
50 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 M
A

T
T

H
I

A
S

 H
A

U
S

E
R

THE ENDING OF Moore’s Law leaves domain-specific
architectures as the future of computing. A trailblazing
example is the Google’s tensor processing unit (TPU),
first deployed in 2015, and that provides services today
for more than one billion people. It runs deep neural
networks (DNNs) 15 to 30 times faster with 30 to 80
times better energy efficiency than contemporary CPUs
and GPUs in similar technologies.

All exponential laws must come to an end.26
In 1965, Gordon Moore predicted the number

of transistors per chip would double every year or
two. Despite the claim to the contrary on the cover
of Communications (January 2017) that “Reports of
My Death Are Greatly Exaggerated,” Moore’s Law is
indeed ending. The DRAM chip introduced in 2014
contained eight billion transistors, and a 16-billion
transistor DRAM chip will not be in mass production
until 2019, but Moore’s Law predicts a four-times

larger DRAM chip. A 2010 Intel Xeon E5
microprocessor had 2.3 billion transis-
tors vs. the 2016 Xeon E5 with 7.2 billion
transistors, or off by a factor of 2.5 from
Moore’s Law. Semiconductor processing
continues to improve but more slowly
than in the past.

A lesser-known but just-as-impor-
tant observation is Dennard Scaling.
Robert Dennard’s insight in 1974 was
that power density is constant as tran-
sistors get smaller. If a transistor’s lin-
ear dimension shrank by a factor of 2,
that gives 4× the number of transistors.
If both the current and voltage are also
reduced by a factor of 2, the power it
used would fall by 4, giving the same
power at the same frequency. Dennard
scaling ended 30 years after it was first
observed, not because transistors did
not continue to shrink but because cur-
rent and voltage could not keep drop-
ping while remaining dependable.

Computer architects rode Moore’s
Law and Dennard scaling to turn in-
creased resources into performance
with sophisticated processor designs
and memory hierarchies that exploited
parallelism between individual instruc-
tions without the programmer’s knowl-
edge. Alas, architects eventually ran
out of instruction-level parallelism that
could be exploited efficiently. The end of
Dennard scaling and the lack of greater
(efficient) instruction-level parallelism

A Domain-Specific
Architecture
for Deep Neural
Networks

DOI:10.1145/3154484

Tensor processing units improve performance
per watt of neural networks in Google
datacenters by roughly 50×.

BY NORMAN P. JOUPPI, CLIFF YOUNG, NISHANT PATIL,
AND DAVID PATTERSON

 key insights
 ˽ Though it is an application-specific integrated

circuit, the TPU chip is programmed in
the TensorFlow framework for neural
networks to drive many important
applications in Google datacenters,
including image recognition, language
translation, search, and game playing.

 ˽ By repurposing chip resources specifically
for neural networks, TPUs have delivered
factors of improvements of 30×–80×
over general-purpose computers on real
datacenter workloads used routinely by
more than one billion people worldwide.

 ˽ The inference phase of neural networks
typically obeys rigid response-time
limits that reduce the effectiveness of
techniques used by general-purpose
computers that usually run faster but
also slower in some circumstances.

http://dx.doi.org/10.1145/3154484

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 51

52 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

contributed articles

mance for the past 40 years. At the
current rate, performance on stan-
dard processor benchmarks will not
double before 2038.

Since transistors are not getting
much better (reflecting the end of
Moore’s Law), the peak power per mm2
of chip area is increasing (due to the
end of Dennard scaling), but the power
budget per chip is not increasing (due
to electro-migration and mechanical
and thermal limits), and chip design-
ers have already played the multi-core
card (which is limited by Amdahl’s
Law), architects now widely believe the
only path left for major improvements
in performance-cost-energy is domain-

specific architectures.17 They do only a
few tasks but do them extremely well.

The synergy between the large da-
tasets in the cloud and the numerous
computers that power it has enabled
remarkable advancements in machine
learning, especially in DNNs. Unlike
some domains, DNNs are broadly ap-
plicable. DNN breakthroughs include
reducing word error rates in speech
recognition by 30% over traditional ap-
proaches, the biggest gain in 20 years;11
cutting the error rate in an image-recog-
nition competition ongoing since 2011
from 26% to 3.5%;16,22,34 beating a human
champion at Go;32 improved search
ranking; and many more. A DNN archi-
tecture can benefit from a narrow focus
yet still have many applications.

Neural networks target brain-like
functionality and are based on a simple
artificial neuron—a nonlinear function
(such as max(0,value)) of a weighted
sum of the inputs. These artificial neu-
rons are collected into layers, with the
outputs of one layer becoming the in-
puts of the next layer in the sequence.
The “deep” part of DNN comes from
going beyond a few layers, as the large
datasets in the cloud allow more accu-
rate models to be built by using extra
and larger layers to capture higher-level
patterns or concepts, and GPUs provide
enough computing to develop them.

The two phases of a DNN are called
training (or learning) and inference (or
prediction) and refer to development vs.
production. Training a DNN takes days,
but a trained DNN can infer or predict in
milliseconds. The developer chooses the
number of layers and the type of DNN

in 2004 forced the industry to switch
from a single energy-hogging processor
per microprocessor to multiple efficient
processors or cores per chip.

A law that is just as true today as
when Gene Amdahl introduced it in
1967 demonstrates the diminishing
returns from increasing the number
of processors. Amdahl’s Law says the
theoretical speedup from parallelism
is limited by the sequential part of the
task; if ¹/8 of the task is serial, the maxi-
mum speedup is 8× the original perfor-
mance, even if the rest is easily parallel
and the architect adds 100 processors.

Figure 1 indicates the effect of
these three laws on processor perfor-

Figure 1. Following Hennessy and Patterson,17 we plotted highest SPECCPUint performance
per year for 32-bit and 64-bit processor cores over the past 40 years; the throughput-
oriented SPECCPUint_rate reflects a similar profile, with plateauing delayed a few years.

1980

100,000

CISC 2X/2.5 years
(22%/year)

RISC 2X/1.5 years
(52%/year)

End of Dennard Scaling ⇒ Multicore 2X/3.5 years (23%/year)

Amdahl’s Law ⇒ 2X/6 years (12%/year)

End of the Line ⇒ 2X/20 years (3%/yr)

10,000

1,000

100

10

P
er

fo
rm

an
ce

 v
s.

 V
A

X
11

-7
8

0

1
1985 1990 1995 2000 2005 2010 2015

Table 1. Six DNN applications (two per DNN type) representing 95% of the TPU’s workload, as of July 2016.

Name LOC

Layers Nonlinear
function Weights

TPU Ops /
Weight Byte TPU Batch Size

% of Deployed
TPUs in 2016FC Conv Vector Pool Total

MLP0 100 5 5 ReLU 20M 200 200
61%

MLP1 1,000 4 4 ReLU 5M 168 168

LSTM0 1,000 24 34 58 sigmoid, tanh 52M 64 64
29%

LSTM1 1,500 37 19 56 sigmoid, tanh 34M 96 96

CNN0 1,000 16 16 ReLU 8M 2,888 8
5%

CNN1 1,000 4 72 13 89 ReLU 100M 1,750 32

The columns are the DNN name; the number of lines of code; the types and number of layers in
the DNN; FC is fully connected; Conv is convolution; Vector is binary element-wise operations; Pool
is pooling, which does nonlinear downsizing on the TPU; nonlinear function; number of weights;
operational intensity; batch size; and TPU application popularity, as of July 2016. One MultiLayer
Perceptron (MLP) is RankBrain;9 one long short-term memory (LSTM) is a subset of GNM Trans-
late;37 one convolutional neural net (CNN) is Inception, and the other CNN is DeepMind AlphaGo.19,32
ReLU stands for Rectified Linear Unit and is the function max(0,value).

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 53

contributed articles

Google engineers optimized the
design from a system perspective. To
reduce interactions with the host CPU,
the TPU runs whole inference models
yet offers flexibility to match the DNNs
of 2015 and later by not limiting focus
to DNNs of 2013.

Figure 2 is the block diagram of the
TPU. The TPU instructions are sent from
the host over the peripheral component
interconnect express (PCIe) Gen3 x16
bus into an instruction buffer. The inter-
nal blocks are typically connected to-
gether by 256-byte-wide paths. Starting
in the upper-right corner, the matrix
multiply unit is the heart of the TPU,
with 256×256 MACs that can perform

(see the first sidebar “Types of Deep
Neural Networks”) and training deter-
mines the weights. Virtually all training
is in floating point, which is one reason
GPUs have been so popular for training.

A step called “quantization” trans-
forms floating-point numbers into nar-
row integers—often just eight bits—that
are usually good enough for inference.
Eight-bit integer multiplies can require
6× less energy and take 6× less area than
IEEE 754 16-bit floating-point multi-
plies, and the edge for integer addition
is 13× in energy and 38× in area.10

Table 1 reports two examples of each
of the three types of DNNs—represent-
ing 95% of DNN inference workload in
Google’s datacenters in 2016—we use as
benchmarks. Typically written in Ten-
sorFlow,1 they are surprisingly short,
just 100 to 1,500 lines of code. These
examples represent small components
of larger applications that run on the
host server, which can be thousands to
millions of lines of C++ code. The appli-
cations are typically user-facing, which
leads to rigid response-time limits.

Each model needs between five mil-
lion and 100 million weights, as in Ta-
ble 1, which can take a lot of time and
energy to access (see the second sidebar
“Energy Proportionality”). To amortize
the access costs, the same weights are
reused across a batch of independent
examples during inference or training,
which improves performance.

TPU Origin, Architecture,
Implementation
Starting as early as 2006, Google con-
sidered deploying GPUs, field program-
mable gate arrays (FPGAs), or custom
application-specific integrated circuits
(ASICs) in its datacenters. The conclu-
sion was that the few applications that
could run on special hardware could be
done virtually for free using the excess
capacity of Google’s large datacenters,
and it is difficult to improve on free.
That changed in 2013 when a projec-
tion in which Google users searched by
voice for three minutes per day using
speech recognition DNNs would dou-
ble Google datacenters’ computation
demands, which would be very expen-
sive using conventional CPUs. Google
thus started a high-priority project
to quickly produce a custom chip for
inference and bought off-the-shelf
GPUs for training. The goal was to im-

prove cost-performance by 10×. Given
this mandate, the TPU was designed,
verified, built, and deployed in Google
datacenters in just 15 months.

To reduce the risk of delaying
deployment, Google engineers de-
signed the TPU to be a coprocessor
on the I/O bus rather than be tightly
integrated with a CPU, allowing it
to plug into existing servers just as
a GPU does. Moreover, to simplify
hardware design and debugging, the
host server sends TPU instructions
for it to execute rather than fetch
them itself. The TPU is thus closer in
spirit to a floating-point unit (FPU)
coprocessor than it is to a GPU.

Thermal design power (TDP) affects
the cost of provisioning power, as
datacenters must supply sufficient
power and cooling when hardware
operates at full power. However, the
cost of electricity is based on the
average consumed as the workload
varies during the day. Barroso and
Hölzle4 found servers are 100% busy
less than 10% of the time and thus
advocated energy proportionality,
arguing that servers should
consume power proportional to the
amount of work performed. The
estimate of power consumed in
Figure 4 is based on the fraction of
the TDP seen in Google datacenters.

We measured performance and power of the three servers running the
production program CNN0, as the offered workload utilization varies, then
normalized to the number of chips per server.

The sidebar figure shows the TPU has the lowest power—40W per chip—but
has poor energy proportionality. (Google’s short TPU design schedule prevented
inclusion of many energy-saving features.) The Haswell CPU had the best energy
proportionality in 2016. In a combined TPU-Haswell system, CPU workload is
reduced and thus so is CPU power. Consequently, the Haswell server plus four
low-power TPUs uses less than 20% additional power but runs CNN0 80× faster
than the Haswell server alone, as it has four TPUs vs. two CPUs.

Energy Proportionality

Three kinds of DNNs are popular in Google datacenters today:
Multi-layer perceptrons (MLPs). For multi-layer perceptrons, each new layer is a set

of nonlinear functions of a weighted sum of all outputs (fully connected) from a
prior output;

Convolutional neural networks (CNNs). In convolutional neural networks, each
ensuing layer is a set of nonlinear functions of weighted sums of spatially nearby
subsets of outputs from the prior layer, with weights reused spatially; and

Recurrent neural networks (RNNs). For RNNs, each subsequent layer is a collection
of nonlinear functions of weighted sums of outputs and the previous state. The most
popular RNN is long short-term memory (LSTM); the art of the LSTM is in deciding
what to forget and what to pass on as state to the next layer. The weights are reused
across time steps.

Types of Deep
Neural Networks

The TPU has the lowest power but also poor
energy proportionality.

250

200

150

100

50

0
0% 25% 50%

Target Workload

W
at

ts
/D

ie

75% 100%

Haswell K80 TPU

54 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

contributed articles

The weights for the matrix unit are
staged through an on-chip “Weight
FIFO” that reads from an off-chip eight-
gigabyte DRAM we call “weight memo-
ry”; for inference, weights are read-only;
eight gigabytes supports many simul-
taneously active models. The weight
FIFO is four tiles deep. The intermedi-

ate results are held in the 24 MiB on-
chip “unified buffer” that can serve as
inputs to the Matrix Unit. A program-
mable DMA controller transfers data
to or from CPU Host memory and the
Unified Buffer. To be able to deploy de-
pendably at Google scale, internal and
external memory include built-in error-
detection-and-correction hardware.

The philosophy behind the TPU mi-
croarchitecture is to keep the matrix
unit busy. Toward that end, the instruc-
tion that reads the weights follows the
decoupled-access/execute philosophy,33
in that it can complete after sending
its address but before the weight is
fetched from weight memory. The ma-
trix unit will stall if the input activation
or weight data is not ready.

As reading a large static random-ac-
cess memory (SRAM) uses much more
power than arithmetic, the matrix unit
uses “systolic execution” to save energy
by reducing reads and writes of the Uni-
fied Buffer.23 It relies on data from dif-
ferent directions arriving at cells in an
array at regular intervals where they are
combined. A given 65,536-element vec-
tor-matrix multiply operation moves
through the matrix as a diagonal wave-
front. The weights are preloaded and
take effect with the advancing wave
alongside the first data of a new block.
Control and data are pipelined to give

eight-bit multiply-and-adds on signed
or unsigned integers. The 16-bit prod-
ucts are collected in the four mega-
bytes of 32-bit Accumulators below the
matrix unit. The four MiB represents
4,096, 256-element, 32-bit accumula-
tors. The matrix unit produces one
256-element partial sum per cycle.

Table 3. The gap between Nvidia GPU announcements and cloud deployment, 2015 to
2017.5,6 The GPU generations are Kepler, Maxwell, Pascal, and Volta.

Model mm2 nm

Deployment Gap (months)

 AWS Azure AWS Azure

K80 28 Nov. 2014 Sept. 2016 Dec. 2016 22 25

M60 28 Aug. 2015 July 2017 — 23 --

P100 16 Apr. 2016 — May 2017 -- 13

V100 12 May 2017 Oct. 2017 Dec. 2017 5 7

Table 2. Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs.

Model mm2 nm MHz
TDP
Chip

TOPS/s

GB/s
Chips/
Server

TDP
Server8b FP

Haswell CPU 662 22 2,300 145W 2.6 1.3 51 2 504W

Nvidia K80
GPU

561 28 560 150W — 2.8 160 8
1,838W

TPU <331 28 700 75W 92 — 34 4 861W

Haswell has 18 cores and the K80 13 processors. The GPU and TPU use the Haswell server as
host. The semiconductor technology is in nm. TDP stands for thermal design power; TOPS/s is 1012
operations/second; memory bandwidth is gigabytes/second, and the TPU die is less than half
the size of the Haswell die.

Figure 2. TPU block diagram and floor plan.

P
C

Ie
In

te
rf

ac
e

H
os

t
In

te
rf

ac
e

14 GiB/s 30 GiB/s

30 GiB/s

14 GiB/s

Off-Chip I/O
Data Buffer

Control

Not to Scale

Computation

14 GiB/s

10 GiB/s

Control

Control Control

DDR3
Interfaces

Weight FIFO
(Weight Fetcher)

Unified Buffer
(Local

Activation
Storage)

Systolic
Array

Control

Matrix
Multiply Unit

(64K per cycle)

Accumulators D
R
A
M

port
ddr3
3%

D
R
A
M

port
ddr3
3%

Host
Interface

2%

Control 2% Activation Pipeline 6%

Misc. I/O 1%
PCIe

Interface 3%

Activation

Normalize/Pool

Control Control

In
st

r

165
GiB/s

165 GiB/s

Local Unified Buffer
for Activations

(96Kx256x8b = 24 MiB)
29% of chip

Matrix Multiply Unit
(256x256x8b = 64K MAC)

29%

Accumulators
(4Kx256x32b = 4 MiB)

6%

The main computation is the yellow matrix multiply unit. Its inputs are the blue Weight FIFO
and the blue Unified Buffer, and its output is the blue Accumulators. The yellow Activation Unit
performs the nonlinear functions. The floor plan of the TPU die on the right shows the blue memory
is 35%, the yellow computation 35%, the green I/O 10%, and the red control just 2% of the die.
Control is much larger (and more difficult to design) in a CPU or GPU.

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 55

contributed articles

of the roofline. The x-axis is operational
intensity, measured as floating-point
operations per DRAM-byte accessed.
Memory bandwidth is bytes per second,
which turns into the “slanted” part of
the roofline, since (FLOPS/sec)/ (FLOPS/
Byte) = Bytes/sec. Without sufficient
operational intensity, a program is
memory-bandwidth-bound and lives
under the slanted part of the roofline.

The gap between the actual opera-
tions per second of an application and
the ceiling directly above it shows the
potential benefit of further perfor-
mance tuning while leaving operational
intensity untouched; optimizations that
increase operational intensity (such as
cache blocking) might yield even great-
er performance benefit.

To use the Roofline model for the
TPU, when DNN applications are quan-
tized, we first replaced floating-point
operations with integer operations. As
weights do not normally fit in on-chip
memory for DNN applications, the sec-
ond change was to redefine operation-
al intensity to be integer multiply-accu-
mulate operations per byte of weights
read, as in Table 1.

Figure 3 shows the Roofline models
for a single die of the TPU, CPU, and
GPU on log-log scales. The TPU has a
long “slanted” part of its roofline, where

the illusion to the programmer that
the 256 inputs are read at once and in-
stantly update one location of each of
256 accumulators. From a correctness
perspective, software is unaware of the
systolic nature of the matrix unit, but,
for performance, must account for the
latency of the unit.

The TPU software stack had to be
compatible with those developed for
CPUs and GPUs so applications could
be ported quickly to the TPU. The por-
tion of the application run on the TPU
is typically written in TensorFlow and
compiled into an API that can run on
GPUs or TPUs.24

CPU, GPU, TPU Platforms
Most architecture research papers are
based on simulations running small,
easily portable benchmarks that project
potential performance if ever imple-
mented. This article is not one of them
but rather a retrospective evaluation of
machines running real, large produc-
tion workloads in datacenters since
2015, some used routinely by more than
one billion people. These six applica-
tions, as in Table 1, are representative of
95% of TPU datacenter use in 2016.

Since we are measuring production
workloads, the benchmark platforms
for us to compare must also be deploy-
able in Google datacenters, as that is the
only place the production workloads
run. The many servers in Google data-
centers and the requirements for ap-
plication dependability at Google scale
mean machines must at minimum
check for memory errors. As the Nvidia
Maxwell GPU and the more recent Pas-
cal P40 GPU do not check for errors on
internal memory, it is infeasible to de-
ploy these processors at Google scale
and meet the strict reliability require-
ments of Google applications.

Table 2 reports the servers deployed
in Google datacenters we can compare
to the TPU. The traditional CPU server
is represented by an 18-core, dual-
socket Haswell processor from Intel, a
platform that is also the host server for
GPUs or TPUs. Google engineers use
four TPU chips in the server.

Some computer architects are un-
aware of the time between when a
product is announced and when the
chips, boards, and software are ready
to reliably serve customers in data-
centers. Table 3 identifies that gap

for GPUs in commercial cloud com-
panies was, from 2014 to 2017, five to
25 months. Hence, the right GPU to
compare to the 2015 TPU is clearly the
Nvidia K80, which is in the same semi-
conductor process and was announced
six months before TPU deployment.

Each K80 card contains two dies and
offers error detection and correction
on internal memory and DRAM. Up to
eight K80 dies can be installed in this
server, which is the configuration we
benchmark. Both the CPU and GPU use
large dies—approximately 600 mm2, or
three times the size of a Core i7.

Performance: Rooflines,
Response Time, Throughput
To illustrate the performance of the
six apps on the three processors, we
adapted the Roofline Performance
model from high-performance
computing (HPC).36 This simple vi-
sual model is not perfect but offers
insights into the causes of perfor-
mance bottlenecks. The assumption
behind the model is that applications
do not fit in on-chip caches so are
either computation-limited or mem-
ory-bandwidth-limited. For HPC, the
y-axis is performance in floating-point
operations per second, so the peak com-
putation rate thus forms the “flat” part

Figure 3. The rooflines of TPUs, CPUs, and GPUs combined into a single log-log graph.
Stars are for the TPU, triangles for the K80, and circles for Haswell; all TPU stars are at
or above the other two rooflines.

TPU Roofline
K80 Roofline
HSW Roofline

LSTM0
LSTM1

MLP1
MLP0

CNN0
CNN1
LSTM0

LSTM1
MLP1
MLP0

CNN0
CNN1

MLP1
MLP0

CNN0
CNN1

Operational Intensity: MAC Ops/weight byte (log scale)

Log-Log Scale

Te
ra

O
p

s/
se

c
(l

og
 s

ca
le

)

1

0.1

1

10

100

10 100 1,000

LSTM0

LSTM1

56 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

contributed articles

and the K80 run at just 42% and 37%,
respectively, of the highest throughput
achievable for MLP0 if the response
time limit is relaxed. These bounds
affect the TPU as well but at 80% oper-
ate much closer to the TPU’s greatest
MLP0 throughput. Compared to CPUs
and GPUs, the single-threaded TPU
has none of the sophisticated micro-
architectural features that consume
transistors and energy to improve the
average case, but not the 99th percen-
tile case; that is, there are no caches,
branch prediction, out-of-order ex-
ecution, multiprocessing, specula-
tive prefetching, address coalescing,
multithreading, context switching,
and so forth. Minimalism is a virtue of
domain-specific processors.

Table 4 reports the bottom line of
relative inference performance per die,
including the host server overhead for
the two accelerators vs. the CPU, show-
ing the weighted mean of the relative
performance for the six DNN applica-

tions, suggesting the K80 die is 1.9× the
speed of a Haswell die, that the TPU die
is 29.2× as fast, and thus the TPU die is
15.3× as fast as the GPU die.

Cost-Performance, TCO,
Performance/Watt
When buying computers by the thou-
sands, cost-performance trumps per-
formance. The best cost metric in a
datacenter is total cost of ownership
(TCO). The actual price an organiza-
tion (such as Google) might pay for
thousands of chips depends on negoti-
ations among the companies involved.
For business confidentiality reasons,
we are unable publish such price in-
formation or data that might let them
be deduced. However, power is cor-
related with TCO, and we are allowed
to publish Watts per server, so we use
performance/Watt as our proxy for per-
formance/TCO here. In this section,
we compare whole servers rather than
single dies.

Figure 4 reports the mean performance/
Watt for the K80 GPU and TPU relative to
the Haswell CPU. We present two differ-
ent calculations of performance/Watt.
The first—“total”—includes the pow-
er consumed by the host CPU server
when calculating performance/Watt
for the GPU and TPU. The second—
“incremental”—subtracts the host CPU
server power from the GPU and TPU.

For total-performance/Watt, the K80
server is 2.1× that of Haswell. For incre-
mental-performance/Watt, when Has-
well server power is omitted, the K80
server is 2.9× that of Haswell. The TPU
server delivers 34× better total-perfor-
mance/Watt than Haswell, making the
TPU server 16× the performance/Watt
of the K80 server. The relative incremen-
tal-performance/Watt—Google’s justifi-
cation for a custom ASIC—is 83 for the
TPU, thus lifting the TPU to 29× the per-
formance/Watt of the GPU.

Evaluation of an Alternative
TPU Design
Like an FPU, the TPU coprocessor is
relatively easy to evaluate, so we created
a performance model for our six appli-
cations. The differences between the
model results and the hardware perfor-
mance counters average less than 10%.

We used the performance model
to evaluate a hypothetical TPU die—
TPU’—that could be designed in the

operational intensity means perfor-
mance is limited by memory bandwidth
rather than by peak compute. Five of
the six applications are happily bump-
ing their heads against the ceiling; the
MLPs and LSTMs are memory-bound,
and CNNs are computation-bound.

The six DNN applications are gener-
ally further below their ceilings for Has-
well and K80 than was the TPU in Figure
3. Response time is the reason. Many
of these DNN applications are parts of
end-user-facing services. Researchers
have demonstrated that even small in-
creases in response time cause custom-
ers to use a service less. While training
may not have hard response-time dead-
lines, inference usually does, or infer-
ence prefers latency over throughput.28

For example, the 99th percentile re-
sponse time limit for MLP0 was 7ms, as
required by the application developer.
(The inferences per second and 7ms
latency include the server host time, as
well as the accelerator time.) Haswell

Table 4. K80 GPU die and TPU die performance relative to CPU for the DNN workload.
The weighted mean uses the actual mix of the six apps in Table 1.

Type

DNN LSTM CNN Weighted
Mean0 1 0 1 0 1

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 15.3

Figure 4. Relative performance/watt (TDP) of GPU server (blue bar) and TPU server
(red bar) to CPU server and TPU server to GPU server (orange bar). TPU′ is an improved
TPU using the K80’s GDDR5 memory.

GPU/CPU

2.1

34
16

86

41

2.9

83

29

196

68

Incremental Performance/Watt
(no host CPU)

TotalPerformance/Watt
(including host CPU)

50

100

150

200

250
TPU/CPU TPU/GPU TPU′/CPU TPU′/GPU

The green bar shows the improved TPU’s performance/watt
ratio to the CPU server, and the lavender bar shows its relation
to the GPU server. Total includes host-server power, though
incremental does not include host power.

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 57

contributed articles

The first reduced the area and power of
the large matrix multiply unit; the sec-
ond fetches weights concurrently dur-
ing operation of the matrix multiply
unit; and the third better utilizes the
limited bandwidth of the PCIe bus for
delivering instructions. History-aware,
domain-specific architects could thus
have a competitive edge.

Fallacy. CPU results would be com-
parable to the TPU if Google used them
more efficiently. We originally had
eight-bit results for just one DNN on
the CPU, due to the significant work
needed to use advanced vector exten-
sions (AVX2) integer support effec-
tively. The benefit was approximately
3.5×. It was less confusing (and re-
quired less space) to present all CPU
results in floating point, rather than
having one exception with its own
roofline. If all DNNs had similar speed-
up, performance/Watt ratio would
drop from 41×–83× to 12×–24×.

Fallacy. GPU results would match the
TPU if Google would use the appropriate
newer versions. Table 3 reports the dif-
ference between announcing a GPU
and when customers can use it in the
cloud. A fair comparison with a newer
GPU would include a newer TPU, and,
for an additional 10W, we could triple
performance of the 28nm, 0.7GHz,
40W TPU just by using the K80’s
GDDR5 memory. Moving the TPU to a
16nm process would improve its per-
formance/Watt even further. The 16nm
Nvidia Pascal P40 GPU has half the
peak performance of the original TPU
yet at 250W burns many times more
power.15 As mentioned earlier, the lack
of error checking means Google is un-
able to deploy P40s in its datacenters
and thus unable to run the production
workload on them to determine their
actual relative performance.

Related Work
Two survey articles document that cus-
tom DNN ASICs go back to at least the
early 1990s.3,18 The DianNao family of
four DNN architectures, as described
in Communications in 2016, mini-
mizes memory accesses both on the
chip and to external DRAM by having
efficient architectural support for the
memory-access patterns in DNN appli-
cations.7,21 The original DianNao used
an array of 64 16-bit integer multiply-
accumulate units.

same process technology if we had
more than 15 months. More aggressive
logic synthesis and block design could
still increase the clock rate by 50%. De-
signing an interface circuit for GDDR5
memory, as in the K80, would improve
weight memory bandwidth by more
than a factor of five, shifting its roofline
ridge point from 1,350 down to 250.

Increasing clock rate to 1,050 MHz
but not helping memory has little
effect. If we left the clock speed at
700MHz but used GDDR5 (double
data rate type 5 synchronous graphics
random-access memory) for weight
memory, the weighted mean jumps to
3.9. Doing both does not change the
mean, so the hypothetical TPU’ just
has faster memory.

Replacing just the DDR3 weight
memory with the equivalent GDDR5
memory of the K80 requires doubling
the number of memory channels to
four. This improvement would expand
die size by approximately 10%. GDDR5
would also increase the TPU system
power budget from 861W to approxi-
mately 900W, as there are four TPUs
per server.

Figure 4 reports the relative total-
performance/Watt/die of TPU’ leaps
to 86× over Haswell and 41× over the
K80. The incremental metric soars to
an amazing 196× over Haswell and 68×
over the K80.

Discussion
This section follows the fallacy-and-
pitfall-with-rebuttal format of Hen-
nessy and Patterson:17

Fallacy. DNN inference applications in
datacenters value throughput as much as
response time. We were surprised that
Google TPU developers had strong re-
sponse-time demands, as some suggest-
ed in 2014 that batch size would be large
enough for the TPU to reach peak per-
formance or that latency requirements
would not be as tight. One driving ap-
plication was offline image processing,
and Google developers’ intuition was
that if interactive services also wanted
TPUs, most of them would just accumu-
late larger batches. Even the Google de-
velopers of one application in 2014 who
cared about response time (LSTM1) said
the limit was 10ms in 2014 but shrank
it to 7ms when actually porting it to the
TPU. The unexpected demand for TPUs
by many such services, combined with

the impact on and preference for quick
response time, changed the equation,
with application writers often opting for
reduced latency over waiting for bigger
batches to accumulate. Fortunately, the
TPU has a simple and repeatable execu-
tion model to help meet the response-
time targets of interactive services and
such high peak throughput that even rel-
atively small batch size results in higher
performance than contemporary CPUs
and GPUs.

Fallacy. The K80 GPU architecture is
a good match for DNN inference. We see
five specific reasons why the TPU domi-
nates the K80 GPU in performance, en-
ergy, and cost. First, the TPU has only
one processor, while the K80 has 13,
and it is much easier to meet a rigid
latency target with a single thread. Sec-
ond, the TPU has one very large two-
dimensional multiply unit, while the
GPU has 13 smaller, one-dimensional
multiply units. The matrix multiply
intensity of DNNs fits arithmetic logic
units arranged in a two-dimensional ar-
ray. Third, a two-dimensional array also
enables systolic implementation that
improves energy efficiency by avoid-
ing register accesses. Fourth, the TPU’s
quantized applications use eight-bit in-
tegers, unsupported on the K80, rather
than the GPU’s 32-bit floating point.
The smaller data improves not only the
energy efficiency of the computation,
it quadruples the effective capacity of
the weight FIFO and the effective band-
width of the weight memory. (These
applications are trained to deliver the
same accuracy as floating point despite
using only eight bits.) Fifth, the TPU
omits features required for a GPU but
unused by DNNs, thus shrinking the
TPU chip, saving energy, and leaving
room for other upgrades. The TPU chip
is nearly half the size of the K80 and
typically runs at one-third the power yet
contains 3.5× as much memory. These
five factors explain the TPU’s 30× advan-
tage in energy and performance.

Pitfall. Being ignorant of architec-
ture history when designing a domain-
specific architecture. Ideas that did not
fly for general-purpose computing may
be ideal for domain-specific architec-
tures. For the TPU, three important
architectural features date back to the
early 1980s: systolic arrays,23 decou-
pled-access/execute,33 and complex in-
struction set computer instructions.29

58 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

contributed articles

I
M

A
G

E
 B

Y
 G

O
O

G
L

E

fort reported in 2017 is SCNN,27 an ac-
celerator for sparse and compressed
convolutional neural networks (CNNs).
Both weights and activations are kept
compressed in DRAM and in internal
buffers, thus shrinking the time and
energy needed for data transfers and al-
lowing the chip to store larger models.

Another trend since 2016 is do-
main-specific architectures for train-
ing. For example, ScaleDeep35 is an
investigation of a high-performance
server designed for DNN training and
inference containing thousands of
processors. Each chip would contain
compute-heavy blocks and memo-
ry-heavy blocks, in a 3:1 ratio, and
outperform GPUs by 6× to 28×. It
computes in 16-bit or 32-bit floating-
point arithmetic. The chips are con-
nected through a high-performance
interconnect topology that matches
DNN communication patterns. Like
SCNN, such topologies are evaluated
exclusively on CNNs. CNNs were just
5% of the TPU workload in Google’s
datacenters in 2016. Computer ar-
chitects look forward to evaluation
of ScaleDeep on other types of DNNs
and to hardware implementations.

DNNs would seem to be a good use
case for FPGAs as a compute platform
in datacenters. The one deployed ex-
ample is Catapult.30 Although publicly
announced in 2014, Catapult is a TPU
contemporary since it deployed 28nm
Stratix V FPGAs into Microsoft data-
centers concurrently with the TPU in
2015. Catapult runs CNNs 2.3× faster
than a server. Perhaps the most sig-
nificant difference between Catapult
and the TPU is that to achieve best
performance, users must write long
programs in the low-level hardware-
design-language Verilog vs. writing
short programs using the high-level
TensorFlow framework; that is, “re-
programmability” comes from soft-
ware for the TPU rather than from
firmware for the fastest FPGA.

Conclusion
Despite living on an I/O bus and having
relatively limited memory bandwidth
constraining utilization of the TPU
(four of the six DNN applications are
memory-bound), a small fraction of a
big number—65,536 multiply-accu-
mulates per cycle—can nonetheless be
relatively large, as demonstrated by the
Roofline performance model. This re-
sult suggests a “cornucopia corollary”
to Amdahl’s Law—that low utilization
of a huge, cheap resource can still de-
liver high, cost-effective performance.

We learned that inference appli-
cations have serious response-time
bounds because they are often part
of user-facing applications; DNN
architectures thus need to perform
well when coping with 99th percentile
latency deadlines.

The TPU die leverages its advan-
tage in MACs and on-chip memory to
run short programs written using the
domain-specific TensorFlow frame-
work 15× faster than the K80 GPU
die, resulting in a performance/Watt
advantage of 29×, which is correlated
with performance/total cost of own-
ership. Compared to the Haswell CPU
die, the corresponding ratios are 29
and 83, respectively.

Five architectural factors explain
this energy-performance gap:

One processor. The TPU has only one
processor, while the K80 has 13 and
the CPU has 18; a single-thread makes
it easier for the system to stay within a
fixed latency limit;

Domain-specific architectures for
DNNs continue to be a hot topic among
computer architects. A major focus is
architectures for sparse matrices, which
appeared after the TPU was first de-
ployed in 2015. The Efficient Inference
Engine is based on a first pass that re-
duces the number of weights by approxi-
mately a factor of 1013 as a separate step
by filtering out very small values and
then uses Huffman encoding to shrink
the data even further to improve infer-
ence performance.14 Cnvlutin1 avoids
multiplications when an activation in-
put is zero, as it is 44% of the time, pre-
sumably in part due to rectified linear
unit, or ReLU, nonlinear function that
transforms negative values to zero, im-
proving performance by an average 1.4×.
Eyeriss is a novel, low-power dataflow
architecture that takes advantage of ze-
ros through run-length encoding data
to reduce the memory footprint and
saves power by avoiding computations
when an input is zero.8 Minerva is a co-
design system that crosses algorithm,
architecture, and circuit disciplines to
reduce power by 8× by in part pruning
activation data with small values and
in part quantizing the data.31 That ef-

Google’s Tensor Processing Unit 3.0, introduced last May, is eight times more powerful than
2.0, with performance up to 100 petaflops.

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 59

contributed articles

benchmarks. IEEE Computer 42, 3 (Mar. 2009), 95–97.
25. Larabel, M. Google Looks to Open Up

StreamExecutor to Make GPGPU Programming
Easier. Phoronix, Mar. 10, 2016; https://
www.phoronix.com/scan.php?page=news_
item&px=Google-StreamExec-Parallel

26. Metz, C. Microsoft bets its future on a
reprogrammable computer chip. Wired (Sept. 25,
2016); https://www.wired.com/2016/09/microsoft-
bets-future-chip-reprogram-fly/

27. Moore, G.E. No exponential is forever: But ‘forever’ can
be delayed! In Proceedings of the International Solid-
State Circuits Conference (San Francisco, CA, Feb. 13).
IEEE Press, 2003.

28. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A.,
Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W.,
and Dally, W.J. SCNN: An accelerator for compressed-
sparse convolutional neural networks. In Proceedings
of the 44th Annual International Symposium on
Computer Architecture (Toronto, ON, Canada, June
24–28). IEEE Press, 2017, 27–40.

29. Patterson, D.A. Latency lags bandwidth. Commun.
ACM 47, 10 (Oct. 2004), 71–75.

30. Patterson, D.A. and Ditzel, D.R. The case for the
reduced instruction set computer. SIGARCH
Computer Architecture News 8, 6 (Sept. 1980), 25–33.

31. Putnam, A. et al. A reconfigurable fabric for
accelerating large-scale datacenter services.
Commun. ACM 59, 11 (Nov. 2016), 114–122.

32. Reagen, B., Whatmough, P., Adolf, R., Rama, S.,
Lee, H., Lee, S.K., Hernández-Lobato, J.M., Wei,
G.Y., and Brooks, D. Minerva: Enabling low-power,
highly accurate deep neural network accelerators.
In Proceedings of the 43rd ACM/IEEE International
Symposium on Computer Architecture (Seoul, Korea),
IEEE Press 2016.

33. Silver, D. et al. Mastering the game of Go with deep
neural networks and tree search. Nature 529, 7587
(Sept. 20, 2016).

34. Smith, J.E. Decoupled access/execute computer
architectures. In Proceedings of the 11th Annual
International Symposium on Computer Architecture
(Austin, TX, Apr. 26–29). IEEE Computer Society
Press, 1982.

35. Szegedy, C. et al. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Boston, MA, June
7–12). IEEE Computer Society Press, 2015.

36. Venkataramani, S. et al. ScaleDeep: A scalable
compute architecture for learning and evaluating
deep networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture
(Toronto, ON, Canada, June 24–28). ACM Press, New
York, 2017, 13–26.

37. Williams, S., Waterman, A., and Patterson, D. Roofline:
An insightful visual performance model for multi-core
architectures. Commun. ACM 52, 4 (Apr. 2009), 65–76.

38. Wu, Y. et al. Google’s neural machine translation
system: Bridging the gap between human and
machine translation. arXiv preprint, Sept. 26, 2016;
arXiv:1609.08144

Norman P. Jouppi (jouppi@google.com) is a
Distinguished Hardware Engineer at Google, Mountain
View, CA, USA.

Cliff Young (cliffy@google.com) is a member of the Brain
team at Google, Mountain View, CA, USA.

Nishant Patil (nishantpatil@google.com) is a Tech Lead
Manager at Google, Mountain View, CA, USA.

David Patterson (pattrsn@cs.berkeley.edu) is the
Pardee Professor of Computer Science, Emeritus at the
University of California at Berkeley, Berkeley, CA, USA,
and a Distinguished Engineer at Google, Mountain View,
CA, USA.

Copyright held by the authors/owners.

Large, two-dimensional multiply
unit. The TPU has one very large, two-
dimensional multiply unit, while the
CPU and GPU have 18 and 13 smaller,
one-dimensional multiply units, re-
spectively; matrix multiplies benefit
from two-dimensional hardware;

Systolic arrays. The two-dimension-
al organization enables systolic arrays,
reducing register accesses and energy;

Eight-bit integers. The TPU’s applica-
tions use eight-bit integers rather than
32-bit floating point operations to im-
prove efficiency of both computation
and memory; and

Dropped features. The TPU drops
features required by CPUs and GPUs
that DNNs do not use, making the TPU
cheaper while saving energy and allow-
ing transistors to be repurposed for
domain-specific on-chip memory.

While future CPUs and GPUs will
surely run inference faster, a rede-
signed TPU using circa-2015 GPU
memory would go three times faster
and boost the performance/Watt ad-
vantage to nearly 70× over the K80 and
200× over Haswell.

For at least the past decade, computer
architecture researchers have been pub-
lishing innovations based on simula-
tions using limited benchmarks claim-
ing improvements for general-purpose
processors of 10% or less, while we are
now reporting gains for a domain-specif-
ic architecture deployed in real hardware
running genuine production applica-
tions of more than a factor of 10.17

Order-of-magnitude differences be-
tween commercial products are rare
in computer architecture, which could
even lead to the TPU becoming an ar-
chetype for future work in the field. We
expect that many will build successors
that will raise the bar even higher.

Acknowledgments
We would like to thank all the mem-
bers of the TPU team for their contribu-
tions throughout this project.20 It really
does take a village to design, verify, and
implement the hardware and software
of a system like a TPU and to manufac-
ture, deploy, and use it at scale, as we
see at Google.

References
1. Abadi, M. et al. Tensorflow: Large-scale machine

learning on heterogeneous distributed systems. arXiv
preprint, 2016; https://arxiv.org/abs/1603.04467

2. Albericio, J., Judd, P., Hetherington, T., Aamodt,

T., Jerger, N.E., and Moshovos, A. 2016 Cnvlutin:
Ineffectual-neuron-free deep neural network
computing. In Proceedings of the 43rd ACM/IEEE
International Symposium on Computer Architecture
(Seoul, Korea), IEEE Press, 2016.

3. Asanović, K. Programmable neurocomputing. In The
Handbook of Brain Theory and Neural Networks,
Second Edition, M.A. Arbib, Ed. MIT Press, Cambridge,
MA, Nov. 2002; https://people.eecs.berkeley.
edu/~krste/papers/neurocomputing.pdf

4. Barroso, L.A. and Hölzle, U. The case for energy-
proportional computing. IEEE Computer 40, 12 (Dec.
2007), 33–37.

5. Barr, J. New G2 Instance Type for Amazon EC2: Up
to 16 GPUs. Amazon blog, Sept. 29, 2016; https://
aws.amazon.com/about-aws/whats-new/2015/04/
introducing-a-new-g2-instance-size-the-g28xlarge/

6. Barr, J. New Next-Generation GPU-Powered EC2
Instances (G3). Amazon blog, July 13, 2017; https://
aws.amazon.com/blogs/aws/new-next-generation-
gpu-powered-ec2-instances-g3/

7. Chen, Y., Chen, T., Xu, Z., Sun, N., and Teman, O. DianNao
Family: Energy-efficient hardware accelerators for
machine learning. Commun. ACM 59, 11 (Nov. 2016),
105–112.

8. Chen, Y.H., Emer, J., and Sze, V. Eyeriss: A spatial
architecture for energy-efficient dataflow for
convolutional neural networks. In Proceedings of the
43rd ACM/IEEE International Symposium on Computer
Architecture (Seoul, Korea), IEEE Press, 2016.

9. Clark, J. Google turning its lucrative Web search over
to AI machines. Bloomberg Technology (Oct. 26, 2015).

10. Dally, W. High-performance hardware for machine
learning. Invited talk at Cadence ENN Summit (Santa
Clara, CA, Feb. 9, 2016); https://ip.cadence.com/uploads/
presentations/1000AM_Dally_Cadence_ENN.pdf

11. Dean, J. Large-Scale Deep Learning with
TensorFlow for Building Intelligent Systems. ACM
webinar, July 7, 2016; https://www.youtube.com/
watch?v=vzoe2G5g-w4

12. Hammerstrom, D. A VLSI architecture for
high-performance, low-cost, on-chip learning. In
Proceedings of the International Joint Conference on
Neural Networks (San Diego, CA, June 17–21). IEEE
Press, 1990.

13. Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural networks.
In Proceedings of Advances in Neural Information
Processing Systems (Montreal Canada, Dec.) MIT
Press, Cambridge, MA, 2015.

14. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M.A., and Dally, W.J. EIE: Efficient Inference Engine on
compressed deep neural network. In Proceedings of the
43rd ACM/IEEE International Symposium on Computer
Architecture (Seoul, Korea). IEEE Press, 2016.

15. Huang, J. AI Drives the Rise of Accelerated Computing
in Data Centers. Nvidia blog, Apr. 2017; https://
blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-
accelerated-computing-datacenter/

16. He, K., Zhang, X., Ren, S., and Sun, J. Identity
mappings in deep residual networks. arXiv preprint,
Mar. 16, 2016; https://arxiv.org/abs/1603.05027

17. Hennessy, J.L. and Patterson, D.A. Computer
Architecture: A Quantitative Approach, Sixth Edition.
Elsevier, New York, 2018.

18. Ienne, P., Cornu, T., and Kuhn, G. Special-purpose
digital hardware for neural networks: An architectural
survey. Journal of VLSI Signal Processing Systems for
Signal, Image and Video Technology 13, 1 (1996), 5–25.

19. Jouppi, N. Google Supercharges Machine Learning
Tasks with TPU Custom Chip. Google platform blog,
May 18, 2016; https://cloudplatform.googleblog.
com/2016/05/Google-supercharges-machine-
learning-tasks-with-custom-chip.html

20. Jouppi, N. et al, In-datacenter performance of a
tensor processing unit. In Proceedings of the 44th
International Symposium on Computer Architecture
(Toronto, Canada, June 24–28). ACM Press, New York,
2017, 1–12.

21. Keutzer, K. If I could only design one circuit ...
Commun. ACM 59, 11 (Nov. 2016), 104.

22. Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural
networks. In Proceedings of Advances in Neural
Information Processing Systems (Lake Tahoe, NV).
MIT Press, Cambridge, MA, 2012.

23. Kung, H.T. and Leiserson, C.E. Algorithms for VLSI
processor arrays. Chapter in Introduction to VLSI
systems by C. Mead and L. Conway. Addison-Wesley,
Reading, MA, 1980, 271–292.

24. Lange, K.D. Identifying shades of green: The SPECpower

Watch the authors discuss
their work in this exclusive
Communications video.
https://cacm.acm.org/videos/a-
domain-specific-architecture-for-
deep-neural-networks

