues that could be walked for improving
simulation speed. One avenue is to consider modeling techniques, such as ana-
lytical modeling and transaction-level modeling, which operate at a higher level
of abstraction than the cycle-by-cycle models in use today. A second avenue is
to study techniques that strive at shortening the number of instructions that
need to be simulated. Example techniques are sampled simulation and statisti-
cal simulation; these techniques are well understood in the uniprocessor domain
but need non-trivial extensions to be useful in the multiprocessor domain. A
third avenue is to parallelize the simulation engine. This could be achieved by
parallelizing the simulation software to run on parallel (multi-core) hardware,
or by embracing hardware acceleration approaches using for example FPGAs
for offloading (parts of) the simulation. A fourth avenue consists in building
slightly less accurate but very fast architecture models using machine-learning
techniques such as neural networks.

Challenge 8.4: Design Space Exploration

The previous challenge concerned the simulation speed in a single design point.
However, computer architects, both researchers and developers, need to cull
large design spaces in order to identify a region of interesting design points. This
requires running multiple simulations. Although this process is embarrassingly
parallel, the multi-billion design points in any realistic design space obviously
make exhaustive searching infeasible. As such, efficient design space exploration
techniques are required. The expertise from other domains such as operational
research, data mining and machine learning could be promising avenues in the
search for efficient but accurate design space exploration.

High-Performance Embedded Architecture and Compilation Roadmap 25

Challenge 8.5: Simulator Validation

As alluded to before, designing a computer system involves modeling the system-
under-design at different modeling abstractions. The idea is to make high-level
design decisions using high-level abstraction models that are subsequently refined
using low-level abstraction models. The key point however is to validate the
various abstraction models throughout the design cycle to make sure high-level
design decisions are valid decisions as more details become available throughout
the design process. Since this already is an issue for a uniprocessor design flow,
it is likely to increase for multi-core designs where high-level abstraction models
will be used to cope with the simulation speed problem.

9 Reconfigurable Computing

Reconfigurable computing (RC) is becoming an exciting approach for embed-
ded systems in general, and for application-specific designs in particular. The
main advantage of such systems is that they can adapt to static and dynamic
application requirements better than those with fixed hardware. Furthermore,
the power/performance ratio for reconfigurable hardware is at least an order
of magnitude better than that of general-purpose processors. However, for RC
technology to be deployed on a large scale, a number of (but not limited to)
important gaps in theory and in practice have to be bridged.

Challenge 9.1: Application Domain Extension

Currently, RC technology has much success for selected applications in network-
ing, communications, and in defense where cost is not a limiting factor. One
future challenge here is to combine high-performance with high reliability, dura-
bility and robustness, by exploiting the properties inherent to RC devices. Future
research on RC is expected to enable new application domains: medical and au-
tomotive (reliability and safety), office applications (scientific, engineering and
media processing), and high-end consumer electronics (trade-offs in speed/size/
power/cost/development time). A set of relevant (realistic) benchmarks is needed
for analysis and comparison investigations.

Challenge 9.2: Improved Run-Time Reconfiguration

Techniques for supporting fast and reliable reconfiguration, including those for
dynamic and partial run-time reconfiguration are rapidly gaining importance.
Novel configuration memories that overcome soft errors are desirable; they can
be used to support technologies for rapid reconfiguration, such as multi-context
organization. These would be useful for designs that make use of reconfiguration
to adapt to environmental changes, and for evolutionary computing applications.

26 K. De Bosschere et al.

Challenge 9.3: Interfacing

Techniques to enable components on an RC device to be efficiently interfaced to
each other and to external devices are required. Within the RC device, improved
communication bandwidth between processors, memories and peripherals will
tend to reduce power and energy consumption. Dynamically adaptable network-
on-chip technologies and main memory interfaces, such as packet-based routing,
flux networks and memory controllers on demand will become relevant.

Challenge 9.4: Granularity

Efficient support for special-purpose units is important. Commercial FPGAs are
becoming more heterogeneous, since common functional blocks such as arith-
metic units or a complete DSP are hardwired to reduce area, speed and power
consumption overheads associated with reconfigurability; it is useful to develop
theory and practice to enable optimal inclusion of such special-purpose hard-
wired units in a reconfigurable fabric for given applications, to get the best
trade-offs in adaptability and performance.

Understanding the pros and cons of the granularity of the reconfigurable
fabric is also of particular interest. Fine-grained architectures are more flexible,
but less efficient than coarse-grained architectures which have fewer reconfig-
urable interconnects. The challenge is to determine, for a given application, the
optimal RC fabric granularity or the optimal combination of RC fabrics with dif-
ferent granularities. This is related to RC technologies for special-purpose units
described earlier, since an array of special-purpose units with limited program-
mability can be seen as a coarse-grained RC array.

Challenge 9.5: Efficient Softcores

Support for efficient hardwired and softcore instruction processors, and deter-
mining, for a given application, the optimal number for each type and how they
can be combined optimally will become important. One direction is to investigate
facilities for instruction extension, exploiting customizability of RC technology
to produce Application Specific Instruction Processors (ASIP). Multiple instruc-
tions in an inner loop can, for instance, be replaced by fewer custom instructions
to reduce overhead in fetching and decoding. Another direction is to explore how
processor architectures can be customized at design time and at run time, so that
unused resources can be reconfigured, for instance, to speed up given tasks. Rel-
evant topics include caching of multiple configurations, dedicated configuration
memory controllers, and dedicated memory organizations.

Challenge 9.6: RC Design Methods and Tools

RC design methods and tools, including run-time support, are key to improv-
ing designer productivity and design quality; they are responsible for mapping

High-Performance Embedded Architecture and Compilation Roadmap 27

applications, usually captured in high-level descriptions, into efficient implemen-
tations involving RC technology and architectures.

Design methods and tools can be classified as either synthesis or analysis
tools. The synthesis tools are required to map high-level descriptions into im-
plementations with the best trade-offs in speed, size, power consumption, pro-
grammability, upgradeability, reliability, cost, and development time. Their sat-
isfactory operation relies on extending current synthesis algorithms to take, for
instance, dynamic reconfigurability into account. They need to integrate with
analysis tools, which characterize a design at multiple levels of abstraction, and
to support verification of functionality and other properties such as timing and
testability.

Even for a given application targeting specific RC systems, there is currently
no coherent tool- chain that covers all the main synthesis and analysis steps,
including domain-specific design capture, performance profiling, design space
exploration, multi-chip partitioning, hardware/software partitioning, multi-level
algorithmic, architectural and data representation optimization, static and dy-
namic reconfiguration mapping, optimal instruction set generation, technology
mapping, floor planning, placement and routing, functional simulation, timing
and power consumption analysis, and hardware prototyping.

10 Real-Time Systems

The computing requirements of real-time systems are increasing rapidly: video-
coding and decoding in tv-sets, set-top boxes, DVD recorders, compute-intensive
energy saving and safety algorithms in automotive, railway, and avionic applica-
tions. Processors in most current real-time systems are characterized by a simple
architecture, encompassing short pipelines and in-order execution. These types
of pipelines ease the computation of the worst-case execution time (WCET).
Due to the use of hard-to-predict components (caches, branch predictors,. . .) or
due to resource sharing in multi-core processors, the worst-case execution time
is either (i) hard to compute, or (ii) if computed, it is way beyond the real execu-
tion time (RET). Hence, on the one hand, multi-core processors will be needed
to meet the computing demand of future real-time systems, but on the other
hand they also pose serious challenges for real-time applications.

Challenge 10.1: Timing-Analyzable High-Performance Hardware
and Software

In soft real-time systems, the time constraints of applications are relaxed. Instead
of ensuring that every instance of a task meets its deadline, a guaranteed mean
performance is required. This allows more freedom in the processor design. A
matter of great concern is however the parallel execution of the tasks on general-
purpose hardware while ensuring the access to shared resources. Often, it is
realized by specific hardware but, more and more, we would like to rely on
“general-purpose” hardware to reduce costs. Thus, the aim of the research is to

28 K. De Bosschere et al.

define how, on a multithreaded processor, the hardware can observe the behavior
of the tasks in order to dynamically decide which resources (or which percentage
of resources) should be devoted to each task.

On the one hand, a high resource sharing (SMT) implies that chips are smaller
and that the performance per resource is higher. But also, a high resource sharing
causes a high interference between threads, which causes more variable execution
times. On the other hand, a reduced resource sharing (like CMPs) causes much
smaller execution time variability, but implies that many hardware resources are
duplicated, increasing area and cost of the chip. Hence there is a large space of
architectural solutions to explore like creating private processors for time-critical
processing, or providing hardware components that warn when deadlines are not
met or are getting too close.

Challenge 10.2: WCET Computation for Shared Resources

Research on hard real-time architectures is also needed because some applica-
tions (mainly in automotive, aeronautics and space) render current embedded
hardware solutions obsolete. Indeed, these applications will require much more
performance than today while preserving the need for a static WCET analysis to
determine and guarantee the maximum execution time of a task. Furthermore,
this maximum execution time should not be (too much) overestimated to be
useful. Thus, in addition to enhancing static analysis, there is a need for new
architectural features, some of them being managed by software, which increase
performance while favoring static analysis.

Challenge 10.3: Alternative Real-Time Modeling Methodologies

In absence of analyzable hardware, more sophisticated (probabilistic) models
need to be developed that can model the probability of not meeting the deadline.
This relaxed real-time demand only guarantees that no more than x% of all real
execution times will exceed a boundary called LET (longest execution time).
The LET (which can be determined through extensive simulation) should be
much closer to the RET than the WCET.

Conclusion

The paradigm shift to multi-core architectures is having a profound effect on
research challenges for the next decade. The exponential improvement of ap-
plication performance across computer generations will come to an end if we
do not succeed in adapting our applications to the parallel resources of the fu-
ture computer systems. This requires a massive effort to improve all aspects of
computing, as detailed in the 55 challenges in this HiPEAC Roadmap.

High-Performance Embedded Architecture and Compilation Roadmap 29

Acknowledgements. This work was funded by the 6th European Framework
Programme (FP6), under contract no. IST-004408 High-Performance Embedded
Architecture and Compilation (HiPEAC) Network of Excellence.

Compiling a roadmap and making it into a coherent document is not an easy
task and builds on the expertise of many. Therefore, the authors of this research
roadmap would like to thank the following people for their contributions to the
roadmap effort: (in alphabetical order) Angelos Bilas (FORTH, Greece), Doug
Burger (University of Texas at Austin, USA), Francisco Cazorla (UPC, Spain),
Albert Cohen (INRIA, France), Sorin Cotofana (TU Delft, The Netherlands),
Bruno De Bus (Ghent University, Belgium), José Duato (University of Valen-
cia, Spain), Lieven Eeckhout (Ghent University, Belgium), Jakob Engblom (Vir-
tutech), Paolo Faraboschi (HP), Piero Foglia (University of Pisa, Italy), Georgi
Gaydadjiev (Tu Delft, The Netherlands), Marisa Gil (UPC, Spain), Christoforos
Kachris (TU Delft, The Netherlands), Manolis Katevenis (FORTH, Greece),
Stefanos Kaxiras (University of Patras, Greece), Kathryn McKinley (University
of Texas at Austin, USA), Osman Unsal (BSC, Spain), Barbara Ryder (Rut-
gers University, USA), Guri Sohi (University of Wisconsin-Madison, USA), Theo
Ungerer (University of Augsburg, Germany), Mateo Valero (UPC, Spain), Hans
Vandierendonck (Ghent University, Belgium), David Whalley (Florida State Uni-
versity, USA), Sami Yehia (ARM), Ayal Zaks (IBM).

Scope
The new LNCS Transactions on HiPEAC aims at timely dissem-
ination of research contributions in computer architecture and
compilation methods for high-performance and embedded
computer systems.

Recognizing the convergence of embedded and general-pur-
pose computer systems, this LNCS Transactions publishes
original research on systems targeted at specific computing
tasks as well as systems with broad application bases.

The scope of this publication therefore covers all aspects of
computer architecture and code generation and compiler
optimization methods which are of interest to researchers and
practitioners designing future embedded systems.

Submission
The LNCS Transactions on HiPEAC has four calls per year,
on March 1, June 1, September 1 and December 1.

A manuscript that will only require minor revision will
be published at the HiPEAC Journal website
(http://www.HiPEAC.net/journal) within three months.

All articles will be published the following calendar year in a
printed volume and in Springer Verlag's digital library.

The review process is managed by an editorial board of lead-
ing experts in the areas covered by the journal.

Editor-in-Chief
Per Stenström, Chalmers University of Technology, Sweden

Editorial Board
Koen De Bosschere, Ghent University, Belgium
Michael O'Boyle, University of Edinburgh, UK
Jose Duato, UPV, Spain
Manolis Katevenis, FORTH, Greece
Antonio Prete, University of Pisa, Italy
André Seznec, IRISA, France
Olivier Temam, INRIA, France
Theo Ungerer, University of Augsburg, Germany
Mateo Valero, UPC, Spain
Stamatis Vassiliadis, TU Delft, The Netherlands

LNCS Transactions on High-Performance Embedded
Architectures and Compilers

HiPEAC Info is a quarterly newsletter published by the HiPEAC network of excellence.

Funded by the 6th European Framework Programme (FP6), under contract no. IST-004408.

Website : http://www.HiPEAC.net

Subscriptions: http://www.HiPEAC.net/newsletter

	40500005.pdf
	Single Core Architecture
	Complexity Reduction
	Power Management
	Thermal Management
	Design Automation for Special-Purpose Cores
	Transparent Micro-architecture
	Software-Controlled Reconfiguration
	Reliability and Fault Tolerance
	Security
	Virtualization

	Multi-core Architecture
	Hardware Support for Parallel Programming
	On-Chip Interconnects and Memory Subsystem
	Cache Coherence Schemes
	Hardware Support for Heterogeneity
	Hardware Support for Debugging

	Interconnection Networks
	Interconnect Performance and Interfaces
	Interconnect Power Consumption and Management
	Quality of Service
	Reliability and Fault Tolerance
	Interconnect Design Space Exploration
	Protection and Security

	Programming Models and Tools
	Passing More Semantics
	Transparent Data Access
	Adaptive Data Structures
	Advanced Development Environments
	Instrumentation and Performance Analysis

	Compilation
	Automatic Parallelization
	Automatic Compiler Adaptation
	Architecture/Compilation Cooperation
	Mapping Computations on Accelerators
	Power-Aware Compilation
	Just-in-Time Compilation
	Full System Optimization

	Run-Time Systems
	Execution Environments for Heterogeneous Systems
	Power Aware Run-Time Systems
	Adaptable Run-Time Systems
	Run-Time Support for Reconfiguration
	Fault Tolerance
	Seamless Interoperability

	Benchmarking
	Multi-core Benchmarks
	Synthetic Benchmarks
	Benchmark Characterization

	Simulation and System Modelling
	Simulator Building
	Simulation Modeling Capabilities
	Simulation Speed
	Design Space Exploration
	Simulator Validation

	Reconfigurable Computing
	Application Domain Extension
	Improved Run-Time Reconfiguration
	Interfacing
	Granularity
	Efficient Softcores
	RC Design Methods and Tools

	Real-Time Systems
	Timing-Analyzable High-Performance Hardware and Software
	WCET Computation for Shared Resources
	Alternative Real-Time Modeling Methodologies

