
318 Chapter 5 The Processor: Datapath and Control

In an earlier example, we broke each instruction into a series of steps corresponding
to the functional unit operations that were needed. We can use these steps to create a
multicycle implementation. In a multicycle implementation, each step in the exe-
cution will take 1 clock cycle. The multicycle implementation allows a functional
unit to be used more than once per instruction, as long as it is used on different
clock cycles. This sharing can help reduce the amount of hardware required. The
ability to allow instructions to take different numbers of clock cycles and the ability
to share functional units within the execution of a single instruction are the major
advantages of a multicycle design. Figure 5.25 shows the abstract version of the mul-

5.5 A Multicycle Implementation 5.5

multicycle
implementation Also called
multiple clock cycle implemen-
tation. An implementation in
which an instruction is executed
in multiple clock cycles.

FIGURE 5.25 The high-level view of the multicycle datapath. This picture shows the key elements of the
datapath: a shared memory unit, a single ALU shared among instructions, and the connections among these shared units. The
use of shared functional units requires the addition or widening of multiplexors as well as new temporary registers that hold
data between clock cycles of the same instruction. The additional registers are the Instruction register (IR), the Memory data
register (MDR), A, B, and ALUOut.

Data

Register #

Register #

Register #

PC Address

Instruction
or dataMemory

Registers ALU

Instruction
register

Memory
data

register

ALUOut

A

B
Data

5.5 A Multicycle Implementation 319

ticycle datapath. If we compare Figure 5.25 to the datapath for the single-cycle ver-
sion in Figure 5.11 on page 300, we can see the following differences:

■ A single memory unit is used for both instructions and data.

■ There is a single ALU, rather than an ALU and two adders.

■ One or more registers are added after every major functional unit to hold
the output of that unit until the value is used in a subsequent clock cycle.

At the end of a clock cycle, all data that is used in subsequent clock cycles must
be stored in a state element. Data used by subsequent instructions in a later clock
cycle is stored into one of the programmer-visible state elements: the register file,
the PC, or the memory. In contrast, data used by the same instruction in a later
cycle must be stored into one of these additional registers.

Thus, the position of the additional registers is determined by the two factors:
what combinational units will fit in one clock cycle and what data are needed in
later cycles implementing the instruction. In this multicycle design, we assume
that the clock cycle can accommodate at most one of the following operations: a
memory access, a register file access (two reads or one write), or an ALU opera-
tion. Hence, any data produced by one of these three functional units (the mem-
ory, the register file, or the ALU) must be saved, into a temporary register for use
on a later cycle. If it were not saved then the possibility of a timing race could
occur, leading to the use of an incorrect value.

The following temporary registers are added to meet these requirements:

■ The Instruction register (IR) and the Memory data register (MDR) are
added to save the output of the memory for an instruction read and a data
read, respectively. Two separate registers are used, since, as will be clear
shortly, both values are needed during the same clock cycle.

■ The A and B registers are used to hold the register operand values read from
the register file.

■ The ALUOut register holds the output of the ALU.

All the registers except the IR hold data only between a pair of adjacent clock
cycles and will thus not need a write control signal. The IR needs to hold the
instruction until the end of execution of that instruction, and thus will require a
write control signal. This distinction will become more clear when we show the
individual clock cycles for each instruction.

Because several functional units are shared for different purposes, we need
both to add multiplexors and to expand existing multiplexors. For example, since
one memory is used for both instructions and data, we need a multiplexor to
select between the two sources for a memory address, namely, the PC (for instruc-
tion access) and ALUOut (for data access).

320 Chapter 5 The Processor: Datapath and Control

Replacing the three ALUs of the single-cycle datapath by a single ALU means that
the single ALU must accommodate all the inputs that used to go to the three differ-
ent ALUs. Handling the additional inputs requires two changes to the datapath:

1. An additional multiplexor is added for the first ALU input. The multiplexor
chooses between the A register and the PC.

2. The multiplexor on the second ALU input is changed from a two-way to a
four-way multiplexor. The two additional inputs to the multiplexor are the
constant 4 (used to increment the PC) and the sign-extended and shifted
offset field (used in the branch address computation).

Figure 5.26 shows the details of the datapath with these additional multiplex-
ors. By introducing a few registers and multiplexors, we are able to reduce the
number of memory units from two to one and eliminate two adders. Since regis-
ters and multiplexors are fairly small compared to a memory unit or ALU, this
could yield a substantial reduction in the hardware cost.

FIGURE 5.26 Multicycle datapath for MIPS handles the basic instructions. Although this datapath supports normal incrementing of the
PC, a few more connections and a multiplexor will be needed for branches and jumps; we will add these shortly. The additions versus the single-clock
datapath include several registers (IR, MDR, A, B, ALUOut), a multiplexor for the memory address, a multiplexor for the top ALU input, and expanding
the multiplexor on the bottom ALU input into a four-way selector. These small additions allow us to remove two adders and a memory unit.

Read
register 1

Read
register 2

Write
register

Write
data

Registers
ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

5.5 A Multicycle Implementation 321

Because the datapath shown in Figure 5.26 takes multiple clock cycles per
instruction, it will require a different set of control signals. The programmer-visible
state units (the PC, the memory, and the registers) as well as the IR will need write
control signals. The memory will also need a read signal. We can use the ALU con-
trol unit from the single-cycle datapath (see Figure 5.13 and Appendix C) to
control the ALU here as well. Finally, each of the two-input multiplexors requires a
single control line, while the four-input multiplexor requires two control lines.
Figure 5.27 shows the datapath of Figure 5.26 with these control lines added.

The multicycle datapath still requires additions to support branches and
jumps; after these additions, we will see how the instructions are sequenced and
then generate the datapath control.

With the jump instruction and branch instruction, there are three possible
sources for the value to be written into the PC:

1. The output of the ALU, which is the value PC + 4 during instruction fetch.
This value should be stored directly into the PC.

2. The register ALUOut, which is where we will store the address of the branch
target after it is computed.

3. The lower 26 bits of the Instruction register (IR) shifted left by two and
concatenated with the upper 4 bits of the incremented PC, which is the
source when the instruction is a jump.

As we observed when we implemented the single-cycle control, the PC is
written both unconditionally and conditionally. During a normal increment
and for jumps, the PC is written unconditionally. If the instruction is a condi-
tional branch, the incremented PC is replaced with the value in ALUOut only if
the two designated registers are equal. Hence, our implementation uses two
separate control signals: PCWrite, which causes an unconditional write of the
PC, and PCWriteCond, which causes a write of the PC if the branch condition
is also true.

We need to connect these two control signals to the PC write control. Just as we
did in the single-cycle datapath, we will use a few gates to derive the PC write con-
trol signal from PCWrite, PCWriteCond, and the Zero signal of the ALU, which is
used to detect if the two register operands of a beq are equal. To determine
whether the PC should be written during a conditional branch, we AND together
the Zero signal of the ALU with the PCWriteCond. The output of this AND gate is
then ORed with PCWrite, which is the unconditional PC write signal. The output
of this OR gate is connected to the write control signal for the PC.

Figure 5.28 shows the complete multicycle datapath and control unit, includ-
ing the additional control signals and multiplexor for implementing the PC
updating.

322 Chapter 5 The Processor: Datapath and Control

Before examining the steps to execute each instruction, let us informally exam-
ine the effect of all the control signals (just as we did for the single-cycle design in
Figure 5.16 on page 306). Figure 5.29 shows what each control signal does when
asserted and deasserted.

Elaboration: To reduce the number of signal lines interconnecting the functional

units, designers can use shared buses. A shared bus is a set of lines that connect mul-

tiple units; in most cases, they include multiple sources that can place data on the bus

FIGURE 5.27 The multicycle datapath from Figure 5.26 with the control lines shown. The signals ALUOp and ALUSrcB are 2-bit
control signals, while all the other control lines are 1-bit signals. Neither register A nor B requires a write signal, since their contents are only read on
the cycle immediately after it is written. The memory data register has been added to hold the data from a load when the data returns from memory.
Data from a load returning from memory cannot be written directly into the register file since the clock cycle cannot accommodate the time required
for both the memory access and the register file write. The MemRead signal has been moved to the top of the memory unit to simplify the figures. The
full set of datapaths and control lines for branches will be added shortly.

Read
register 1

Read
register 2

Write
register

Write
data

Registers
ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

ALU

control

Instruction [5–0]

MemtoReg ALUSrcB ALUOp

IorD MemRead MemWrite IRWrite RegDst RegWrite ALUSrcA

5.5 A Multicycle Implementation 323

and multiple readers of the value. Just as we reduced the number of functional units for

the datapath, we can reduce the number of buses interconnecting these units by shar-

ing the buses. For example, there are six sources coming to the ALU; however, only two

of them are needed at any one time. Thus, a pair of buses can be used to hold values

that are being sent to the ALU. Rather than placing a large multiplexor in front of the

FIGURE 5.28 The complete datapath for the multicycle implementation together with the necessary control lines. The con-
trol lines of Figure 5.27 are attached to the control unit, and the control and datapath elements needed to effect changes to the PC are included. The
major additions from Figure 5.27 include the multiplexor used to select the source of a new PC value; gates used to combine the PC write signals; and
the control signals PCSource, PCWrite, and PCWriteCond. The PCWriteCond signal is used to decide whether a conditional branch should be taken.
Support for jumps is included.

Read
register 1

Read
register 2

Write
register

Write
data

Registers
ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU

control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

324 Chapter 5 The Processor: Datapath and Control

ALU, a designer can use a shared bus and then ensure that only one of the sources is

driving the bus at any point. Although this saves signal lines, the same number of con-

trol lines will be needed to control what goes on the bus. The major drawback to using

such bus structures is a potential performance penalty, since a bus is unlikely to be as

fast as a point-to-point connection.

Actions of the 1-bit control signals

Signal name Effect when deasserted Effect when asserted

RegDst The register file destination number for the Write

register comes from the rt field.

The register file destination number for the Write register comes from the

rd field.

RegWrite None. The general-purpose register selected by the Write register number is

written with the value of the Write data input.

ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register.

MemRead None. Content of memory at the location specified by the Address input is put

on Memory data output.

MemWrite None. Memory contents at the location specified by the Address input is

replaced by value on Write data input.

MemtoReg The value fed to the register file Write data input

comes from ALUOut.

The value fed to the register file Write data input comes from the MDR.

IorD The PC is used to supply the address to the

memory unit.

ALUOut is used to supply the address to the memory unit.

IRWrite None. The output of the memory is written into the IR.

PCWrite None. The PC is written; the source is controlled by PCSource.

PCWriteCond None. The PC is written if the Zero output from the ALU is also active.

Actions of the 2-bit control signals

Signal name Value (binary) Effect

ALUOp 00 The ALU performs an add operation.

01 The ALU performs a subtract operation.

10 The funct field of the instruction determines the ALU operation.

ALUSrcB 00 The second input to the ALU comes from the B register.

01 The second input to the ALU is the constant 4.

10 The second input to the ALU is the sign-extended, lower 16 bits of the IR.

11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left

2 bits.

PCSource 00 Output of the ALU (PC + 4) is sent to the PC for writing.

01 The contents of ALUOut (the branch target address) are sent to the PC for writing.

10 The jump target address (IR[25:0] shifted left 2 bits and concatenated with

PC + 4[31:28]) is sent to the PC for writing.

FIGURE 5.29 The action caused by the setting of each control signal in Figure 5.28 on page 323. The top table describes the 1-bit
control signals, while the bottom table describes the 2-bit signals. Only those control lines that affect multiplexors have an action when they are deasserted.
This information is similar to that in Figure 5.16 on page 306 for the single-cycle datapath, but adds several new control lines (IRWrite, PCWrite,
PCWriteCond, ALUSrcB, and PCSource) and removes control lines that are no longer used or have been replaced (PCSrc, Branch, and Jump).

5.5 A Multicycle Implementation 325

Breaking the Instruction Execution into Clock Cycles

Given the datapath in Figure 5.28, we now need to look at what should happen in
each clock cycle of the multicycle execution, since this will determine what addi-
tional control signals may be needed, as well as the setting of the control signals. Our
goal in breaking the execution into clock cycles should be to maximize performance.
We can begin by breaking the execution of any instruction into a series of steps, each
taking one clock cycle, attempting to keep the amount of work per cycle roughly
equal. For example, we will restrict each step to contain at most one ALU operation,
or one register file access, or one memory access. With this restriction, the clock
cycle could be as short as the longest of these operations.

Recall that at the end of every clock cycle any data values that will be needed on
a subsequent cycle must be stored into a register, which can be either one of the
major state elements (e.g., the PC, the register file, or the memory), a temporary
register written on every clock cycle (e.g., A, B, MDR, or ALUOut), or a tempo-
rary register with write control (e.g., IR). Also remember that because our design
is edge-triggered, we can continue to read the current value of a register; the new
value does not appear until the next clock cycle.

In the single-cycle datapath, each instruction uses a set of datapath elements to
carry out its execution. Many of the datapath elements operate in series, using the
output of another element as an input. Some datapath elements operate in paral-
lel; for example, the PC is incremented and the instruction is read at the same
time. A similar situation exists in the multicycle datapath. All the operations listed
in one step occur in parallel within 1 clock cycle, while successive steps operate in
series in different clock cycles. The limitation of one ALU operation, one memory
access, and one register file access determines what can fit in one step.

Notice that we distinguish between reading from or writing into the PC or one
of the stand-alone registers and reading from or writing into the register file. In
the former case, the read or write is part of a clock cycle, while reading or writing
a result into the register file takes an additional clock cycle. The reason for this dis-
tinction is that the register file has additional control and access overhead com-
pared to the single stand-alone registers. Thus, keeping the clock cycle short
motivates dedicating separate clock cycles for register file accesses.

The potential execution steps and their actions are given below. Each MIPS
instruction needs from three to five of these steps:

1. Instruction fetch step

Fetch the instruction from memory and compute the address of the next sequen-
tial instruction:

IR <= Memory[PC];
PC <= PC + 4;

326 Chapter 5 The Processor: Datapath and Control

Operation: Send the PC to the memory as the address, perform a read, and write
the instruction into the Instruction register (IR), where it will be stored. Also,
increment the PC by 4. We use the symbol “<=” from Verilog; it indicates that all
right-hand sides are evaluated and then all assignments are made, which is effec-
tively how the hardware executes during the clock cycle.

To implement this step, we will need to assert the control signals MemRead and
IRWrite, and set IorD to 0 to select the PC as the source of the address. We also
increment the PC by 4, which requires setting the ALUSrcA signal to 0 (sending the
PC to the ALU), the ALUSrcB signal to 01 (sending 4 to the ALU), and ALUOp to 00
(to make the ALU add). Finally, we will also want to store the incremented instruc-
tion address back into the PC, which requires setting PC source to 00 and setting
PCWrite. The increment of the PC and the instruction memory access can occur in
parallel. The new value of the PC is not visible until the next clock cycle. (The incre-
mented PC will also be stored into ALUOut, but this action is benign.)

2. Instruction decode and register fetch step

In the previous step and in this one, we do not yet know what the instruction is, so
we can perform only actions that are either applicable to all instructions (such as
fetching the instruction in step 1) or are not harmful, in case the instruction isn’t
what we think it might be. Thus, in this step we can read the two registers indi-
cated by the rs and rt instruction fields, since it isn’t harmful to read them even if
it isn’t necessary. The values read from the register file may be needed in later
stages, so we read them from the register file and store the values into the tempo-
rary registers A and B.

We will also compute the branch target address with the ALU, which also is not
harmful because we can ignore the value if the instruction turns out not to be a
branch. The potential branch target is saved in ALUOut.

Performing these “optimistic” actions early has the benefit of decreasing the
number of clock cycles needed to execute an instruction. We can do these optimis-
tic actions early because of the regularity of the instruction formats. For
instance, if the instruction has two register inputs, they are always in the rs and rt
fields, and if the instruction is a branch, the offset is always the low-order 16 bits:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend (IR[15-0]) << 2);

Operation: Access the register file to read registers rs and rt and store the results
into the registers A and B. Since A and B are overwritten on every cycle, the regis-
ter file can be read on every cycle with the values stored into A and B. This step
also computes the branch target address and stores the address in ALUOut, where

5.5 A Multicycle Implementation 327

it will be used on the next clock cycle if the instruction is a branch. This requires
setting ALUSrcA to 0 (so that the PC is sent to the ALU), ALUSrcB to the value 11
(so that the sign-extended and shifted offset field is sent to the ALU), and ALUOp
to 00 (so the ALU adds). The register file accesses and computation of branch tar-
get occur in parallel.

After this clock cycle, determining the action to take can depend on the
instruction contents.

3. Execution, memory address computation, or branch completion

This is the first cycle during which the datapath operation is determined by the
instruction class. In all cases, the ALU is operating on the operands prepared in
the previous step, performing one of four functions, depending on the instruction
class. We specify the action to be taken depending on the instruction class:

Memory reference:

ALUOut <= A + sign-extend (IR[15:0]);

Operation: The ALU is adding the operands to form the memory address. This
requires setting ALUSrcA to 1 (so that the first ALU input is register A) and setting
ALUSrcB to 10 (so that the output of the sign extension unit is used for the second
ALU input). The ALUOp signals will need to be set to 00 (causing the ALU to add).

Arithmetic-logical instruction (R-type):

ALUOut <= A op B;

Operation: The ALU is performing the operation specified by the function code
on the two values read from the register file in the previous cycle. This requires
setting ALUSrcA = 1 and setting ALUSrcB = 00, which together cause the registers
A and B to be used as the ALU inputs. The ALUOp signals will need to be set to 10
(so that the funct field is used to determine the ALU control signal settings).

Branch:

if (A == B) PC <= ALUOut;

Operation: The ALU is used to do the equal comparison between the two registers
read in the previous step. The Zero signal out of the ALU is used to determine whether
or not to branch. This requires setting ALUSrcA = 1 and setting ALUSrcB = 00 (so that
the register file outputs are the ALU inputs). The ALUOp signals will need to be set to
01 (causing the ALU to subtract) for equality testing. The PCWriteCond signal will
need to be asserted to update the PC if the Zero output of the ALU is asserted. By set-

328 Chapter 5 The Processor: Datapath and Control

ting PCSource to 01, the value written into the PC will come from ALUOut, which
holds the branch target address computed in the previous cycle. For conditional
branches that are taken, we actually write the PC twice: once from the output of the
ALU (during the Instruction decode/register fetch) and once from ALUOut (during
the Branch completion step). The value written into the PC last is the one used for the
next instruction fetch.

Jump:

{x, y} is the Verilog notation for concatenation of
bit fields x and y
PC <= {PC [31:28], (IR[25:0]],2'b00)};

Operation: The PC is replaced by the jump address. PCSource is set to direct the
jump address to the PC, and PCWrite is asserted to write the jump address into
the PC.

4. Memory access or R-type instruction completion step

During this step, a load or store instruction accesses memory and an arithmetic-
logical instruction writes its result. When a value is retrieved from memory, it is
stored into the memory data register (MDR), where it must be used on the next
clock cycle.

Memory reference:

MDR <= Memory [ALUOut];

or

Memory [ALUOut] <= B;

Operation: If the instruction is a load, a data word is retrieved from memory and
is written into the MDR. If the instruction is a store, then the data is written into
memory. In either case, the address used is the one computed during the previous
step and stored in ALUOut. For a store, the source operand is saved in B. (B is
actually read twice, once in step 2 and once in step 3. Luckily, the same value is
read both times, since the register number—which is stored in IR and used to read
from the register file—does not change.) The signal MemRead (for a load) or
MemWrite (for store) will need to be asserted. In addition, for loads and stores,
the signal IorD is set to 1 to force the memory address to come from the ALU,
rather than the PC. Since MDR is written on every clock cycle, no explicit control
signal need be asserted.

5.5 A Multicycle Implementation 329

Arithmetic-logical instruction (R-type):

Reg[IR[15:11]] <= ALUOut;

Operation: Place the contents of ALUOut, which corresponds to the output of the
ALU operation in the previous cycle, into the Result register. The signal RegDst
must be set to 1 to force the rd field (bits 15:11) to be used to select the register file
entry to write. RegWrite must be asserted, and MemtoReg must be set to 0 so that
the output of the ALU is written, as opposed to the memory data output.

5. Memory read completion step

During this step, loads complete by writing back the value from memory.

Load:

Reg[IR[20:16]] <= MDR;

Operation: Write the load data, which was stored into MDR in the previous cycle,
into the register file. To do this, we set MemtoReg = 1 (to write the result from
memory), assert RegWrite (to cause a write), and we make RegDst = 0 to choose
the rt (bits 20:16) field as the register number.

This five-step sequence is summarized in Figure 5.30. From this sequence we
can determine what the control must do on each clock cycle.

Step name

Action for R-type

instructions

Action for memory-

reference instructions

Action for

branches

Action for

jumps

Instruction fetch IR <= Memory[PC]

PC <= PC + 4

Instruction decode/register fetch A <= Reg [IR[25:21]]

B <= Reg [IR[20:16]]

ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Execution, address computation,

branch/jump completion

ALUOut <= A op B ALUOut <= A + sign-extend

(IR[15:0])

if (A == B)

PC <= ALUOut

PC <= {PC [31:28],

(IR[25:0]],2'b00)}

Memory access or R-type

completion

Reg [IR[15:11]] <=

ALUOut

Load: MDR <= Memory[ALUOut]

or

Store: Memory [ALUOut] <= B

Memory read completion Load: Reg[IR[20:16]] <= MDR

FIGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the instruction class. After these steps, an instruction takes from one to three more cycles to complete, depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction completes, so these cycles are
not idle or wasted. As mentioned earlier, the register file actually reads every cycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or R-type instruction, is the same as
the value stored into B during the Execution stage and then used in the Memory access stage for a store word instruction.

330 Chapter 5 The Processor: Datapath and Control

Defining the Control

Now that we have determined what the control signals are and when they must be
asserted, we can implement the control unit. To design the control unit for the
single-cycle datapath, we used a set of truth tables that specified the setting of the
control signals based on the instruction class. For the multicycle datapath, the
control is more complex because the instruction is executed in a series of steps.
The control for the multicycle datapath must specify both the signals to be set in
any step and the next step in the sequence.

In this subsection and in Section 5.7, we will look at two different techniques
to specify the control. The first technique is based on finite state machines that are
usually represented graphically. The second technique, called microprogramming,
uses a programming representation for control. Both of these techniques repre-
sent the control in a form that allows the detailed implementation—using gates,
ROMs, or PLAs—to be synthesized by a CAD system. In this chapter, we will
focus on the design of the control and its representation in these two forms.

Section 5.8 shows how hardware design languages are used to design modern
processors with examples of both the multicycle datapath and the finite state control.
In modern digital systems design, the final step of taking a hardware description to
actual gates is handled by logic and datapath synthesis tools. Appendix C shows how
this process operates by translating the multicycle control unit to a detailed hardware
implementation. The key ideas of control can be grasped from this chapter without
examining the material in either Section 5.8 or Appendix C. However, if you
want to actually do some hardware design, Section 5.9 is useful, and Appendix C
can show you what the implementations are likely to look like at the gate level.

Given this implementation, and the knowledge that each state requires 1 clock
cycle, we can find the CPI for a typical instruction mix.

CPI in a Multicycle CPU

Using the SPECINT2000 instruction mix shown in Figure 3.26, what is the
CPI, assuming that each state in the multicycle CPU requires 1 clock cycle?

The mix is 25% loads (1% load byte + 24% load word), 10% stores (1% store
byte + 9% store word), 11% branches (6% beq, 5% bne), 2% jumps (1%
jal + 1% jr), and 52% ALU (all the rest of the mix, which we assume to be
ALU instructions). From Figure 5.30 on page 329, the number of clock cycles
for each instruction class is the following:

microprogram A symbolic
representation of control in the
form of instructions, called
microinstructions, that are exe-
cuted on a simple micromachine.

EXAMPLE

ANSWER

5.5 A Multicycle Implementation 331

The first method we use to specify the multicycle control is a finite state
machine. A finite state machine consists of a set of states and directions on how to
change states. The directions are defined by a next-state function, which maps the
current state and the inputs to a new state. When we use a finite state machine for
control, each state also specifies a set of outputs that are asserted when the
machine is in that state. The implementation of a finite state machine usually
assumes that all outputs that are not explicitly asserted are deasserted. Similarly,
the correct operation of the datapath depends on the fact that a signal that is not
explicitly asserted is deasserted, rather than acting as a don’t care. For example,
the RegWrite signal should be asserted only when a register file entry is to be writ-
ten; when it is not explicitly asserted, it must be deasserted.

■ Loads: 5

■ Stores: 4

■ ALU instructions: 4

■ Branches: 3

■ Jumps: 3

The CPI is given by the following:

The ratio

is simply the instruction frequency for the instruction class i. We can there-
fore substitute to obtain

This CPI is better than the worst-case CPI of 5.0 when all the instructions
take the same number of clock cycles. Of course, overheads in both designs
may reduce or increase this difference. The multicycle design is probably also
more cost-effective, since it uses fewer separate components in the datapath.

CPI
CPU clock cycles

Instruction count
--

Instruction count ∑ i
CPIi ×

Instruction count
--= =

Instruction counti
Instruction count
--- CPIi

×

 ∑=

Instruction counti

Instruction count
--

CPI 0.25 5 0.10 4 0.52 4 0.11 3 0.02 3×+×+×+×+× 4.12= =

finite state machine A sequen-
tial logic function consisting of a
set of inputs and outputs, a next-
state function that maps the cur-
rent state and the inputs to a new
state, and an output function
that maps the current state and
possibly the inputs to a set of
asserted outputs.

next-state function A combi-
national function that, given the
inputs and the current state,
determines the next state of a
finite state machine.

332 Chapter 5 The Processor: Datapath and Control

Multiplexor controls are slightly different, since they select one of the inputs
whether they are 0 or 1. Thus, in the finite state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement the
finite state machine with logic, setting a control to 0 may be the default and thus
may not require any gates. A simple example of a finite state machine appears in
Appendix B, and if you are unfamiliar with the concept of a finite state machine,
you may want to examine Appendix B before proceeding.

The finite state control essentially corresponds to the five steps of execution
shown on pages 325 through 329; each state in the finite state machine will take 1
clock cycle. The finite state machine will consist of several parts. Since the first two
steps of execution are identical for every instruction, the initial two states of the
finite state machine will be common for all instructions. Steps 3 through 5 differ,
depending on the opcode. After the execution of the last step for a particular
instruction class, the finite state machine will return to the initial state to begin
fetching the next instruction.

Figure 5.31 shows this abstracted representation of the finite state machine. To
fill in the details of the finite state machine, we will first expand the instruction
fetch and decode portion, and then we will show the states (and actions) for the
different instruction classes.

We show the first two states of the finite state machine in Figure 5.32 using a
traditional graphic representation. We number the states to simplify the explana-
tion, though the numbers are arbitrary. State 0, corresponding to step 1, is the
starting state of the machine.

The signals that are asserted in each state are shown within the circle represent-
ing the state. The arcs between states define the next state and are labeled with

FIGURE 5.31 The high-level view of the finite state machine control. The first steps are inde-
pendent of the instruction class; then a series of sequences that depend on the instruction opcode are used
to complete each instruction class. After completing the actions needed for that instruction class, the con-
trol returns to fetch a new instruction. Each box in this figure may represent one to several states. The arc
labeled Start marks the state in which to begin when the first instruction is to be fetched.

Start

Memory access
instructions
(Figure 5.33)

R-type instructions
(Figure 5.34)

Branch instruction
(Figure 5.35)

Jump instruction
(Figure 5.36)

Instruction fetch/decode and register fetch
(Figure 5.32)

5.5 A Multicycle Implementation 333

conditions that select a specific next state when multiple next states are possible.
After state 1, the signals asserted depend on the class of instruction. Thus, the
finite state machine has four arcs exiting state 1, corresponding to the four
instruction classes: memory reference, R-type, branch on equal, and jump. This
process of branching to different states depending on the instruction is called
decoding, since the choice of the next state, and hence the actions that follow,
depend on the instruction class.

FIGURE 5.32 The instruction fetch and decode portion of every instruction is identi-

cal. These states correspond to the top box in the abstract finite state machine in Figure 5.31. In the first
state we assert two signals to cause the memory to read an instruction and write it into the Instruction
register (MemRead and IRWrite), and we set IorD to 0 to choose the PC as the address source. The signals
ALUSrcA, ALUSrcB, ALUOp, PCWrite, and PCSource are set to compute PC + 4 and store it into the PC.
(It will also be stored into ALUOut, but never used from there.) In the next state, we compute the branch
target address by setting ALUSrcB to 11 (causing the shifted and sign-extended lower 16 bits of the IR to
be sent to the ALU), setting ALUSrcA to 0 and ALUOp to 00; we store the result in the ALUOut register,
which is written on every cycle. There are four next states that depend on the class of the instruction,
which is known during this state. The control unit input, called Op, is used to determine which of these
arcs to follow. Remember that all signals not explicitly asserted are deasserted; this is particularly impor-
tant for signals that control writes. For multiplexors controls, lack of a specific setting indicates that we
do not care about the setting of the multiplexor.

MemRead
ALUSrcA = 0
IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00
PCWrite

PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

Memory-reference FSM
(Figure 5.33)

R-type FSM
(Figure 5.34)

Branch FSM
(Figure 5.35)

Jump FSM
(Figure 5.36)

Instruction decode/
Register fetch

Instruction fetch

0 1

Start

(O
p =
 'L
W
') o
r (
Op
 =
'SW

')

(O
p
=
R-
ty
pe
)

(O
p
=
 'B
E
Q
')

(O
p
 =
 'J
')

334 Chapter 5 The Processor: Datapath and Control

Figure 5.33 shows the portion of the finite state machine needed to implement
the memory-reference instructions. For the memory-reference instructions, the
first state after fetching the instruction and registers computes the memory
address (state 2). To compute the memory address, the ALU input multiplexors
must be set so that the first input is the A register, while the second input is the
sign-extended displacement field; the result is written into the ALUOut register.
After the memory address calculation, the memory should be read or written; this
requires two different states. If the instruction opcode is

lw, then state 3 (corre-

FIGURE 5.33 The finite state machine for controlling memory-reference instructions has

four states. These states correspond to the box labeled “Memory access instructions” in Figure 5.31.
After performing a memory address calculation, a separate sequence is needed for load and for store. The
setting of the control signals ALUSrcA, ALUSrcB, and ALUOp is used to cause the memory address compu-
tation in state 2. Loads require an extra state to write the result from the MDR (where the result is written in
state 3) into the register file.

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

From state 1

(Op = 'LW') or (Op = 'SW')

Memory address computation

Memory
access

MemRead
IorD = 1

MemWrite
IorD = 1

RegWrite
MemtoReg =1
RegDst = 0

Memory read completion step

To state 0
(Figure 5.32)

2

3

4

5

Memory
access

(O
p = 'S

W
')

(O
p
 =
 'L
W
')

5.5 A Multicycle Implementation 335

sponding to the step Memory access) does the memory read (MemRead is
asserted). The output of the memory is always written into MDR. If it is

sw, state 5
does a memory write (MemWrite is asserted). In states 3 and 5, the signal IorD is
set to 1 to force the memory address to come from the ALU. After performing a
write, the instruction

sw has completed execution, and the next state is state 0. If
the instruction is a load, however, another state (state 4) is needed to write the
result from the memory into the register file. Setting the multiplexor controls
MemtoReg = 1 and RegDst = 0 will send the loaded value in the MDR to be writ-
ten into the register file, using rt as the register number. After this state, corre-
sponding to the Memory read completion step, the next state is state 0.

To implement the R-type instructions requires two states corresponding to
steps 3 (Execute) and 4 (R-type completion). Figure 5.34 shows this two-state
portion of the finite state machine. State 6 asserts ALUSrcA and sets the ALUSrcB

FIGURE 5.34 R-type instructions can be implemented with a simple two-state finite

state machine. These states correspond to the box labeled “R-type instructions” in Figure 5.31. The first
state causes the ALU operation to occur, while the second state causes the ALU result (which is in ALUOut)
to be written in the register file. The three signals asserted during state 7 cause the contents of ALUOut to be
written into the register file in the entry specified by the rd field of the Instruction register.

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

From state 1

(Op = R-Type)

Execution

RegDst =1
RegWrite

MemtoReg = 0

To state 0
(Figure 5.32)

6

7

R-type completion

336 Chapter 5 The Processor: Datapath and Control

signals to 00; this forces the two registers that were read from the register file to be
used as inputs to the ALU. Setting ALUOp to 10 causes the ALU control unit to
use the function field to set the ALU control signals. In state 7, RegWrite is
asserted to cause the register file to write, RegDst is asserted to cause the rd field to
be used as the register number of the destination, and MemtoReg is deasserted to
select ALUOut as the source of the value to write into the register file.

For branches, only a single additional state is necessary because they complete
execution during the third step of instruction execution. During this state, the
control signals that cause the ALU to compare the contents of registers A and B
must be set, and the signals that cause the PC to be written conditionally with the
address in the ALUOut register are also set. To perform the comparison requires
that we assert ALUSrcA and set ALUSrcB to 00, and set the ALUOp value to 01
(forcing a subtract). (We use only the Zero output of the ALU, not the result of the
subtraction.) To control the writing of the PC, we assert PCWriteCond and set
PCSource = 01, which will cause the value in the ALUOut register (containing the
branch address calculated in state 1, Figure 5.32 on page 333) to be written into
the PC if the Zero bit out of the ALU is asserted. Figure 5.35 shows this single
state.

The last instruction class is jump; like branch, it requires only a single state
(shown in Figure 5.36) to complete its execution. In this state, the signal PCWrite
is asserted to cause the PC to be written. By setting PCSource to 10, the value sup-
plied for writing will be the lower 26 bits of the Instruction register with 00two
added as the low-order bits concatenated with the upper 4 bits of the PC.

We can now put these pieces of the finite state machine together to form a spec-
ification for the control unit, as shown in Figure 5.38. In each state, the signals
that are asserted are shown. The next state depends on the opcode bits of the
instruction, so we label the arcs with a comparison for the corresponding instruc-
tion opcodes.

A finite state machine can be implemented with a temporary register that holds
the current state and a block of combinational logic that determines both the datap-
ath signals to be asserted as well as the next state. Figure 5.37 shows how such an
implementation might look. Appendix C describes in detail how the finite state
machine is implemented using this structure. In Section C.3, the combinational
control logic for the finite state machine of Figure 5.38 is implemented both with a
ROM (read-only memory) and a PLA (programmable logic array). (Also see
Appendix B for a description of these logic elements.) In the next section of this
chapter, we consider another way to represent control. Both of these techniques are
simply different representations of the same control information.

Pipelining, which is the subject of Chapter 6, is almost always used to accelerate
the execution of instructions. For simple instructions, pipelining is capable of
achieving the higher clock rate of a multicycle design and a single-cycle CPI of a
single-clock design. In most pipelined processors, however, some instructions
take longer than a single cycle and require multicycle control. Floating point-

5.5 A Multicycle Implementation 337

FIGURE 5.35 The branch instruction requires a single state. The first three outputs that are
asserted cause the ALU to compare the registers (ALUSrcA, ALUSrcB, and ALUOp), while the signals
PCSource and PCWriteCond perform the conditional write if the branch condition is true. Notice that we
do not use the value written into ALUOut; instead, we use only the Zero output of the ALU. The branch tar-
get address is read from ALUOut, where it was saved at the end of state 1.

FIGURE 5.36 The jump instruction requires a single state that asserts two control sig-

nals to write the PC with the lower 26 bits of the Instruction register shifted left 2 bits

and concatenated to the upper 4 bits of the PC of this instruction.

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

From state 1

(Op = 'BEQ')

Branch completion

To state 0
(Figure 5.32)

8

PCWrite
PCSource = 10

From state 1

(Op = 'J')

Jump completion

To state 0
(Figure 5.32)

9

338 Chapter 5 The Processor: Datapath and Control

instructions are one universal example. There are many examples in the IA-32
architecture that require the use of multicycle control.

Elaboration: The style of finite state machine in Figure 5.37 is called a Moore

machine, after Edward Moore. Its identifying characteristic is that the output depends

only on the current state. For a Moore machine, the box labeled combinational control

logic can be split into two pieces. One piece has the control output and only the state

input, while the other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The

Mealy machine allows both the input and the current state to be used to determine the

output. Moore machines have potential implementation advantages in speed and size

of the control unit. The speed advantages arise because the control outputs, which are

needed early in the clock cycle, do not depend on the inputs, but only on the current

state. In Appendix C, when the implementation of this finite state machine is taken

down to logic gates, the size advantage can be clearly seen.The potential disadvantage

of a Moore machine is that it may require additional states. For example, in situations

FIGURE 5.37 Finite state machine controllers are typically implemented using a block of

combinational logic and a register to hold the current state. The outputs of the combinational
logic are the next-state number and the control signals to be asserted for the current state. The inputs to the
combinational logic are the current state and any inputs used to determine the next state. In this case, the inputs
are the instruction register opcode bits. Notice that in the finite state machine used in this chapter, the outputs
depend only on the current state, not on the inputs. The Elaboration above explains this in more detail.

Combinational
control logic

Outputs

Inputs

State register

Next state

Datapath control outputs

Inputs from instruction
register opcode field

5.5 A Multicycle Implementation 339

FIGURE 5.38 The complete finite state machine control for the datapath shown in

Figure 5.28. The labels on the arcs are conditions that are tested to determine which state is the next state;
when the next state is unconditional, no label is given. The labels inside the nodes indicate the output sig-
nals asserted during that state; we always specify the setting of a multiplexor control signal if the correct
operation requires it. Hence, in some states a multiplexor control will be set to 0.

MemRead
ALUSrcA = 0
IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00
PCWrite

PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 1
RegWrite

MemtoReg = 0

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

Instruction decode/
register fetch

Instruction fetch

0 1

Start

(O
p =
 'L
W
') o
r (
Op
 =
'SW

')

(O
p
=
R
-ty
pe
)

(O
p
 =
 'B
E
Q
')

(O
p
 =
 'J
')

Jump
completion

9862

3

4

5 7

Memory read
completon step

R-type completion

Memory
access

Memory
access

Execution
Branch

completion
Memory address
computation

(O
p = 'S

W
')

(O
p
 =
 'L
W
')

340 Chapter 5 The Processor: Datapath and Control

where there is a one-state difference between two sequences of states, the Mealy

machine may unify the states by making the outputs depend on the inputs.

Check

Yourself

1. True or false: Since the jump instruction does not depend on the register
values or on computing the branch target address, it can be completed dur-
ing the second state, rather than waiting until the third.

2. True, false, or maybe: The control signal PCWriteCond can be replaced by
PCSource[0].

Understanding

Program

Performance

For a processor with a given clock rate, the relative performance between two code
segments will be determined by the product of the CPI and the instruction count
to execute each segment. As we have seen here, instructions can vary in their CPI,
even for a simple processor. In the next two chapters, we will see that the intro-
duction of pipelining and the use of caches create even larger opportunities for
variation in the CPI. Although many factors that affect the CPI are controlled by
the hardware designer, the programmer, the compiler, and software system dictate
what instructions are executed, and it is this process that determines what the
effective CPI for the program will be. Programmers seeking to improve perfor-
mance must understand the role of CPI and the factors that affect it.

5.6

