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THE ENDING OF Moore’s Law leaves domain-specific 
architectures as the future of computing. A trailblazing 
example is the Google’s tensor processing unit (TPU), 
first deployed in 2015, and that provides services today 
for more than one billion people. It runs deep neural 
networks (DNNs) 15 to 30 times faster with 30 to 80 
times better energy efficiency than contemporary CPUs 
and GPUs in similar technologies. 

All exponential laws must come to an end.26 
In 1965, Gordon Moore predicted the number 

of transistors per chip would double every year or 
two. Despite the claim to the contrary on the cover 
of Communications (January 2017) that “Reports of 
My Death Are Greatly Exaggerated,” Moore’s Law is 
indeed ending. The DRAM chip introduced in 2014 
contained eight billion transistors, and a 16-billion 
transistor DRAM chip will not be in mass production 
until 2019, but Moore’s Law predicts a four-times 

larger DRAM chip. A 2010 Intel Xeon E5 
microprocessor had 2.3 billion transis-
tors vs. the 2016 Xeon E5 with 7.2 billion 
transistors, or off by a factor of 2.5 from 
Moore’s Law. Semiconductor processing 
continues to improve but more slowly 
than in the past. 

A lesser-known but just-as-impor-
tant observation is Dennard Scaling. 
Robert Dennard’s insight in 1974 was 
that power density is constant as tran-
sistors get smaller. If a transistor’s lin-
ear dimension shrank by a factor of 2, 
that gives 4× the number of transistors. 
If both the current and voltage are also 
reduced by a factor of 2, the power it 
used would fall by 4, giving the same 
power at the same frequency. Dennard 
scaling ended 30 years after it was first 
observed, not because transistors did 
not continue to shrink but because cur-
rent and voltage could not keep drop-
ping while remaining dependable. 

Computer architects rode Moore’s 
Law and Dennard scaling to turn in-
creased resources into performance 
with sophisticated processor designs 
and memory hierarchies that exploited 
parallelism between individual instruc-
tions without the programmer’s knowl-
edge. Alas, architects eventually ran 
out of instruction-level parallelism that 
could be exploited efficiently. The end of 
Dennard scaling and the lack of greater 
(efficient) instruction-level parallelism 
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 ˽ Though it is an application-specific integrated 

circuit, the TPU chip is programmed in 
the TensorFlow framework for neural 
networks to drive many important 
applications in Google datacenters, 
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computers that usually run faster but 
also slower in some circumstances. 
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mance for the past 40 years. At the 
current rate, performance on stan-
dard processor benchmarks will not 
double before 2038. 

Since transistors are not getting 
much better (reflecting the end of 
Moore’s Law), the peak power per mm2 
of chip area is increasing (due to the 
end of Dennard scaling), but the power 
budget per chip is not increasing (due 
to electro-migration and mechanical 
and thermal limits), and chip design-
ers have already played the multi-core 
card (which is limited by Amdahl’s 
Law), architects now widely believe the 
only path left for major improvements 
in performance-cost-energy is domain-

specific architectures.17 They do only a 
few tasks but do them extremely well. 

The synergy between the large da-
tasets in the cloud and the numerous 
computers that power it has enabled 
remarkable advancements in machine 
learning, especially in DNNs. Unlike 
some domains, DNNs are broadly ap-
plicable. DNN breakthroughs include 
reducing word error rates in speech 
recognition by 30% over traditional ap-
proaches, the biggest gain in 20 years;11 
cutting the error rate in an image-recog-
nition competition ongoing since 2011 
from 26% to 3.5%;16,22,34 beating a human 
champion at Go;32 improved search 
ranking; and many more. A DNN archi-
tecture can benefit from a narrow focus 
yet still have many applications. 

Neural networks target brain-like 
functionality and are based on a simple 
artificial neuron—a nonlinear function 
(such as max(0,value)) of a weighted 
sum of the inputs. These artificial neu-
rons are collected into layers, with the 
outputs of one layer becoming the in-
puts of the next layer in the sequence. 
The “deep” part of DNN comes from 
going beyond a few layers, as the large 
datasets in the cloud allow more accu-
rate models to be built by using extra 
and larger layers to capture higher-level 
patterns or concepts, and GPUs provide 
enough computing to develop them. 

The two phases of a DNN are called 
training (or learning) and inference (or 
prediction) and refer to development vs. 
production. Training a DNN takes days, 
but a trained DNN can infer or predict in 
milliseconds. The developer chooses the 
number of layers and the type of DNN 

in 2004 forced the industry to switch 
from a single energy-hogging processor 
per microprocessor to multiple efficient 
processors or cores per chip. 

A law that is just as true today as 
when Gene Amdahl introduced it in 
1967 demonstrates the diminishing 
returns from increasing the number 
of processors. Amdahl’s Law says the 
theoretical speedup from parallelism 
is limited by the sequential part of the 
task; if ¹/8 of the task is serial, the maxi-
mum speedup is 8× the original perfor-
mance, even if the rest is easily parallel 
and the architect adds 100 processors. 

Figure 1 indicates the effect of 
these three laws on processor perfor-

Figure 1. Following Hennessy and Patterson,17 we plotted highest SPECCPUint performance 
per year for 32-bit and 64-bit processor cores over the past 40 years; the throughput-
oriented SPECCPUint_rate reflects a similar profile, with plateauing delayed a few years. 
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Table 1. Six DNN applications (two per DNN type) representing 95% of the TPU’s workload, as of July 2016. 

Name LOC

Layers Nonlinear  
function Weights

TPU Ops / 
Weight Byte TPU Batch Size

% of Deployed 
TPUs in 2016FC Conv Vector Pool Total

MLP0 100 5 5 ReLU 20M 200 200
61%

MLP1 1,000 4 4 ReLU 5M 168 168

LSTM0 1,000 24 34 58 sigmoid, tanh 52M 64 64
29%

LSTM1 1,500 37 19 56 sigmoid, tanh 34M 96 96

CNN0 1,000 16 16 ReLU 8M 2,888 8
5%

CNN1 1,000 4 72 13 89 ReLU 100M 1,750 32

The columns are the DNN name; the number of lines of code; the types and number of layers in 
the DNN; FC is fully connected; Conv is convolution; Vector is binary element-wise operations; Pool 
is pooling, which does nonlinear downsizing on the TPU; nonlinear function; number of weights; 
operational intensity; batch size; and TPU application popularity, as of July 2016. One MultiLayer 
Perceptron (MLP) is RankBrain;9 one long short-term memory (LSTM) is a subset of GNM Trans-
late;37 one convolutional neural net (CNN) is Inception, and the other CNN is DeepMind AlphaGo.19,32 
ReLU stands for Rectified Linear Unit and is the function max(0,value). 
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Google engineers optimized the 
design from a system perspective. To 
reduce interactions with the host CPU, 
the TPU runs whole inference models 
yet offers flexibility to match the DNNs 
of 2015 and later by not limiting focus 
to DNNs of 2013. 

Figure 2 is the block diagram of the 
TPU. The TPU instructions are sent from 
the host over the peripheral component 
interconnect express (PCIe) Gen3 x16 
bus into an instruction buffer. The inter-
nal blocks are typically connected to-
gether by 256-byte-wide paths. Starting 
in the upper-right corner, the matrix 
multiply unit is the heart of the TPU, 
with 256×256 MACs that can perform 

(see the first sidebar “Types of Deep 
Neural Networks”) and training deter-
mines the weights. Virtually all training 
is in floating point, which is one reason 
GPUs have been so popular for training. 

A step called “quantization” trans-
forms floating-point numbers into nar-
row integers—often just eight bits—that 
are usually good enough for inference. 
Eight-bit integer multiplies can require 
6× less energy and take 6× less area than 
IEEE 754 16-bit floating-point multi-
plies, and the edge for integer addition 
is 13× in energy and 38× in area.10 

Table 1 reports two examples of each 
of the three types of DNNs—represent-
ing 95% of DNN inference workload in 
Google’s datacenters in 2016—we use as 
benchmarks. Typically written in Ten-
sorFlow,1 they are surprisingly short, 
just 100 to 1,500 lines of code. These 
examples represent small components 
of larger applications that run on the 
host server, which can be thousands to 
millions of lines of C++ code. The appli-
cations are typically user-facing, which 
leads to rigid response-time limits. 

Each model needs between five mil-
lion and 100 million weights, as in Ta-
ble 1, which can take a lot of time and 
energy to access (see the second sidebar 
“Energy Proportionality”). To amortize 
the access costs, the same weights are 
reused across a batch of independent 
examples during inference or training, 
which improves performance. 

TPU Origin, Architecture, 
Implementation 
Starting as early as 2006, Google con-
sidered deploying GPUs, field program-
mable gate arrays (FPGAs), or custom 
application-specific integrated circuits 
(ASICs) in its datacenters. The conclu-
sion was that the few applications that 
could run on special hardware could be 
done virtually for free using the excess 
capacity of Google’s large datacenters, 
and it is difficult to improve on free. 
That changed in 2013 when a projec-
tion in which Google users searched by 
voice for three minutes per day using 
speech recognition DNNs would dou-
ble Google datacenters’ computation 
demands, which would be very expen-
sive using conventional CPUs. Google 
thus started a high-priority project 
to quickly produce a custom chip for 
inference and bought off-the-shelf 
GPUs for training. The goal was to im-

prove cost-performance by 10×. Given 
this mandate, the TPU was designed, 
verified, built, and deployed in Google 
datacenters in just 15 months. 

To reduce the risk of delaying 
deployment, Google engineers de-
signed the TPU to be a coprocessor 
on the I/O bus rather than be tightly 
integrated with a CPU, allowing it 
to plug into existing servers just as 
a GPU does. Moreover, to simplify 
hardware design and debugging, the 
host server sends TPU instructions 
for it to execute rather than fetch 
them itself. The TPU is thus closer in 
spirit to a floating-point unit (FPU) 
coprocessor than it is to a GPU. 

Thermal design power (TDP) affects 
the cost of provisioning power, as 
datacenters must supply sufficient 
power and cooling when hardware 
operates at full power. However, the 
cost of electricity is based on the 
average consumed as the workload 
varies during the day. Barroso and 
Hölzle4 found servers are 100% busy 
less than 10% of the time and thus 
advocated energy proportionality, 
arguing that servers should 
consume power proportional to the 
amount of work performed. The 
estimate of power consumed in 
Figure 4 is based on the fraction of 
the TDP seen in Google datacenters. 

We measured performance and power of the three servers running the 
production program CNN0, as the offered workload utilization varies, then 
normalized to the number of chips per server. 

The sidebar figure shows the TPU has the lowest power—40W per chip—but 
has poor energy proportionality. (Google’s short TPU design schedule prevented 
inclusion of many energy-saving features.) The Haswell CPU had the best energy 
proportionality in 2016. In a combined TPU-Haswell system, CPU workload is 
reduced and thus so is CPU power. Consequently, the Haswell server plus four  
low-power TPUs uses less than 20% additional power but runs CNN0 80× faster  
than the Haswell server alone, as it has four TPUs vs. two CPUs. 

Energy Proportionality

Three kinds of DNNs are popular in Google datacenters today: 
Multi-layer perceptrons (MLPs). For multi-layer perceptrons, each new layer is a set 

of nonlinear functions of a weighted sum of all outputs (fully connected) from a 
prior output; 

Convolutional neural networks (CNNs). In convolutional neural networks, each 
ensuing layer is a set of nonlinear functions of weighted sums of spatially nearby 
subsets of outputs from the prior layer, with weights reused spatially; and 

Recurrent neural networks (RNNs). For RNNs, each subsequent layer is a collection 
of nonlinear functions of weighted sums of outputs and the previous state. The most 
popular RNN is long short-term memory (LSTM); the art of the LSTM is in deciding 
what to forget and what to pass on as state to the next layer. The weights are reused 
across time steps. 

Types of Deep  
Neural Networks

The TPU has the lowest power but also poor 
energy proportionality. 
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The weights for the matrix unit are 
staged through an on-chip “Weight 
FIFO” that reads from an off-chip eight-
gigabyte DRAM we call “weight memo-
ry”; for inference, weights are read-only; 
eight gigabytes supports many simul-
taneously active models. The weight 
FIFO is four tiles deep. The intermedi-

ate results are held in the 24 MiB on-
chip “unified buffer” that can serve as 
inputs to the Matrix Unit. A program-
mable DMA controller transfers data 
to or from CPU Host memory and the 
Unified Buffer. To be able to deploy de-
pendably at Google scale, internal and 
external memory include built-in error-
detection-and-correction hardware. 

The philosophy behind the TPU mi-
croarchitecture is to keep the matrix 
unit busy. Toward that end, the instruc-
tion that reads the weights follows the 
decoupled-access/execute philosophy,33 
in that it can complete after sending 
its address but before the weight is 
fetched from weight memory. The ma-
trix unit will stall if the input activation 
or weight data is not ready. 

As reading a large static random-ac-
cess memory (SRAM) uses much more 
power than arithmetic, the matrix unit 
uses “systolic execution” to save energy 
by reducing reads and writes of the Uni-
fied Buffer.23 It relies on data from dif-
ferent directions arriving at cells in an 
array at regular intervals where they are 
combined. A given 65,536-element vec-
tor-matrix multiply operation moves 
through the matrix as a diagonal wave-
front. The weights are preloaded and 
take effect with the advancing wave 
alongside the first data of a new block. 
Control and data are pipelined to give 

eight-bit multiply-and-adds on signed 
or unsigned integers. The 16-bit prod-
ucts are collected in the four mega-
bytes of 32-bit Accumulators below the 
matrix unit. The four MiB represents 
4,096, 256-element, 32-bit accumula-
tors. The matrix unit produces one 
256-element partial sum per cycle. 

Table 3. The gap between Nvidia GPU announcements and cloud deployment, 2015 to 
2017.5,6 The GPU generations are Kepler, Maxwell, Pascal, and Volta. 

Model mm2 nm

Deployment Gap (months)

 AWS Azure  AWS Azure

K80 28  Nov. 2014 Sept. 2016 Dec. 2016 22 25

M60 28 Aug. 2015 July 2017 — 23 --

P100 16 Apr. 2016 — May 2017 -- 13

V100 12 May 2017 Oct. 2017 Dec. 2017 5 7

Table 2. Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. 

Model mm2 nm MHz
TDP 
Chip 

TOPS/s

GB/s
Chips/ 
Server

TDP 
Server8b FP

Haswell CPU 662 22 2,300 145W 2.6 1.3 51 2 504W

Nvidia K80 
GPU

561 28 560 150W — 2.8 160 8
1,838W

TPU <331 28 700 75W 92 — 34 4 861W

Haswell has 18 cores and the K80 13 processors. The GPU and TPU use the Haswell server as 
host. The semiconductor technology is in nm. TDP stands for thermal design power; TOPS/s is 1012 
operations/second; memory bandwidth is gigabytes/second, and the TPU die is less than half  
the size of the Haswell die.   

Figure 2. TPU block diagram and floor plan. 
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of the roofline. The x-axis is operational 
intensity, measured as floating-point 
operations per DRAM-byte accessed. 
Memory bandwidth is bytes per second, 
which turns into the “slanted” part of 
the roofline, since (FLOPS/sec)/ (FLOPS/
Byte) = Bytes/sec. Without sufficient 
operational intensity, a program is 
memory-bandwidth-bound and lives 
under the slanted part of the roofline. 

The gap between the actual opera-
tions per second of an application and 
the ceiling directly above it shows the 
potential benefit of further perfor-
mance tuning while leaving operational 
intensity untouched; optimizations that 
increase operational intensity (such as 
cache blocking) might yield even great-
er performance benefit. 

To use the Roofline model for the 
TPU, when DNN applications are quan-
tized, we first replaced floating-point 
operations with integer operations. As 
weights do not normally fit in on-chip 
memory for DNN applications, the sec-
ond change was to redefine operation-
al intensity to be integer multiply-accu-
mulate operations per byte of weights 
read, as in Table 1. 

Figure 3 shows the Roofline models 
for a single die of the TPU, CPU, and 
GPU on log-log scales. The TPU has a 
long “slanted” part of its roofline, where 

the illusion to the programmer that 
the 256 inputs are read at once and in-
stantly update one location of each of 
256 accumulators. From a correctness 
perspective, software is unaware of the 
systolic nature of the matrix unit, but, 
for performance, must account for the 
latency of the unit. 

The TPU software stack had to be 
compatible with those developed for 
CPUs and GPUs so applications could 
be ported quickly to the TPU. The por-
tion of the application run on the TPU 
is typically written in TensorFlow and 
compiled into an API that can run on 
GPUs or TPUs.24 

CPU, GPU, TPU Platforms 
Most architecture research papers are 
based on simulations running small, 
easily portable benchmarks that project 
potential performance if ever imple-
mented. This article is not one of them 
but rather a retrospective evaluation of 
machines running real, large produc-
tion workloads in datacenters since 
2015, some used routinely by more than 
one billion people. These six applica-
tions, as in Table 1, are representative of 
95% of TPU datacenter use in 2016. 

Since we are measuring production 
workloads, the benchmark platforms 
for us to compare must also be deploy-
able in Google datacenters, as that is the 
only place the production workloads 
run. The many servers in Google data-
centers and the requirements for ap-
plication dependability at Google scale 
mean machines must at minimum 
check for memory errors. As the Nvidia 
Maxwell GPU and the more recent Pas-
cal P40 GPU do not check for errors on 
internal memory, it is infeasible to de-
ploy these processors at Google scale 
and meet the strict reliability require-
ments of Google applications. 

Table 2 reports the servers deployed 
in Google datacenters we can compare 
to the TPU. The traditional CPU server 
is represented by an 18-core, dual-
socket Haswell processor from Intel, a 
platform that is also the host server for 
GPUs or TPUs. Google engineers use 
four TPU chips in the server. 

Some computer architects are un-
aware of the time between when a 
product is announced and when the 
chips, boards, and software are ready 
to reliably serve customers in data-
centers. Table 3 identifies that gap 

for GPUs in commercial cloud com-
panies was, from 2014 to 2017, five to 
25 months. Hence, the right GPU to 
compare to the 2015 TPU is clearly the 
Nvidia K80, which is in the same semi-
conductor process and was announced 
six months before TPU deployment. 

Each K80 card contains two dies and 
offers error detection and correction 
on internal memory and DRAM. Up to 
eight K80 dies can be installed in this 
server, which is the configuration we 
benchmark. Both the CPU and GPU use 
large dies—approximately 600 mm2, or 
three times the size of a Core i7. 

Performance: Rooflines, 
Response Time, Throughput 
To illustrate the performance of the 
six apps on the three processors, we 
adapted the Roofline Performance 
model from high-performance 
computing (HPC).36 This simple vi-
sual model is not perfect but offers 
insights into the causes of perfor-
mance bottlenecks. The assumption 
behind the model is that applications 
do not fit in on-chip caches so are 
either computation-limited or mem-
ory-bandwidth-limited. For HPC, the 
y-axis is performance in floating-point 
operations per second, so the peak com-
putation rate thus forms the “flat” part 

Figure 3. The rooflines of TPUs, CPUs, and GPUs combined into a single log-log graph. 
Stars are for the TPU, triangles for the K80, and circles for Haswell; all TPU stars are at  
or above the other two rooflines. 
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and the K80 run at just 42% and 37%, 
respectively, of the highest throughput 
achievable for MLP0 if the response 
time limit is relaxed. These bounds 
affect the TPU as well but at 80% oper-
ate much closer to the TPU’s greatest 
MLP0 throughput. Compared to CPUs 
and GPUs, the single-threaded TPU 
has none of the sophisticated micro-
architectural features that consume 
transistors and energy to improve the 
average case, but not the 99th percen-
tile case; that is, there are no caches, 
branch prediction, out-of-order ex-
ecution, multiprocessing, specula-
tive prefetching, address coalescing, 
multithreading, context switching, 
and so forth. Minimalism is a virtue of 
domain-specific processors. 

Table 4 reports the bottom line of 
relative inference performance per die, 
including the host server overhead for 
the two accelerators vs. the CPU, show-
ing the weighted mean of the relative 
performance for the six DNN applica-

tions, suggesting the K80 die is 1.9× the 
speed of a Haswell die, that the TPU die 
is 29.2× as fast, and thus the TPU die is 
15.3× as fast as the GPU die. 

Cost-Performance, TCO, 
Performance/Watt 
When buying computers by the thou-
sands, cost-performance trumps per-
formance. The best cost metric in a 
datacenter is total cost of ownership 
(TCO). The actual price an organiza-
tion (such as Google) might pay for 
thousands of chips depends on negoti-
ations among the companies involved. 
For business confidentiality reasons, 
we are unable publish such price in-
formation or data that might let them 
be deduced. However, power is cor-
related with TCO, and we are allowed 
to publish Watts per server, so we use 
performance/Watt as our proxy for per-
formance/TCO here. In this section, 
we compare whole servers rather than 
single dies. 

Figure 4 reports the mean performance/
Watt for the K80 GPU and TPU relative to 
the Haswell CPU. We present two differ-
ent calculations of performance/Watt. 
The first—“total”—includes the pow-
er consumed by the host CPU server 
when calculating performance/Watt 
for the GPU and TPU. The second—
“incremental”—subtracts the host CPU 
server power from the GPU and TPU. 

For total-performance/Watt, the K80 
server is 2.1× that of Haswell. For incre-
mental-performance/Watt, when Has-
well server power is omitted, the K80 
server is 2.9× that of Haswell. The TPU 
server delivers 34× better total-perfor-
mance/Watt than Haswell, making the 
TPU server 16× the performance/Watt 
of the K80 server. The relative incremen-
tal-performance/Watt—Google’s justifi-
cation for a custom ASIC—is 83 for the 
TPU, thus lifting the TPU to 29× the per-
formance/Watt of the GPU. 

Evaluation of an Alternative 
TPU Design 
Like an FPU, the TPU coprocessor is 
relatively easy to evaluate, so we created 
a performance model for our six appli-
cations. The differences between the 
model results and the hardware perfor-
mance counters average less than 10%. 

We used the performance model 
to evaluate a hypothetical TPU die—
TPU’—that could be designed in the 

operational intensity means perfor-
mance is limited by memory bandwidth 
rather than by peak compute. Five of 
the six applications are happily bump-
ing their heads against the ceiling; the 
MLPs and LSTMs are memory-bound, 
and CNNs are computation-bound. 

The six DNN applications are gener-
ally further below their ceilings for Has-
well and K80 than was the TPU in Figure 
3. Response time is the reason. Many 
of these DNN applications are parts of 
end-user-facing services. Researchers 
have demonstrated that even small in-
creases in response time cause custom-
ers to use a service less. While training 
may not have hard response-time dead-
lines, inference usually does, or infer-
ence prefers latency over throughput.28 

For example, the 99th percentile re-
sponse time limit for MLP0 was 7ms, as 
required by the application developer. 
(The inferences per second and 7ms 
latency include the server host time, as 
well as the accelerator time.) Haswell 

Table 4. K80 GPU die and TPU die performance relative to CPU for the DNN workload.  
The weighted mean uses the actual mix of the six apps in Table 1. 

Type

DNN LSTM CNN Weighted 
Mean0 1 0 1 0 1

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 15.3

Figure 4. Relative performance/watt (TDP) of GPU server (blue bar) and TPU server  
(red bar) to CPU server and TPU server to GPU server (orange bar). TPU′ is an improved 
TPU using the K80’s GDDR5 memory. 
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The green bar shows the improved TPU’s performance/watt 
ratio to the CPU server, and the lavender bar shows its relation 
to the GPU server. Total includes host-server power, though 
incremental does not include host power. 
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The first reduced the area and power of 
the large matrix multiply unit; the sec-
ond fetches weights concurrently dur-
ing operation of the matrix multiply 
unit; and the third better utilizes the 
limited bandwidth of the PCIe bus for 
delivering instructions. History-aware, 
domain-specific architects could thus 
have a competitive edge. 

Fallacy. CPU results would be com-
parable to the TPU if Google used them 
more efficiently. We originally had 
eight-bit results for just one DNN on 
the CPU, due to the significant work 
needed to use advanced vector exten-
sions (AVX2) integer support effec-
tively. The benefit was approximately 
3.5×. It was less confusing (and re-
quired less space) to present all CPU 
results in floating point, rather than 
having one exception with its own 
roofline. If all DNNs had similar speed-
up, performance/Watt ratio would 
drop from 41×–83× to 12×–24×. 

Fallacy. GPU results would match the 
TPU if Google would use the appropriate 
newer versions. Table 3 reports the dif-
ference between announcing a GPU 
and when customers can use it in the 
cloud. A fair comparison with a newer 
GPU would include a newer TPU, and, 
for an additional 10W, we could triple 
performance of the 28nm, 0.7GHz, 
40W TPU just by using the K80’s 
GDDR5 memory. Moving the TPU to a 
16nm process would improve its per-
formance/Watt even further. The 16nm 
Nvidia Pascal P40 GPU has half the 
peak performance of the original TPU 
yet at 250W burns many times more 
power.15 As mentioned earlier, the lack 
of error checking means Google is un-
able to deploy P40s in its datacenters 
and thus unable to run the production 
workload on them to determine their 
actual relative performance. 

Related Work 
Two survey articles document that cus-
tom DNN ASICs go back to at least the 
early 1990s.3,18 The DianNao family of 
four DNN architectures, as described 
in Communications in 2016, mini-
mizes memory accesses both on the 
chip and to external DRAM by having 
efficient architectural support for the 
memory-access patterns in DNN appli-
cations.7,21 The original DianNao used 
an array of 64 16-bit integer multiply-
accumulate units. 

same process technology if we had 
more than 15 months. More aggressive 
logic synthesis and block design could 
still increase the clock rate by 50%. De-
signing an interface circuit for GDDR5 
memory, as in the K80, would improve 
weight memory bandwidth by more 
than a factor of five, shifting its roofline 
ridge point from 1,350 down to 250. 

Increasing clock rate to 1,050 MHz 
but not helping memory has little 
effect. If we left the clock speed at 
700MHz but used GDDR5 (double 
data rate type 5 synchronous graphics 
random-access memory) for weight 
memory, the weighted mean jumps to 
3.9. Doing both does not change the 
mean, so the hypothetical TPU’ just 
has faster memory. 

Replacing just the DDR3 weight 
memory with the equivalent GDDR5 
memory of the K80 requires doubling 
the number of memory channels to 
four. This improvement would expand 
die size by approximately 10%. GDDR5 
would also increase the TPU system 
power budget from 861W to approxi-
mately 900W, as there are four TPUs 
per server. 

Figure 4 reports the relative total-
performance/Watt/die of TPU’ leaps 
to 86× over Haswell and 41× over the 
K80. The incremental metric soars to 
an amazing 196× over Haswell and 68× 
over the K80. 

Discussion 
This section follows the fallacy-and-
pitfall-with-rebuttal format of Hen-
nessy and Patterson:17 

Fallacy. DNN inference applications in 
datacenters value throughput as much as 
response time. We were surprised that 
Google TPU developers had strong re-
sponse-time demands, as some suggest-
ed in 2014 that batch size would be large 
enough for the TPU to reach peak per-
formance or that latency requirements 
would not be as tight. One driving ap-
plication was offline image processing, 
and Google developers’ intuition was 
that if interactive services also wanted 
TPUs, most of them would just accumu-
late larger batches. Even the Google de-
velopers of one application in 2014 who 
cared about response time (LSTM1) said 
the limit was 10ms in 2014 but shrank 
it to 7ms when actually porting it to the 
TPU. The unexpected demand for TPUs 
by many such services, combined with 

the impact on and preference for quick 
response time, changed the equation, 
with application writers often opting for 
reduced latency over waiting for bigger 
batches to accumulate. Fortunately, the 
TPU has a simple and repeatable execu-
tion model to help meet the response-
time targets of interactive services and 
such high peak throughput that even rel-
atively small batch size results in higher 
performance than contemporary CPUs 
and GPUs. 

Fallacy. The K80 GPU architecture is 
a good match for DNN inference. We see 
five specific reasons why the TPU domi-
nates the K80 GPU in performance, en-
ergy, and cost. First, the TPU has only 
one processor, while the K80 has 13, 
and it is much easier to meet a rigid 
latency target with a single thread. Sec-
ond, the TPU has one very large two-
dimensional multiply unit, while the 
GPU has 13 smaller, one-dimensional 
multiply units. The matrix multiply 
intensity of DNNs fits arithmetic logic 
units arranged in a two-dimensional ar-
ray. Third, a two-dimensional array also 
enables systolic implementation that 
improves energy efficiency by avoid-
ing register accesses. Fourth, the TPU’s 
quantized applications use eight-bit in-
tegers, unsupported on the K80, rather 
than the GPU’s 32-bit floating point. 
The smaller data improves not only the 
energy efficiency of the computation, 
it quadruples the effective capacity of 
the weight FIFO and the effective band-
width of the weight memory. (These 
applications are trained to deliver the 
same accuracy as floating point despite 
using only eight bits.) Fifth, the TPU 
omits features required for a GPU but 
unused by DNNs, thus shrinking the 
TPU chip, saving energy, and leaving 
room for other upgrades. The TPU chip 
is nearly half the size of the K80 and 
typically runs at one-third the power yet 
contains 3.5× as much memory. These 
five factors explain the TPU’s 30× advan-
tage in energy and performance. 

Pitfall. Being ignorant of architec-
ture history when designing a domain-
specific architecture. Ideas that did not 
fly for general-purpose computing may 
be ideal for domain-specific architec-
tures. For the TPU, three important 
architectural features date back to the 
early 1980s: systolic arrays,23 decou-
pled-access/execute,33 and complex in-
struction set computer instructions.29 
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fort reported in 2017 is SCNN,27 an ac-
celerator for sparse and compressed 
convolutional neural networks (CNNs). 
Both weights and activations are kept 
compressed in DRAM and in internal 
buffers, thus shrinking the time and 
energy needed for data transfers and al-
lowing the chip to store larger models. 

Another trend since 2016 is do-
main-specific architectures for train-
ing. For example, ScaleDeep35 is an 
investigation of a high-performance 
server designed for DNN training and 
inference containing thousands of 
processors. Each chip would contain 
compute-heavy blocks and memo-
ry-heavy blocks, in a 3:1 ratio, and 
outperform GPUs by 6× to 28×. It 
computes in 16-bit or 32-bit floating-
point arithmetic. The chips are con-
nected through a high-performance 
interconnect topology that matches 
DNN communication patterns. Like 
SCNN, such topologies are evaluated 
exclusively on CNNs. CNNs were just 
5% of the TPU workload in Google’s 
datacenters in 2016. Computer ar-
chitects look forward to evaluation 
of ScaleDeep on other types of DNNs 
and to hardware implementations. 

DNNs would seem to be a good use 
case for FPGAs as a compute platform 
in datacenters. The one deployed ex-
ample is Catapult.30 Although publicly 
announced in 2014, Catapult is a TPU 
contemporary since it deployed 28nm 
Stratix V FPGAs into Microsoft data-
centers concurrently with the TPU in 
2015. Catapult runs CNNs 2.3× faster 
than a server. Perhaps the most sig-
nificant difference between Catapult 
and the TPU is that to achieve best 
performance, users must write long 
programs in the low-level hardware-
design-language Verilog vs. writing 
short programs using the high-level 
TensorFlow framework; that is, “re-
programmability” comes from soft-
ware for the TPU rather than from 
firmware for the fastest FPGA. 

Conclusion
Despite living on an I/O bus and having 
relatively limited memory bandwidth 
constraining utilization of the TPU 
(four of the six DNN applications are 
memory-bound), a small fraction of a 
big number—65,536 multiply-accu-
mulates per cycle—can nonetheless be 
relatively large, as demonstrated by the 
Roofline performance model. This re-
sult suggests a “cornucopia corollary” 
to Amdahl’s Law—that low utilization 
of a huge, cheap resource can still de-
liver high, cost-effective performance. 

We learned that inference appli-
cations have serious response-time 
bounds because they are often part 
of user-facing applications; DNN 
architectures thus need to perform 
well when coping with 99th percentile 
latency deadlines. 

The TPU die leverages its advan-
tage in MACs and on-chip memory to 
run short programs written using the 
domain-specific TensorFlow frame-
work 15× faster than the K80 GPU 
die, resulting in a performance/Watt 
advantage of 29×, which is correlated 
with performance/total cost of own-
ership. Compared to the Haswell CPU 
die, the corresponding ratios are 29 
and 83, respectively. 

Five architectural factors explain 
this energy-performance gap: 

One processor. The TPU has only one 
processor, while the K80 has 13 and 
the CPU has 18; a single-thread makes 
it easier for the system to stay within a 
fixed latency limit; 

Domain-specific architectures for 
DNNs continue to be a hot topic among 
computer architects. A major focus is 
architectures for sparse matrices, which 
appeared after the TPU was first de-
ployed in 2015. The Efficient Inference 
Engine is based on a first pass that re-
duces the number of weights by approxi-
mately a factor of 1013 as a separate step 
by filtering out very small values and 
then uses Huffman encoding to shrink 
the data even further to improve infer-
ence performance.14 Cnvlutin1 avoids 
multiplications when an activation in-
put is zero, as it is 44% of the time, pre-
sumably in part due to rectified linear 
unit, or ReLU, nonlinear function that 
transforms negative values to zero, im-
proving performance by an average 1.4×. 
Eyeriss is a novel, low-power dataflow 
architecture that takes advantage of ze-
ros through run-length encoding data 
to reduce the memory footprint and 
saves power by avoiding computations 
when an input is zero.8 Minerva is a co-
design system that crosses algorithm, 
architecture, and circuit disciplines to 
reduce power by 8× by in part pruning 
activation data with small values and 
in part quantizing the data.31 That ef-

Google’s Tensor Processing Unit 3.0, introduced last May, is eight times more powerful than 
2.0, with performance up to 100 petaflops.
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Large, two-dimensional multiply 
unit. The TPU has one very large, two-
dimensional multiply unit, while the 
CPU and GPU have 18 and 13 smaller, 
one-dimensional multiply units, re-
spectively; matrix multiplies benefit 
from two-dimensional hardware; 

Systolic arrays. The two-dimension-
al organization enables systolic arrays, 
reducing register accesses and energy; 

Eight-bit integers. The TPU’s applica-
tions use eight-bit integers rather than 
32-bit floating point operations to im-
prove efficiency of both computation 
and memory; and 

Dropped features. The TPU drops 
features required by CPUs and GPUs 
that DNNs do not use, making the TPU 
cheaper while saving energy and allow-
ing transistors to be repurposed for 
domain-specific on-chip memory. 

While future CPUs and GPUs will 
surely run inference faster, a rede-
signed TPU using circa-2015 GPU 
memory would go three times faster 
and boost the performance/Watt ad-
vantage to nearly 70× over the K80 and 
200× over Haswell. 

For at least the past decade, computer 
architecture researchers have been pub-
lishing innovations based on simula-
tions using limited benchmarks claim-
ing improvements for general-purpose 
processors of 10% or less, while we are 
now reporting gains for a domain-specif-
ic architecture deployed in real hardware 
running genuine production applica-
tions of more than a factor of 10.17 

Order-of-magnitude differences be-
tween commercial products are rare 
in computer architecture, which could 
even lead to the TPU becoming an ar-
chetype for future work in the field. We 
expect that many will build successors 
that will raise the bar even higher. 
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