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ABSTRACT | Over the past ten years, as integrated circuits

became increasingly more complex and expensive, the indus-

try began to embrace new design and reuse methodologies

that are collectively referred to as system-on-chip (SoC) design.

In this paper, we focus on the reuse and integration issues

encountered in this paradigm shift. The reusable components,

called intellectual property (IP) blocks or cores, are typically

synthesizable register-transfer level (RTL) designs (often called

soft cores) or layout level designs (often called hard cores). The

concept of reuse can be carried out at the block, platform, or

chip levels, and involves making the IP sufficiently general,

configurable, or programmable, for use in a wide range of

applications. The IP integration issues include connecting the

computational units to the communication medium, which is

moving from ad hoc bus-based approaches toward structured

network-on-chip (NoC) architectures. Design-for-test method-

ologies are also described, along with verification issues that

must be addressed when integrating reusable components.
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property (IP) cores; network-on-chip (NoC); platform-based

design; programmable intellectual property (IP); system-on-

chip testing; system-on-chip verification; system-on-chip (SoC)

I . INTRODUCTION

The semiconductor industry has continued to make im-

pressive improvements in the achievable density of very

large-scale integrated (VLSI) circuits [1]. In order to keep

pace with the levels of integration available, design en-

gineers have developed new methodologies and techniques

to manage the increased complexity inherent in these large

chips. One such emerging methodology is system-on-chip
(SoC) design, wherein predesigned and preverified

blocksVoften called intellectual property (IP) blocks, IP

cores, or virtual componentsVare obtained from internal

sources, or third parties, and combined on a single chip.

These reusable IP cores [2] may include embedded pro-

cessors, memory blocks, interface blocks, analog blocks,

and components that handle application specific proces-

sing functions. Corresponding software components are
also provided in a reusable form and may include real-time

operating systems and kernels, library functions, and de-

vice drivers.

Large productivity gains can be achieved using this

SoC/IP approach. In fact, rather than implementing each

of these components separately, the role of the SoC de-

signer is to integrate them onto a chip to implement

complex functions in a relatively short amount of time.
The integration process involves connecting the IP blocks

to the communication network, implementing design-for-

test (DFT) techniques [3] and using methodologies to

verify and validate the overall system-level design. Even

larger productivity gains are possible if the system is

architected as a platform [4] in such as way that derivative

designs can be generated quickly. The purpose of this

paper is to address the reuse and integration issues in SoC
design today.

In the past, the concept of SoC simply implied higher

and higher levels of integration. That is, it was viewed as
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migrating a multichip system-on-board (SoB) to a single

chip containing digital logic, memory, analog/mixed-

signal, and RF blocks. The primary drivers for this direc-

tion were the reduction of power, smaller form factor, and

lower overall cost. It is important to recognize that inte-

grating more and more functionality on a chip has always
existed as a trend by virtue of Moore’s Law, which predicts

that the number of transistors on a chip will double every

18–24 months [5]. The challenge is to increase designer

productivity to keep pace with Moore’s Law. Therefore,

today’s notion of SoC is defined in terms of overall pro-

ductivity gains through reusable design and integration of

components. Fig. 1 illustrates the point by superimposing

the compound annual growth rate of transistors on a chip
(58%) with the productivity growth of the designer in

terms of transistors per month (21%) [1]. The increasing

separation between the two lines is referred to as the

productivity gap. In the associated table, we provide esti-

mates of the chip complexity (transistor counts) and

performance (frequency of operation) for four technology

nodes, assuming an application-specific integrated cir-

cuit (ASIC) design. The implementation of a chip at the
250-nm node with 50 million transistors provided major

challenges; it is significantly more complex at the 90-nm

node, where designs may contain up to 500 million

transistors.

In industry, the ultimate driver for any paradigm shift

is the overall cost of a design. Today, the cost of a 50 million

transistor chip can run between US$20–30 million [1],

consisting of the cost of engineering resources and the

rising tooling costs in the form of masks required for

manufacturing. Currently mask costs account for 10% of

the overall cost, but this can become much more

significant if there are multiple design Bspins[ that require

new mask sets. Other important factors driving the trend

toward SoC design are requirements for lower power and a
smaller form factor. These factors are a natural by-product

of the higher levels of integration, so we will not discuss

them further in this paper. However, it is well worth

noting that on-chip power reduction is currently an active

area of research [6] and will continue to be so in the

foreseeable future.

With the increasing adoption of SoC design over the

years, it has now become the driver for many other im-
provements in the integrated circuit (IC) industry. In fact,

SoC is now a driver for the development and use of

industry-wide standards. For example, standards for buses

[7], bus interfaces [8], IP exchange formats, documenta-

tion, IP protection and tracking [9], and test wrappers

[10], [11] have been developed and standardized. It has

also forced suppliers to improve the quality of reusable IP.

For many years, the quality of IP sold in the marketplace,
and the business and legal issues surrounding licensing,

have limited the growth of the third-party IP industry.

Today, there are improvements in the licensing process

and new targets for the overall IP quality levels to qualify

as BStar-IP[ [2]. Another side effect of SoC is that it has

enabled designers and developers to migrate up to the

system-level to address hardware/software codesign

issues, which have been dealt with separately up to this

Fig. 1. Productivity gap [1].
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point. It is now possible to treat these issues in a holistic

way, since components of the SoC can be viewed as com-

modity items.
An often-viewed competitor to SoC is the notion of

system-in-package (SiP) [12] whereby separate chips are

packaged together into a system with a very small form

factor using a common two-dimensional (2-D) or three-

dimensional (3-D) substrate. It is most suitable for the

integration of heterogeneous technologies where single-

chip integration is difficult or too expensive to pursue. In

reality, SoC, SiP, and SoB are not in direct competition
with one another, but rather provide different tradeoffs in

terms of cost (including differences in both development

costs and production or unit costs), power, testability,

time-to-market, and packaging. The key issue is to decide

which option provides the best solution for a given prod-

uct. Moreover, an SoC can be part of an SiP or SoB solution

if appropriate from cost, system performance, and time-to-

market perspectives. Fig. 2 illustrates first-order tradeoffs
of the three options in terms of turnaround time, form

factor, and power.

The rest of this paper is organized as follows. The issues

surrounding reusability and designer productivity are

discussed at the IP block level in Section II and at the

chip level in Section III. Challenges of integrating

numerous IP blocks on a single chip give rise to

communication infrastructure for IP design presented in
Section IV. Of course, SoC designs are very large, complex

designs that require extensive testing and verification.

These topics are treated in Sections V and VI, respectively.

Finally, an overall summary is provided in Section VII.

II . REUSABLE IP

The main prerequisite for creating SoC designs is a set of

reusable IP blocks that support plug-and-play integration.

IP blocks are the highest level building blocks of an SoC.

A library of reusable IP blocks with various timing, area,

power configurations is the key to SoC success as it allows

mix-and-match of different IP blocks so that the SoC
integrator can apply the tradeoffs that best suit the needs

of the target application. The process of creating a

reusable IP block, however, differs from the traditional

ASIC design approach. Typically, it may require five times

as much work to generate a reusable IP block compared

to a single-use block [2]. Details on the IP design process

may be found in a wide variety of sources. However, the

most noteworthy reference on the subject is the Reuse
Methodology Manual (RMM) [2], which provides a

comprehensive set of guidelines on the reusable IP design

process. In the sections to follow, we provide an overview of

the issues in design issues for reusable digital IP, analog IP,

and programmable IP.

A. Digital IP
Digital IP blocks are the most popular and ubiquitous

form of reusable IP in industry today. Many of the tools

and design methodologies for creating digital IP were

Fig. 2. SoC versus SiP versus SoB [13].
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already in place when the concepts of reusability emerged.
However, there have been wholesale changes in the design

flow to fully enable reusable design. In addition, there are

many technical issues that need to be addressed, as the IP

developer must anticipate all of the applications in which

the IP block may be used. The technical issues associated

with the design will not be repeated here, since they are

well documented in the RMM [2].

The three stages in the design process are as follows:
• specification and documentation of the reusable IP;

• implementation using standardized coding

practices;

• full verification including code coverage and

behavioral (or functional) coverage.

The first step includes the generation of suitable docu-

mentation for the IP block. The second step includes code

design, synthesis, and design for test. Somewhat surpris-
ingly, the second step of implementation is only a small

part of the reusable IP design process. In fact, depending

on the size and type of the IP, the third step of verification

may take up to 50% of the total time. Since the IP may be

reused many times in a variety of unanticipated applica-

tions, design errors within the block cannot be tolerated.

The goal of verification is to achieve 100% code coverage

and close to 100% functional coverage to ensure the IP
block works correctly.

The actual form of a reusable IP core can vary de-

pending on the way in which the IP developer/vendor

chooses to provide the core to the system designer. There

are three main categories [2]: soft, firm, and hard. These

forms are described below and their relationships and

tradeoffs are depicted in Fig. 3.

• Soft IP blocks are specified using RTL or higher
level descriptions. They are more suitable for digi-

tal cores, since a hardware description language

(HDL) is process-independent and can be synthe-

sized to the gate level. This form has the advantage

of flexibility, portability, and reusability, with the

drawback of not having guaranteed timing or power
characteristics, since implementation in different

processes and applications produces variations in

performance. Sometimes, the HDL is obtained

from a third party in an encrypted form which does

not allow it to be modified. This makes it harder

to adapt it for use in an unanticipated way, but it

also prevents the user from introducing any new

design errors into the block.
• Hard IP blocks have fixed layouts and are highly

optimized for a given application in a specific

process. They have the advantage of having pre-

dictable performance. This, however, comes with

additional effort and cost, and lack of portability

that may greatly limit the areas of application. This

form of IP is usually prequalified, meaning the

provider has tested it in silicon. This adds some
assurance to its correctness.

• Firm IP blocks are provided as parameterized cir-

cuit descriptions so that designers can optimize

cores for their specific design needs. The flexible

parameters allow the designers to make the per-

formance more predictable. Firm IP offers a com-

promise between soft and hard, being more flexible

and portable than hard IP, yet more predictable
than soft IP.

Until very recently, most digital IP blocks came in the

form of hard IP. For example, ARM and MIPS core vendors

would provide behavioral models and black-box layouts of

the processors for use during design and verification, and

then Bdrop in[ the hard IP at the foundry facility before

fabrication. This afforded the vendor some level of IP

protection while allowing the customer to carry out designs
using the IP. More recently, soft IP has become the pre-

ferred handoff level. Typical soft IP (cf. [109]) include

interface blocks (USB, UART, PCI), encryption blocks

(DES, AES), multimedia blocks (JPEG, MPEG 2/4), net-

working blocks (ATM, Ethernet), and microcontrollers

Fig. 3. Different types of IP blocks [4].
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(HC11). The RTL descriptions usually are configurable in
that certain parameters are user-definable to tailor the

block to the needs of the customer. This allows selective

inclusion or exclusion of distinguishing features which can

impact the final implementation’s performance, cost, and

power. In the case of a processor core, parameters such as

the bus width, number of registers, cache sizes, and in-

struction set may vary from customer to customer, so the

flexibility of soft IP allows for their modification before
synthesis. Commercial tools exist for this purpose in which

a configurable processor with specific attributes can be

automatically generated [15]. Such flexibility provides

lower area, power, and improved performance, since the IP

block can be tuned for each application. In addition, some

features in a given IP block that are not needed by all

customers can be removed. With some effort, the final

design generated from a soft IP block can be within 20%–
30% of the power and timing of a hard IP implementation.

B. Analog/Mixed-Signal Design for Reuse
While design productivity can be improved significantly

with the use of digital IP blocks, another bottleneck exists if

the designs include analog and mixed-signal components.

Digital design has a well-defined, top-down design method-

ology but analog/mixed-signal (AMS) design has tradition-
ally been an ad hoc custom design process. When analog

and digital blocks coexist on the same substrate, the analog

portion of the design can be more time-consuming to

develop even though it may represent a smaller percentage

of the chip area. In a few years, it is anticipated that more

than 70% of all SoC designs will have some form of

analog/mixed-signal blocks [1]. This increase is consistent

with the expected growth of the wireless industry over the
same period.

In order to keep pace with rapidly evolving markets,

the productivity of AMS design can be improved using a

mixed-signal SoC design flow [16], [17] employing AMS

IP [18]–[20]. One of the main advantages of the use of

AMS IP in SoCs is the potential reduction in power, which

is especially important in battery-operated applications

such as personal digital assistants (PDAs), wireless local
area networks (LANs), etc. Typical AMS components

include operational amplifiers, analog-to-digital conver-

ters (ADCs), digital-to-analog converters (DACs), phase-

locked loops (PLLs), delay-locked loops (DLLs), serializer/

deserializer transceivers, filters, voltage references, radio-

frequency (RF) modules, voltage regulators, analog

comparators, etc. Many of these blocks are delivered in

the form of hard IP and targeted to one application in a
specific fabrication technology. Therefore, they cannot be

easily migrated to other applications and other technol-

ogies by the end user.

Compared to digital IP, AMS IP must provide an even

greater degree of flexibility in the design parameters and

performance characteristics. While the general function

of an analog block may be the same in different applica-

tions, the design specifications may vary widely between
the applications. Furthermore, the performance of AMS

IP blocks is significantly influenced by parasitics and in-

teractions with the surrounding environment, often in the

form of power supply fluctuations and substrate noise

effects.

Currently, because of the complexity of analog/mixed-

signal design and its sensitivity to the surrounding

environment, AMS blocks are most commonly presented
in the form of hard IP. However, this form has limited

scope of applications. Hard IP will reduce the design cycle

significantly when the specifications and fabrication

processes are identical, but will not greatly improve the

design cycle if it has to be modified in any way or migrated

to a new process. This calls for a more flexible definition

for the format in which the AMS IPs are provided. Firm IP

appears to be the most appropriate format to deliver the
AMS IP library components. In this form, the IP captures

suitable schematics of the analog blocks with parameters

that are adjustable to optimize the design for specific ap-

plications. Unlike hard IP, this form allows ease of

migration of IP from foundry to foundry, customer to

customer, and application to application.

The traditional flow for AMS design relies heavily on

the expertise and experience of the designer. The design
process begins with the performance specification of the

component for a target application. Ideally, the AMS block

should be described at a high level in the form of soft IP as

in the digital case. System-level designers typically use

tools such as MATLAB [14] for specification and simula-

tion. In addition, analog/mixed-signal hardware descrip-

tion languages (AMS-HDL) are increasingly used to model

these types of circuits. The languages are a relatively new
addition to the design process, and the most commonly

used are Verilog-AMS [21] and VHDL-AMS [22]. Automatic

generation of AMS architectures from AMS-HDL is still in

its infancy because of the large number of variables asso-

ciated with AMS design. However, the current contribu-

tion of these AMS-HDLs to system-level design is highly

significant. They provide the necessary platform for system-

level verification, an important part of design quality.
Verification of mixed-signal SoCs requires cosimulation of

analog and digital behavioral models to reduce simulation

costs [24].

Since AMS blocks cannot be easily synthesized from a

high-level specification without low-level support, de-

signers must follow a design process such as the firm IP
hardening flow [3], [20] illustrated in Fig. 4. The starting

point of the flow is the set of selected library components
that comprise the unoptimized schematic view of the

design. This library consists of parameterized reusable

components and is an essential part of the design flow. The

model parameters are set by an optimization tool to achieve

the derivative design specifications. After an architecture is

chosen, the firm IP is taken through the IP hardening flow

for optimization of the circuit parameters to maximize

Saleh et al. : System-on-Chip: Reuse and Integration
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performance and to generate the final GDSII layout of the

block. Proper modeling of the interfaces between the dif-

ferent blocks is important in the design process to account
for different effects such as loading and coupling. This is

needed to achieve correct performance when used in the

overall system-level design [23].

When developing firm reusable AMS cores [18], [20],

the usual precepts of a good design must be followed. That

is, there should be a good formal specification, a good

architectural design and a good circuit implementation. In

addition, there are a number of steps that must be followed
to achieve reusability, as discussed below. A successful IP

block should be parameterized, easily verified through

reusable test benches, well documented, and have

associated views to ease the derivative design process.

Specifically, an AMS IP block should have a behavioral/

analytical view (in AMS-HDL), a parameterized schematic

view (transistor level), and a layout view (floor plan). In

addition, test benches are needed to validate the per-
formance of the circuit under different operating condi-

tions and at various process corners. They are used as the

basis for verification of specifications and for exploration

of the design space for the system.

It is clear that the development of AMS IP must take a

different approach compared to digital IP development.

The IPs must be able to handle and transfer both design

experience and heuristics from the original design to
subsequent design derivatives. In reality, this constitutes

the reusable IP in the analog design process.

C. Programmable IP
As SoCs become larger and more complex, the design

costs are so high that it becomes important to incor-
porate programmability within the SoC to allow for reuse

at the chip level. This programmability can appear in a

number of forms: hardware programmability using pro-

grammable logic cores and software programmability using

an embedded processor. The key to programmable SoC

designs is to provide some form of flexible hardware and/

or software infrastructure, often called the programmable
fabric. We distinguish between two types of flexibility:
prefabrication and postfabrication.

Prefabrication flexibility involves the use of a struc-

tured ASIC fabric (cf., [25], [26]). In this approach, the

lower layout layers of the structured ASIC fabric are

predetermined and chips are already partially fabricated.

The programming is performed by modifying the upper

metal and via layout layers just before final fabrication.

Since only a few steps are performed to complete
fabrication, the turnaround time is relatively short. With

this approach, however, the design cannot be changed

after the chip is manufactured.

Postfabrication flexibility allows the behavior of an IP

block to be modified after the chip has been fabricated, by

either rewriting software/firmware to run on an embedded

processor (software configurability) or by reconfiguring

embedded programmable hardware, which involves
changing the state of configuration bits embedded in the

fabric (hardware programmability). The most compelling

Fig. 4. Proposed analog/mixed-signal IP hardening flow.
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benefit of postfabrication flexibility is the ability to change
the behavior of the IC as requirements change (such as

communication standards or customer demands). If the

Bpersonality[ of the design can be changed by rewriting

software or reconfiguring the programmable hardware,

the creation of a new version of the IC can be avoided;

this can typically save several months and significant

design costs. The primary disadvantages of postfabrication

flexibility (compared to a fixed-function chip) are higher
power, lower density (and hence a reduction in the amount

of circuitry that can be implemented on a single IC), and

reduced speed. However, for many applications, the

advantages outweigh the disadvantages.

1) Hardware Programmability: Hardware programma-

bility is enabled by the incorporation of one or more

programmable logic cores into an SoC [27], [28]. The pro-
grammable logic core is a flexible logic fabric that can be

customized to implement any digital circuit after fabrica-

tion. Such an embedded core may look very much like the

programmable fabric in a stand-alone field-programmable

gate array (FPGA) [29]–[31]. Before fabrication, the de-

signer embeds the fabric (consisting of many uncommitted

gates and programmable interconnects between the gates)

onto the chip. After the fabrication, the designer can then
program these gates and the connections between them.

Fig. 5 shows a hypothetical SoC containing such a core.

In this example, the PC interface, the data processing block,

and the network interface datapath are implemented using

fixed-function IP blocks. However, rather than implement-

ing the network interface control functions using fixed

logic, the SoC designer embeds a generic programmable

logic core onto the IC. The fabric consists of logic blocks and
routing channels with switch blocks at their intersections.

Both the logic and interconnect are programmable. After
fabrication, the network interface control functions are

mapped to and implemented on the programmable logic

fabric. This postfabrication mapping is typically done

using automated tools that are different than the tools

used to implement the SoC before fabrication. Other

SoCs containing programmable logic cores have been de-

scribed in [32]–[35]. The internal structure (architecture)

of programmable logic cores often inherits much from the
architecture of stand-alone FPGAs. The optimization of

stand-alone FPGAs have been well studied [36]–[38].

Flexibility in these architectures occurs in two ways: the

individual logic elements that make up the fabric can be

configured, and the interconnection between these ele-

ments can be configured. The logic elements themselves

are often lookup tables which can be configured to im-

plement any function of between three and eight inputs
[39], [40]. Fig. 6(a) shows an example lookup table which

can implement any function of three inputs. Eight con-

figuration bits are used to program the function

implemented by the lookup table. In addition, a config-

uration bit controls whether the function output is reg-

istered or combinational. The state of each of these

configuration bits is set when the programmable logic

core is programmed, usually at power-up. Other logic
elements based on multiplexers [31], product terms [104]

or arithmetic units [41]–[43] can also be used.

The lookup tables are connected using fixed metal

tracks; the metal tracks are connected to each other and to

lookup tables using pass transistors or buffered bidirec-

tional connections controlled by programming bits, as

shown in Fig. 6(b). Again, the state of each of these pro-

gramming bits, and hence the connections between the
lookup tables, are set when the programmable logic core

Fig. 5. SoC application containing a programmable logic fabric.
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is configured. Considerable research has been aimed at

optimizing the topology of these fixed metal tracks and the

pass transistors and programming bits used to connect

them for stand-alone FPGAs [37], [44]; some optimizations

have been presented which specifically target general-

purpose embedded programmable logic cores [45] and
domain-specific ones [105]. In addition to logic and inter-

connect, programmable logic cores also often contain

flexible memory arrays [46], dedicated arithmetic blocks,

and high-speed communication blocks [29], [30].

The programming bits can be stored in a number of

ways, typically by using static RAM (SRAM) bits. Imple-

menting configuration bits using SRAM bits has the

additional advantage that no extra processing steps beyond
those needed to construct the other IP blocks on the SoC

are required. Alternatively, in a structured ASIC fabric,

the programmable switches in the connection fabric can

be implemented using programmable metal and vias, in

which connections between adjacent metal layers can be

made by adding or removing metal [47], [48]. Typi-

cally, these programmable vias can be programmed

only once (during fabrication), while programmable
SRAM configuration bits can be programmed any number

of times. While there is considerable overhead for prog-

rammable fabrics, the viability of the embedded program-

mable logic core approach is expected to improve at the

90- and 65-nm nodes.

As described earlier, IP cores can either be hard cores

or soft cores, depending on whether the core is delivered

as a layout or in the form of a hardware design language
(HDL) description. The same is true for programmable

logic cores. The programmable logic cores described above

are hard cores. A soft programmable logic core is described

in [32]; in this architecture, the behavior of the core is

described using an HDL (note that this is different than the

behavior of the circuit to be implemented in the core). The

soft core makes integration simpler, since standard SoC

tools can be used. However, the overhead for a soft

programmable logic core is typically six times larger than

that for a hard programmable logic core, meaning it is only

suitable if only small amounts of programmable logic are

required. Development of automated hard-core generators

for programmable logic cores is also a continuing area of

research [106]–[108].

2) Software Programmability: Software is the most

natural form of programmability for an SoC. Embedded

software [49], [50] allows a single SoC to have different

Bpersonalities[ and serve different customers or market

segments. From a design perspective, as much of the

solution should be implemented in software as possible to

maximize the flexibility of the design. Complex control
functions are better suited to software implementations

whereas data operations are better implemented in

hardware. If performance is an issue, then hardware

must be used for the implementation which can take the

form of a programmable logic fabric, which is roughly five

times faster than software, or an ASIC implementation,

which is typically 50 times faster than software (based on

the authors’ experience).
Reuse in software is provided through the use of

libraries of code and data structures, along with off-the-

shelf kernel and real-time operating systems (RTOSs) to

improve productivity. Unlike hardware, the software or

firmware is never actually completed; it is under conti-

nuous development but the code is frozen and released as a

version with the intention to update it in the future (and

perhaps provide bug fixes when needed). Since SoC
programmability is headed in this direction, there will be

a growing need for more software/firmware designers in

an industry typically dominated by hardware engineers.

III . PLATFORM-BASED DESIGN

Productivity gains obtained strictly from reusable IP has its

limits, since the process of chip integration can be very

Fig. 6. Programmable fabric architecture.
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time-consuming and expensive even with predesigned

blocks. What is needed to improve productivity is a higher
level of design abstraction. Economies of scale can be

derived from the fact that a single architecture may serve

many different customers in one market segment. Fur-

thermore, as the needs of a marketplace change, it should

be possible to use a configurable architecture as a basis for

new designs. For these reasons, the concept of platform-
based design [4] was introduced where new designs could

be quickly created from an original platform to amortize
costs over many design derivatives. More specifically, a

platform is an abstraction level that covers a number of

refinements to a lower level. It allows significant

improvements in designer productivity, since many high-

level and low-level decisions have already been incorpo-

rated into the platform, and all associated tools and flows

are in place to quickly generate new designs.

An SoC platform consists of hardware IP, software IP,
programmable IP, standardized bus structures and com-

munication networks, computer-aided design (CAD) flows

for hardware/software codesign, verification and imple-

mentation, system validation tools, design derivative

creation tools, and dedicated hardware for system proto-

typing. As an example of an SoC platform, consider a

Bluetooth device [51] for low-power wireless personal area

networks (WPANs). Bluetooth operates in the unlicensed
ISM band at 2.4 GHz and uses frequency hopping spread-

spectrum techniques. The overall architecture of a Blue-

tooth device consists of an RF front-end, a baseband

controller, and software to implement the Bluetooth pro-

tocol stack. A simplified architecture is shown in Fig. 7(a)

and the protocol stack is shown in Fig. 7(b) [51].

When considering all of the hardware, software, design

and verification flows, technology, and testing issues, it is
clear that the amount of effort required to carry out a chip

design is prohibitive in the market windows associated with

this type of product. In particular, as the Bluetooth
standard is upgraded or customer requirements shift, the

design may become obsolete. Furthermore, there are other

personal area networking standards under development

that have similar characteristics. These considerations

make WPAN is a suitable application for platform-based

design.

The platform concept will be illustrated using the

baseband processing unit of Bluetooth assembled and
verified at the University of British Columbia (UBC) using

SoC/IP design and verification methodologies. Since all of

the IP was obtained through third-party vendors, the tasks

of design, verification, and logic synthesis required five

engineers and roughly one year to accomplish in a uni-

versity research environment. A block diagram of the

reference platform for the mixed-signal SoC is shown in

Fig. 8. The software portion of the protocol stack runs on
the ARM7TDMI processor.1 It is responsible for the Blue-

tooth functions associated with establishing connections

between devices and interpreting the packets to determine

the services being requested by other devices.2

The processor requires high-speed connections to

certain blocks such as the shared memory controller

(SMC), the direct memory access (DMA) controller, the

test interface controller (TIC), and the power and clock
control units. The connections are implemented using the

synchronous advanced high-speed bus (AHB) of the

AMBA bus standard [7]. This bus requires the develop-

ment of a bus arbiter and decoder functions. The other

components in the system operate at different speeds and

Fig. 7. Bluetooth architecture and protocol stack.

1ARM7TDMI is a trademark of ARM Holdings Ltd.
2This platform was originally developed by Tality, which is part of

Cadence Design System Inc.
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are connected using the asynchronous advanced periph-
eral bus (APB). These components include the watchdog

timers, other timers, general-purpose input/output

(GPIO) devices, and programmable interrupt controller

(PIC), UART, and USB interface standards. The baseband

controller (BBC) that performs the DSP functions on the

incoming and outgoing bit streams and radio control

functions is also interfaced to the APB. A bus bridge is

used to interface the AHB to the APB. The data received
from the ADC and transmitted out through the DAC (and

eventually to/from the RF module) would be implemen-

ted as a separate chip in this case.

To construct the platform,3 the aforementioned com-

ponents were acquired through third parties or developed

in-house. The ARM7TDMI processor was delivered in the

form of hard IP, along with RTL models for simulation and

verification. The software protocol stack was separately
acquired. The AMBA bus components were developed by a

third party as soft IP, along with the baseband controller

and all the APB functional units. The memory blocks were

generated using a commercial memory compiler. The

AMP IP functions required are the ADC, DAC, and PLL,

and would be purchased separately; we used behavioral

models for these blocks. With these IP components and

the associated CAD flows in place, the platform was built,
verified, and synthesized within one year.

Programmability can be built into the platform in three

ways. First, the ARM processor itself is programmable.

Any changes to the protocol stack functions can be easily

accommodated. It can also be enhanced with a local

embedded FPGA to speed up critical sections of the code.

Other interface blocks can be replaced by a similar

embedded FPGA, so long as the resulting fabric does not
consume a large area or exceed the power specifications of

Bluetooth. The BBC is too large for such a fabric but may

benefit from the use of a structured ASIC implementation.

In this way, as the standard changes or new algorithms are

devised, the BBC can be modified accordingly.

IV. ON-CHIP COMMUNICATION
INFRASTRUCTURE

A typical SoC today consists of many cores operating at

different clock frequencies and this presents additional

issues for IP integration. For example, digital signal

processors (DSPs) and network interface cores include

circuits whose clock frequencies must match the sample

rate or bit-rate of the data that they are processing. Apart

from these types of constraints, different cores may be
designed to operate at different clock rates, a situation that

is nearly unavoidable when cores are obtained from several

sources, both internal and external to a company.

Fig. 8. Bluetooth baseband platform.

3
The IP components and CAD tools were acquired through the

services of the Canadian Microelectronics Corporation.
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Design flows based on traditional logic synthesis
assume a synchronous implementation: all timing issues

are regulated by a single, global clock. More recently in-

troduced system level design languages such as System-C

[52] and System Verilog [53] allow designs to be described

as communicating processes by using transactional models.

With this decoupling, each core in an SoC design can be

viewed as a separate synchronous island, and the interfaces

between these islands are provided by the chip’s global
interconnect. This approach is commonly referred to as

globally asynchronous, locally synchronous (GALS) design

[54], [55]. The work in [56] adapted the GALS idea to

define Blatency insensitive[ designs, wherein the inter-

connect can be either synchronous or asynchronous. The

key idea in this approach is to restrict the system-level

design to one where correct functionality can be guaran-

teed regardless of the latency of links between cores. This
allows the interconnect to be pipelined and provides a

separation of timing and functionality similar to that of

traditional synchronous design. However, latency remains

critical for the performance of many SoC designs. Inte-

grating latency and performance requirements into an SoC

design flow remains an area of active research [57], [58].

Synthesizing designs from multitimed, transactional

descriptions is another topic of ongoing research.
When communicating between different clock do-

mains, the possibility of synchronization failures arises.

Without a fixed relationship between sender and receiver

clocks, the data from the sender clock may change at an

arbitrary time with respect to the receiver clock. This can

lead to set-up and hold violations or other failures in the

receiver’s core. The underlying cause is that any device

with two stable states (e.g., a flip-flop) must have a meta-
stable state that can occur under marginal triggering

conditions [59], [60]. While such a state can persist

indefinitely, the probability of a failure drops exponentially

with the amount of time allowed for the device to settle.

Mathematically, this can be expressed as

Probffailureg ¼ e�t=� (1)

where t is the time allowed for the flip-flop to settle, and �
is the time constant for the device.

A common rule of thumb is to use two flip-flops to

implement a reliable synchronizer. As shown by (1), the

probability of failure is reduced by the time allowed for the

signal to settle rather than the number of clock cycles.
Thus, for designs with fine-grain pipelining, a two flip-flop

synchronizer will result in unacceptable failure rates.

Conversely, designs with low clock frequencies can safely

perform synchronization in a half clock cycle or less [61]. A

survey of common pitfalls in synchronizer design is

presented in [62].

While a synchronizer can be used to ensure that

individual bits are conveyed with acceptable reliability,

SoC interconnect typically employs some form of parallel
interconnect, and care must be taken to make sure that all

of the bits of a word are transferred together. While this

can be accomplished with double-buffering and synchro-

nizing the full/empty signals, higher throughput can be

achieved by pipelining and synchronization operations.

Researchers in [63] have implemented a general set of

interfaces between timing domains that exploit such

pipelining [64]. If special timing relationships are known
between the two domains in advance, then more optimized

interfaces can be implemented [66]. For example, a family

of simple, low-latency interfaces are described in [65]. We

expect that future SoC solutions will use dedicated

synchronization solutions such as those presented in [65]

for interfaces where performance and latency are critical,

and more generic interfaces such as those in [64] for less

critical interfaces between cores.

A. Network-on-Chip
A more structured interconnect fabric is being

pursued in the research community for commercial de-

signs that must integrate a large number (10–100) of IP

blocks in a single SoC. Today, there exist many SoC de-

signs that contain a number of processors in applications

such as set-top boxes, wireless base stations, HDTV,

mobile handsets, and image processing [67]. Such systems

behave as multiprocessors, and require a corresponding

design methodology for both their hardware and software
implementations. Power budgets and cross-chip signaling

constraints are forcing the development of new design

methodologies to incorporate explicit pipelining and pro-

vide a more structured communication fabric [67], [68].

Many researchers have suggested that future designs will

be dominated by arrays of processors that form the basis of

new multiprocessor SoC platforms (the so-called MP-SoC

platforms [67]).
Network-on-chip (NoC) [68], [69] infrastructures are

emerging as the new paradigm that characterizes the on-

chip data communication architecture of large-scale SoCs.

The integration of several components into a single system

gives rise to new challenges. As shown in Fig. 9, there are a

wide variety of topologies that have been proposed for

NoC [74], including SPIN [85], CLICHÉ [83], torus [69],

folded torus [69], [72], and irregular and bufferfly fat-tree
[72], [82], [84]. The practical implementation and adop-

tion of the NoC design paradigm faces various unsolved

issues related to design methodologies, test strategies, and

system reliability.

B. Design Considerations
It is well known that it can take several clock cycles

for a global signal to travel from one end of a chip to

the other [81]. To cope with this issue, the end-to-end

communication medium can be divided into multiple

pipelined stages, with delays in each stage comparable with
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the clock-cycle budget. In NoC architectures, the inter-

switch wire segments together with the switch blocks

constitute a highly pipelined communication medium

characterized by link pipelining, deeply pipelined

switches, and latency-insensitive component design [76].

Link pipelining is inherently built-in to regular NoC
topologies. The switch designs generally consist of multiple

pipeline stages and the delay of each stage is less than the

target clock period in a particular technology node [78].

The design process of NoC-based systems borrows

some of its aspects from the parallel computing domain,

but it is driven by a significantly different set of

constraints. From the performance perspective, high-

throughput and low latency are desirable characteristics
of MP-SoC platforms. However, from a VLSI design per-

spective, the power dissipation profile of interconnect is

increasing in importance as it represents a significant

portion of the overall energy budget. The silicon area

overhead due to the interconnect fabric is also important.

In the context of NoC architectures, there is a trend

toward using packet-based on-chip communication. The

common characteristic of these kinds of architectures is
that the IP cores communicate with each other through

high-performance links and intelligent switches. Various

schemes for packetized communication are viable accord-

ing to the local/global requirements on quality of service
(QoS). Therefore, switching and routing schemes will

require switch blocks with various characteristics such as

data buffering, virtual channels, priority-based schemes,

etc. [71]. The switch design also depends on the routing

scheme adopted. There are two broad categories of

routing: deterministic and adaptive. Deterministic routing

algorithms always supply the same path between a given

source/destination pair. Adaptive routing algorithms use

information about routing traffic and/or channel status to
avoid the congested or faulty part of the network. If

deterministic routing schemes are adopted, the switches

can be designed to be fast and compact [73].

The block-level representation of a switch is shown in

Fig. 10. It mainly consists of input/output FIFO buffers,

input/output arbiters, and a routing block. Recent

publications indicate that wormhole switching [86] is the

solution of choice for NoCs [72]. In wormhole switching,
the packets are divided into fixed length flow control units

(flits) and the input and output buffers are expected to

store only a few flits. As a result, the buffer space require-

ment in the switches can be small compared to that

generally required for other schemes. Thus, using a worm-

hole technique, the switches will be small and compact.

The first flit, i.e., header flit, of a packet contains routing

information. Header flit decoding enables the switches to
establish the path and subsequent flits simply follow this

path in a pipelined fashion. As a result, each incoming data

flit of a message packet is simply forwarded along the same

output channel as the preceding data flit, and no packet

reordering is required at the destination. If a certain flit

faces a busy channel, subsequent flits have to wait at their

current locations.

Fig. 9. NoC topologies. (a) SPIN. (b) CLICHÉ. (c) Torus. (d) Folded torus. (e) Irregular. (f) BFT.
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One drawback of this simple wormhole switching me-

thod is that the transmission of distinct messages cannot

be interleaved or multiplexed over a physical channel.
This will decrease channel utilization if a flit from a

given packet is blocked in a buffer. In order to have a

considerably high throughput, a set of virtual channels

can be used (two per input/out port are shown in Fig. 10).

If a flit belonging to a particular packet is blocked in one

of the virtual channels, then flits of alternate packets

can use the other virtual channel buffers and, ulti-

mately, the physical channel to continue on their path
to the destination.

Streamlined and fast switches can also be realized to

support simple adaptive routing schemes. For example, in

the Nostrum NoC [74], the switches realize a congestion-

driven deflective routing scheme for a mesh/torus network

architecture. In [75], this routing scheme was combined

with wormhole switching. The switches are combinational

blocks, where the decision to reroute a packet (i.e., one
that cannot be routed efficiently toward the destination) is

based on the analysis of traffic congestion of the neigh-

boring nodes.

It is likely that NoC architectures will make their way

into SoC designs in an evolutionary manner rather than a

revolutionary manner, driven initially by MP-SoC applica-

tions [77] and then later by the need to have manufactur-

able structured interconnect as technology scales below
90-nm CMOS.

V. SoC TEST METHODOLOGIES

Another important aspect of SoC integration is the

development of a test methodology for postmanufacturing

tests. Core testing strategies often accompany a third-party

IP block when it is purchased or otherwise acquired.
However, system-level test integration is left to the SoC

platform designer. Conceptually, testing of traditional SoB

and the current SoC designs have many similarities. ICs on
a printed circuit board are the components of SoB,

whereas cores in a core-based system are the virtual

components of an SoC. However, the similarities stop

there; in fact, the manufacturing test procedures of SoBs

and SoCs are quite different [70].

In the SoB approach, IC design, manufacturing, and

testing are all performed by the IC provider. The system

integrator is responsible for design and manufacturing of
the board-level design using these ICs. As the provider

tests the ICs, the system integrator can assume fault-free

ICs. In SoC, the core provider only delivers a description of

the core design to the system integrator; the system

integrator then designs any proprietary blocks, called User

Defined Logic (UDL), and assembles the predesigned

cores. It is not possible for the core provider to do the

manufacturing test, as the system is yet to be manufac-
tured. Therefore, the system integrator is responsible for

testing the core logic and the wires between cores. The

best the system integrator can expect from the core pro-

vider is that the core’s design description is delivered with

a set of test patterns with high fault coverage. Ideally, test

development for IP blocks should be carried out with reuse

and system-level integration in mind.

The core tests from the core providers are originally
described at the input/output terminals of the core itself.

When these cores are integrated in an SoC, the final test is

to be applied at the input/output pins of the SoC. However,

the core may be embedded deep into the SoC; its I/O pins

may not be directly accessible from the external pins. This

is another key difference between the SoB and SoC

approaches. In an SoB, direct physical access to the chip

peripherals is available to the system integrator for testing,
whereas in an SoC core pins are not accessible to the user

for manufacturing test. Consequently, an electronic test

access mechanism is required from the SoC pins to the

cores and vice versa. The test access to the embedded cores

is the responsibility of the system integrator. This access

mechanism requires additional logic and wiring; ulti-

mately, this leads to the development of architectures for

core test access.

A. IP Core Level Test
The test of an IP core typically consists of internal DFT

structures and the required set of test patterns to be

applied and captured on the core periphery. The test pat-

terns need to include data and protocol patterns. The data

patterns contain the actual stimulus and response values,

whereas the protocol pattern specifies how to apply and
capture the test data. The core internal test should be

carried out by the core provider, as the system integrator,

in most cases, has very limited knowledge about the

structural content of the adopted core and hence con-

siders it as a black box. It may not be possible for the

system integrator to prepare the necessary test for it.

Consequently, the core creator should be responsible for

Fig. 10. NoC switch architecture.
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delivering: 1) the DFT hardware inside the core; 2) the
test patterns of the core; and 3) the validation of those test

patterns.

Another major task of the core provider is to

determine the internal test requirements of the core

without knowing the target process and application. For

instance, which test method needs to be adopted, what

types of faults to target, and what level of fault coverage is

desired, are not known to the core provider. In the SoC
scenario, a core provider may not know the target process

and the desired test coverage level. Hence, the provided

quality level may or may not be adequate. A built-in self-

test (BIST) strategy [79] is another promising alternative

to hide the test problem from the system integrator.

However, to date, high test coverage levels have been

difficult to achieve.

B. SoC Level Test
A conceptual architecture suitable for testing embed-

ded core based SoCs is presented in Fig. 11, and has three

principal components as explained below.

1) Test Pattern Source and Sink: The test pattern

source generates the test stimuli and the sink re-

ceives the test responses.

2) Test Access Mechanism (TAM): The test access

mechanism performs the on-chip test pattern
transport. It can be used to transport either test

stimuli from the test pattern source to the core

under test or to transport the test responses from

core under test to a test pattern sink.

3) Core Test Wrapper: The core test wrapper forms

the interface between the embedded core and its

environment. It connects the embedded core to

the rest of the IC and also to the TAM.
To facilitate SoC testing, new standards to express the

test procedure for both the core provider and the system

integrator were developed and recently approved as IEEE
1500, which includes a core test language (CTL) [10]. Its

purpose it to provide a uniform interface between the

cores and the chip-level test access mechanism, analogous

to how JTAG facilitates board-level testing [80]. In fact,

P1500 (i.e., its previous name) is very similar to the legacy

JTAG boundary scan in both architecture and operation.

The most notable difference is the absence of the test

access port (TAP) controller and the addition of parallel
test port in P1500 wrappers. By detaching the TAP

controller and providing more access ports, the serial-

input constraint of JTAG is removed and a greater variety

of test access mechanisms are supported.

The P1500 wrapper has four control inputs and one

pair of serial data input and output as shown in Fig. 12. The

serial wrapper scan input (WSI) is used to transport

wrapper instruction and test data. Instructions for the
wrapper are shifted serially into the wrapper instruction

register (WIR) and various enable signals are generated

from the control logic based on the content of the WIR and

the four control inputs. The core data registers (CDRs) are

used to capture test results or provide signatures to the

BIST circuitry. The ring of flip-flops around the core form

the boundary data register (BDR) that isolates the core’s

functional interface from the other blocks during testing.
When exercising full-scan test on the wrapped core, the

test vector is serially shifted in through WSI, and scan

output is serially shifted out through to the wrapper scan

output (WSO).

Fig. 13 shows the integration of the P1500 standard in

SoC testing. Each core is encapsulated in a P1500 wrapper

to provide a unified interface for test control purposes. The

wrapper control signals can be generated by a user-defined
test controller which is enabled by external sources. In

addition, a user-defined parallel TAM can be implemented

for test data transportation to/from individual IP cores. All

of these items compose the infrastructure that supports the

actual test of IP cores in an SoC design.

VI. SoC VERIFICATION

The verification challenges for SoC largely parallel those

facing design and testVthe challenge is the unprecedent-

ed complexity, and the hoped-for solution is through

reuseVbut the verification problem is in some respects

harder. As the ITRS has noted [1], while design sizes have

grown exponentially over time in accordance with

Moore’s Law, theoretical verification complexity has

been growing double-exponentially, because the number
of states that must, in theory, be verified is exponential in

the size of the design. For example, consider an SoC built

from n IP cores, with the ith core having some measure of

verification complexity (e.g., number of reachable states,

number of functional coverage points) of vðiÞ. If we simply

assemble and connect the cores together and try to verify

the entire SoC without exploiting the structure, we mustFig. 11. Core-based SoC test architecture [70].
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consider the cross product of all possible verification

states, yielding complexity
Qn

i¼1 vðiÞ, which is exponential
in n. The goal is to try to find a way to reuse the

verification effort for each core, so that the cores can be

verified once in isolation. Doing so would reduce the

verification effort to

Xn

i¼1

vðiÞ þ vsys

where vsys is a (hopefully smaller) term reflecting the

effort of verifying the integrated system under the as-
sumption that each core is correct. Furthermore, as cores

are reused, we would ideally need expend only the vsys for

the next SoC.

Progress toward this ideal has been modest. In

industrial practice, the main effort has been two-pronged:

encapsulating verification information within the IP cores

in an effort to make as much verification effort reusable as

possible, and standardizing on-chip interconnection

Fig. 13. Integration of cores using P1500 wrapper.

Fig. 12. Block diagram of a P1500 wrapper for a core using BIST DFT.
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protocols to reduce bugs introduced during integration of
the cores. Mainstream verification continues to rely

heavily on dynamic methods (simulation and emulation),

so the obvious initial step at encapsulation consisted of

vendors simply supplying simulation testbenches along

with their cores. Significant progress came with the

widespread adoption of assertion-based verification [87].

In this methodology, designs carry with them, embedded

in the code and on interfaces, assertions specifying
correct behavior. Thus, a large amount of the specification

of correct behavior is clearly and unambiguously spelled

out. The acceptance of assertion-based verification, in

turn, stimulated interest in standardizing languages for

specifying more complex assertions, such as PSL [88] or

SVA [89]. These languages have the expressive power of

formal temporal logic (on which they are based [90],

[91]), and have been accepted as industry standards. On
the prong of standardizing interconnect protocols, several

companies have proposed standards for on-chip commu-

nication, such as the AMBA family of busses [7] or the

OCP protocol [8]. Obviously, adopting a standard

interconnect does not eliminate all bugs arising from

integration (since the system may not use individual cores

correctly), but it does eliminate the common errors that

occur when designing an interconnection protocol or
from incorrect interfacing of cores and interconnect.

The above incremental advances have helped reduce

the verification problem, by increasing confidence in

individual cores and reducing integration bugs. However,

dynamic verification methods intrinsically suffer from

increasingly poor coverage as design complexity increases,

due again to the fundamental fact that the set of behaviors

of a system grows exponentially in its size.4 Poor coverage
increases the likelihood of undetected bugs in IP cores,

undermining the goal of reusing IP cores without needing

to completely reverify them. If each IP core has some

residual probability p of containing undetected bugs (which

could have been detected before integration, but were not

due to poor coverage), then the probability of an error-free

SoC with n cores again falls off exponentially as ð1 � pÞn
,

not even including errors introduced from integration. In
the past, when individual logic blocks were simpler (so

p � 0), or when systems were much smaller (so n was

small), this probability of having bugs could have been

acceptable. As SoCs grow, however, only a more formal

verification process, which minimizes p and documents
any assumptions being made, has any hope of scaling.

Most research activity, therefore, has focused on

formal verification (primarily model checking [92]). Formal

verification provides a 100% proof that a design meets its

specifications. Furthermore, the specifications that are

verified and the assumptions under which they are verified

are precisely documented and can be exploited during

integration verification. Methodological barriers to formal
verification are falling, because the methodology advances

in dynamic verification mentioned earlier are exactly what

is needed to enable more formal verification. Formal

verification is already indispensable industrial practice for

certain applications, such as RTL-to-gate equivalence

checking [93] and microprocessor verification [94], [95].

Formal verification is no magic bullet, howeverVthe

exponential state explosion that manifested itself as poor
coverage in simulation reappears as the high computa-

tional complexity of formal verification algorithms. The

on-going research effort in formal verification has been to

improve the scalability of formal methods to larger, more

complex designs. Specifically for SoCs, the same ideas of

reuse and integration that simplify SoC design also hold

promise for simplifying SoC verification. Well-specified

cores interacting via clean and well-defined interfaces
ought to admit easier verification than an arbitrary assem-

blage of logic. The key research areas are compositional
model checking [96], which decomposes the verification of

an entire system composed of several blocks into multiple,

smaller verification tasks on the individual blocks; and

assume-guarantee reasoning [97], which emphasizes verifi-

cation of cores under assumptions about the behavior of

the rest of the system. Both of these verifications can be
performed separately. The other key research direction for

formal verification of SoCs is in handling nonconventional

IP: most research has emphasized blocks of digital hard-

ware, but preliminary research is starting to appear on

embedded software verification [98] and formal verifica-

tion of analog circuits [99].

Finally, despite all the research advances now and in

the future, it is unlikely the verification challenge can be
solved without help from designers. Historically, when-

ever formerly second-order issues grew into first-order

productivity challenges, e.g., sequential testability or low

power, the solution ultimately involved design changes

and some sacrifices, e.g., the overhead of scan latches and

power-management logic. There is no reason to presume

that verification will be different. Already, leading com-

panies involve verification experts early in the design
process to steer the design toward better verifiability [100]

and ambitious projects are underway that completely

integrate the design and verification process [101]. These

sorts of efforts will likely solidify into standard practices

for design-for-verifiability. There is even recent research

where the very architecture of a system is optimized for

easier verification; when done well, performance and cost

4It is important to distinguish different concepts of coverage used by
different communities. In VLSI test, coverage is the fraction of faults, for a
given fault model, that can be detected via a test set. In dynamic
validation, coverage typically refers to the percentage of some coverage
metric that the simulation test vectors have stimulated. Coverage metrics
range from very crude measures like line coverage to the theoretical ideal
of exhaustively simulating every possible behavior of the system, which we
dub Bbehavior coverage.[ Formal verification has 100% behavior coverage
by definition. In formal verification, Bcoverage[ sometimes means to what
degree a set of formal specifications completely specifies the desired
behavior. We dub this concept Bspecification coverage[ and note that it is
an issue for both formal and informal verification. The scalability problem
of dynamic validation is due to poor behavior coverage.
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penalties can be minimal [102], [103]. In the future,
design-for-verifiability and architecture-for-verifiability

will be absolutely essential.

VII. SUMMARY

This paper provided a broad perspective on the reuse and

integration issues associated with mixed-signal SoC design.

Reusable forms of digital, analog/mixed signal, and pro-
grammable IP component were described. The platform-

based design concept was illustrated using a Bluetooth

baseband processor. Integration issues associated with

interconnect, testing, and verification were presented. The

authors believe that almost all designs in the future will

make use of reusable IP and that commercial tool vendors
will continue to advance their tools to address the more

challenging issues of system level hardware/software

codesign and coverification. h
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