
48 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

FROM THE SIMPLE embedded processor in your washing
machine to powerful processors in data center servers,
most computing today takes place on general-purpose
programmable processors or CPUs. CPUs are attractive
because they are easy to program and because large
code bases exist for them. The programmability of CPUs
stems from their execution of sequences of simple
instruc tions, such as ADD or BRANCH; however, the
energy required to fetch and interpret an instruction is
10× to 4000× more than that required to perform a simple
operation such as ADD. This high overhead was accept-
able when processor performance and efficiency were
scaling according to Moore’s Law.32 One could simply
wait and an existing application would run faster and
more efficiently. Our economy has become dependent on
these increases in computing performance and ef-
ficiency to enable new features and new applications.
Today, Moore’s Law has largely ended,12 and we must

look to alternative architectures with
lower overhead, such as domain-spe-
cific accelerators, to continue scaling
of performance and efficiency. There
are several ways to realize domain-spe-
cific accelerators as discussed in the
sidebar on accelerator options.

A domain-specific accelerator is a
hardware comput ing engine that is
specialized for a particular domain of
applications. Accelerators have been
designed for graphics,26 deep learn-
ing,16 simulation,2 bioinformatics,49
image processing,38 and many other
tasks. Accelerators can offer orders of
magnitude improvements in perfor-
mance/cost and performance/W com-
pared to general-purpose computers.
For ex ample, our bioinformatics accel-
erator, Darwin,49 is up to 15,000× faster
than a CPU at reference-based, long-read
assembly. The performance and effi-
ciency of accelerators is due to a com-
bination of specialized operations,
parallelism, efficient memory systems,
and reduction of overhead. Domain-
specific accelerators7 are becoming more
pervasive and more visible, because they
are one of the few remaining ways to con-
tinue to improve performance and effi-
ciency now that Moore’s Law has ended.22

Most applications require modifi-
cations to achieve high speed up on

Domain-
Specific
Hardware
Accelerators

DOI:10.1145/3361682

DSAs gain efficiency from specialization
and performance from parallelism.

BY WILLIAM J. DALLY, YATISH TURAKHIA, AND SONG HAN

 key insights
 ˽ Most speedup comes from parallelism

enabled by specialization—the main
source of efficiency.

 ˽ The underlying algorithms often have to
change—trading increased hardware-
friendly computation for reduced memory
bandwidth demands.

 ˽ Accelerator design is really parallel
programming guided by a cost model—
arithmetic is free and global memory
is expensive.

 ˽ Memory typically dominates both area and
power of domain-specific accelerators.

 ˽ Specialized instructions give much of the
advantage of a DSA at a fraction of the
development cost and while retaining
programmability.

 ˽ Domain-specific accelerators are one
of the few ways to continue scaling
the performance and efficiency of
computing hardware. I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 M

A
T

T
 H

E
R

R
I

N
G

,
U

S
I

N
G

 I
M

A
G

E
R

Y
 B

Y
 B

E
T

_
N

O
I

R
E

/G
E

T
T

Y
 I

M
A

G
E

S

http://dx.doi.org/10.1145/3361682

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 49

50 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

dominated. The challenge of balancing
 specialization with generality is exam-
ined, and later we describe how accel-
erator design can be viewed as design-
ing parallel programs with a set of costs
reflecting modern hardware.

Sources of Acceleration
Domain-specific accelerators exploit
four main techniques for performance
and efficiency gains:

Data specialization: Specialized
operations on domain-specific data
types can do in one cycle what may
take tens of cycles on a conventional
computer. Specialized logic to per-
form an inner-loop function gains in
both performance and efficiency.
Parallelism: High degrees of paral-
lelism, often exploited at several
levels, provide gains in perfor-
mance. To be effective, the parallel
units must exploit locality and
make very few global memory ref-
erences or their performance will
be memory bound.
Local and optimized memory: By
storing key data structures in many
small, local memories, very high
memory bandwidth can be
achieved with low cost and energy.
Access patterns to global memory
are optimized to achieve the
greatest possible memory
bandwidth. Key data structures
may be compressed to multiply
bandwidth. Memory accesses are
load-balanced across memory
channels and carefully scheduled to
maximize memory utilization.
Reduced overhead: Specializing
hardware eliminates or reduces the
overhead of program interpretation.

The speedup gains from specialization
and parallelism are multiplicative.
The dynamic programming engine de-
scribed here, for example, gets a 37×
speedup from specialization and an
additional 4034× speedup from par-
allelism for a net 150,000× speedup
compared to a conventional proces-
sor. Some of these factors are also de-
pendent. Achieving high degrees of
parallelism, for example, depends on
locality. The 4096 processing elements
in the dynamic programming engine
only reference small local traceback
memories. This degree of parallelism

would not be possible if global memory
references were required. Optimizing
memory may also rely on specializa-
tion. Compressing data structures may
only make sense if specialized logic is
available to do the compression.

Data specialization. The defining
feature of many domain-specific accel-
erators is a set of hardware operations
specialized to the application domain.
The inner loops of many demanding ap-
plications perform tens to hundreds of
arithmetic and logical operations with
only very local memory references. In
many cases, specialized logic can per-
form the entire inner loop in a single
cycle with a small amount of area and
power. This logic is fed by specialized
registers and communication links that
provide and consume data with very
low energy. As an example, consider the
Smith-Waterman algorithm44 with af-
fine gap penalties.14 This algorithm is
widely used in genome analysis to align
two gene sequences. Each iteration of
the inner loop computes the following
recurrence equations:

I(i, j) = max {H (i, j – 1) – o, I (i, j – 1) – e} (1)

D(i, j) = max {H (i–1, j)–o, D (i–1, j)–e}
(2)

(3)

Here H(i, j) is the maximum score for
an alignment ending at (i, j), o and e are
the penalties for opening and extend-
ing an insertion or deletion, and W(r, q)
is the cost of substituting base r for
base q. The computation is performed
in 16-bit integer arithmetic.

Performing this computation on
a conventional x86 processor without
SIMD vectorization takes around 35
arithmetic and logical operations and
15 load/store operations. On an Intel
Xeon E5-2620 4-issue, out-of-order 14nm
CPU, each iteration takes about 37 cycles
and consumes 81nJ. On our 40 nm Dar-
win accelerator, each iteration takes a
single cycle, a 37× speedup, and con-
sumes 3.1pJ, a 26,000× reduction in en-
ergy. Of the 3.1pJ, only 0.3pJ is consumed
computing the recurrence equations.
The balance of 2.8pJ is used for a single

domain- specific accelerators. These ap-
plications are highly tuned to balance
the performance of conventional pro-
cessors with their memory systems.
When specialization reduces the cost
of pro cessing to near zero, they be-
come memory limited. The applica-
tion must be re worked, codesigning
the application with the accelerator, to
reduce memory bandwidth and mem-
ory footprint. Even after rework, many
domain-specific accelerators remain
memory dominated.

A well-designed accelerator covers
the broadest possible space of appli-
cations—accelerating a domain rather
than a sing le application. Add ing
domain- specific instructions to a pro-
grammable processor provides the ef-
ficiency of the specialized instruction
while retaining flexibility. Complex
instructions give better efficiency be-
cause they amortize the high overhead
of programmability. Building a parallel
computer from domain- specific pro-
cessing elements can also accelerate a
large domain of applications with only
a small loss of efficiency.

The design of a domain-specific ac-
celerator is really a form of parallel pro-
gramming, but with a cost model very
different from what most program-
mers use. Arithmetic and logical oper-
ations are nearly free, and memory ac-
cesses have a cost that is a function of
the size of the memory being accessed.
Most of the effort in designing an ac-
celerator is refactoring the application
to optimize efficiency under this mod-
el. We envision future programming
systems where the programmer speci-
fies the algorithm and a mapping to
hardware in space and time. From this
description, the detailed design of the
accelerator would be largely automat-
ed. Such tools will facilitate the rapid
exploration of the accelerator design
space and eliminate many of today’s
obstacles to accelerator design.

The remainder of this article de -
scribes the current state of the art in do-
main-specific accelerators. We start by
discussing the four techniques accel-
erators employ to achieve performance
and efficiency: specialization, parallel-
ism, local and optimized memory, and
reduced overhead. We then explore
the process of codesigning applica-
tions and accelerators and we discuss
how most accelerators are memory

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 51

contributed articles

cessing elements can be made very
simple and very small. As an example,
the alignment portion of our Darwin
accelerator exploits parallelism at two
levels. At the outer-loop level, A = 64
systolic arrays of processing elements
process 64 separate alignment prob-
lems in parallel. There is no communi-

memory access to store a 4-bit “traceback
pointer” that identifies which preced-
ing cell was used to compute the value.

A large fraction of the area and en-
ergy savings of specialization are due to
elimination of overhead. Much of the
81nJ consumed by the x86 processor
and much of its area are spent fetching,
decoding, and reordering instructions.
This overhead is largely eliminated by
specialization. The processing element
that computes the recurrence equations
takes only 0.004mm2 of die area in a
40nm process. Despite being three tech-
nology nodes behind the 14nm CPU, the
specialized operations of the accelera-
tor offer orders of magnitude improve-
ment in performance, power, and area.

Specialization also enhances locality
by reducing the cost of memory com-
pression. In our EIE accelerator for
sparse neural networks,16 we store 10%–
30% dense networks in compressed-
sparse-column (CSC) format. We further
compress the row pointers to 4-bits each
using run-length coding and compress
the network weights using a 16-entry
codebook. The compressed-sparse rep-
resentation of network weights results
in a 30× reduction in size allowing the
weights of most networks to fit into ef-
ficient, local, on-chip memories, which
takes two orders of magnitude less en-
ergy to access than off-chip memories.

On a conventional processor, the ex-
tra operations required to walk the point-
ers of the sparse-matrix data structure
make such representations inefficient
for densities above 1%. Similarly, the
overhead of the run-length and code-
book compression would be prohibi-
tive on a general-purpose processor.
With specialized logic, the pointer
walking is done in a dedicated pipe-
line stage, with the pointers fetched
from a dedicated, local memory. The
decompression, both for the run-length
pointer encoding and the codebook
lookup, is also done in a dedicated pipe-
line stage. The area needed to support
sparsity and compression with special-
ized logic is relatively small: the 16-en-
try weight decoder takes less than 1%
of the die area; the pointer RAM takes
about 20% of the area and power. On
a general-purpose processor, the over-
head is prohibitive.

Parallelism. Most domain-specific
accelerators exploit parallelism at one
or more levels. By specializing the par-

allelism to the application domain,
the synchronization and communi-
cation between processing elements
are greatly simplified. Only the com-
munication and synchronization
patterns in the application being
accelerated need to be supported. By
eliminating overhead, the parallel pro-

Domains of applications can be accelerated with ASICs, FPGAs, or GPUs each offering
different trade-offs between development cost, programmability, and efficiency.
ASICs (application- specific integrated circuits) provide the highest efficiency but
have a high nonrecurring engineering (NRE) cost and poor programmability. Their
logic is hardwired at design time for a single application domain. Soft logic in FPGAs
lowers the efficiency for specific tasks by 10–100×29 but enables the same chip to be
dynamically configured for different applications, for example, for deep learning
or genomics. Soft logic also allows for deeper specialization (for example, constant
folding specific values of weights in a neural network5) and allows for an accelerator to
be instantiated near the data it operates on, reducing communication costs.47 GPUs are
platforms that accelerate multiple domains by incorporating specialized operations
(such as HMMA4) and memory optimizations (such as compressed surface storage3).
For the applications they accelerate, they provide near-ASIC efficiency. For other
applications, their SIMT execution model33 offers order of magnitude better efficiency
than CPUs at the expense of single-thread performance.

Figure 2 compares the efficiency of FPGAs, GPUs, and ASICs for two domains: deep
learning and genomics. For domains where GPUs have specialized logic, such as deep
learning, they provide near-ASIC efficiency.a In other domains, such as genomics, GPUs
provide lower efficiency than FPGAs but offer faster development time. For genomics,
we coded the banded Smith-Waterman algorithm50 in CUDA for the GPU in one day—
giving 25× improvement in efficiency over the CPU. Bringing this algorithm up on an
FPGA took two months of RTL design and performance tuning—to achieve four times
the efficiency of the GPU. Hardening this RTL into an ASIC gives 16× the efficiency
of the FPGA but with significant nonrecurring costs and lack of flexibility. Adding a
dynamic-programming step (DPS) instruction to the GPU matches the efficiency of the
ASIC and with no loss of efficiency.

There are architectures that provide intermediate trade-off points for
programmability and efficiency between FPGAs and ASICs. CHARM6 uses a number
of programmable domain-specific accelerator building blocks (ABBs), organized into
ABB islands, to compose domain-specific acceleration. CGRAs20 provide coarse grain
reconfigurability, at word level or operator level instead of bit level, and incur lower
overhead compared to FPGAs.

a The NVIDIA T4 and Habana Goya have nearly identical arithmetic performance per Watt.
The difference in the figure is due to the difference in memory interface, GDDR on the T4
and LPDDR on the Goya.

Acceleration Options

Figure 2. Comparison of computation efficiency (in Tasks/s-Watt) for CPU, FPGA, GPU,
and ASIC for deep learning and genomics domains.a

CPU
1000 1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

100

Im
ag

es
/s

-W
at

t

M
ce

ll
s/

s-
W

at
t

9.9

Deep Learning Genomics

10.8

70.6

150

10.7

976.6

256.0

16,279.1

10

1

FPGA GPU ASIC

a Deep learning efficiency is measured in terms of inference images/s-Watt for Resnet-5021
(sources: CPU,43 FPGA,53 GPU,36 ASIC15). Genomics efficiency is measured in Mcells/s-Watt
for Banded Smith-Waterman algorithm (sources: CPU,9 FPGA,50 GPU (our implementation on
NVIDIA V100), ASIC50).

52 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

accumulating row sums locally. Other
than the activation broadcast, there is
no communication between the PEs. A
FIFO queue of pending input activa-
tions at each PE load balances work
across the PEs, improving PE utiliza-
tion from 50% without the FIFO to 90%
with the FIFO.

Local and Optimized Memory. The
gains from specialization and paral-
lelism are dependent on keeping the
computation supplied from small, lo-
cal memories. Each cycle, each of the
4096 PEs in the Darwin alignment en-
gine stores a traceback pointer to mem-
ory, achieving a net write bandwidth of
nearly 2TBps. These pointers are used to
construct the optimal alignment when
the dynamic programming completes.
If traceback pointers were stored to
global memory, the computation would
be bottlenecked by memory bandwidth.
Instead, the traceback pointers are
stored in 4096 small SRAMs, one asso-
ciated with each PE. A conventional
memory subsystem, even one with
many levels of caches, is largely serial
and would limit the achievable paral-
lelism to a very small number.

In a similar manner, the filtering stage
of the Darwin accelerator uses 16 dedi-
cated SRAMs to store the bin counts, the
number of seeds that match within a
range of a candidate alignment. Al-
though at most four bins are incremented
each cycle, the speedup here is more
than four times because the bin-count
updates are random and cause interfer-
ence with the sequential accesses to the
seed position tables. With the bin-count
updates removed from the memory
stream, the sequential reads of the seed
tables achieve nearly ideal memory
throughput. Overall, the speedup from
memory access optimization is 9×–
24×—3× speedup from fewer accesses to
DRAM (moving bin-count updates to
SRAM) and 3×–8× speedup from the in-
creased bandwidth by changing a ran-
dom access pattern to mostly sequen-
tial. Four DRAM memory channels were
added to the accelerator providing an-
other four times the speed up from
memory parallelism.

Data compression can be employed
to both increase the effective size of a
local memory and to increase the effec-
tive bandwidth of a memory interface.
The NVDLA,35 EIE,16 and SCNN,37 for
example, all store the weights of a

neural network as sparse data struc-
tures giving an average 3×−10× increase
in the effective capacity of on-chip
memories. The EIE and SCNN also run-
length encode the pointers of the sparse
data structure as 4-bit increments. This
gives a density advantage of 4×–8× com-
pared to storing these pointers in full
16- or 32-bit form. The weights in EIE
are further compressed using a 16-entry
codebook. Each weight is represented
by a 4-bit codeword, giving an 8× sav-
ings compared to a 32-bit float. The sav-
ings in the number of weights and the
number of bits per weight is multiplica-
tive giving an overall compression rate of
32×–64×. Whenever weights are loaded
from off-chip DRAM memory, the effec-
tive off-chip bandwidth is increased by
this rate—compared to loading uncom-
pressed data. GPUs have long stored sur-
faces in lossless compressed form3 to
increase effective memory bandwidth.

Overhead reduction. Overhead reduc-
tion is an important aspect of specializa-
tion. Even a simple in-order processor
spends over 90% of its energy on over-
head: instruction fetch, instruction de-
code, data supply, and control.10 A mod-
ern out-of-order processor spends over
99.9% of its energy on overhead51 adding
costs for branch prediction, specula-
tion, register renaming, and instruction
scheduling. Performing a 32-b integer
add takes only 63 fJ in 28nm CMOS.24
Performing an integer add instruction
on a 28nm ARM A-15 takes over 250pJ,51
about 4000× the energy of the add itself.
Special purpose engines such as Darwin
and EIE completely eliminate this over-
head. Moreover, most adds do not need
full 32-bit precision and just the number
of bits needed are added, further saving
energy. There are no instructions to be
fetched and hence no instructions fetch
and decode energy. There is no specu-
lation, and hence no work lost due to
mis-speculation. Most data is supplied
directly from dedicated registers and
thus no energy is required to read from
a cache or from a large, multiported reg-
ister file.

The high energy and area costs of in-
struction and data supply overhead
motivate complex instructions. The energy
of a single add operation is swamped by
the instruction overhead energy. A com-
plex instruction, such as the matrix-
multiply-accumulate instruction (HMMA)
of the NVIDIA Volta V100,4 on the other

cation between the subproblems, and
the only synchronization required is
upon completion of each subproblem.
A typical reference-based assembly per-
forms billions of alignments, so there
is ample outer-loop parallelism.

At the inner-loop level, each array
consists of P = 64 processing elements
that compute 64 elements of the H, I,
and D matrices in parallel. The com-
putation is performed along an an-
tidiagonal of the matrices as originally
suggested in Lipton and Lopresti.30
On cycle t, processing element p com-
putes the matrix elements at (p, t − p).
Matrices with more than P rows are
processed in swaths P rows at a time.
Because matrix element (i, j) depends
only on the elements directly above
(i − 1, j), directly to the left (i, j − 1), and
above and to the left (i − 1, j − 1), only
systolic nearest neighbor communica-
tion between the processing elements
is required. As with all systolic arrays,
synchronization is implicit.

The parallelism exploited by special-
purpose accelerators typically has very
high utilization. Utilization at the outer-
loop level is close to 100%. Until the very
end of the computation, there is always
another subproblem to process as soon
as one finishes. With double buffering
of the inputs and outputs, the arrays are
working continuously. At the inner-loop
level, utilization is 98.5%. Computation
is performed in 512 × 512 tiles. At the
start of each tile, only a single PE, at the
upper left corner, is active. Each cycle
another PE becomes active until all 64
are operating. Similarly, at the bottom
right corner, the number of active PEs
ramps linearly down from 64 to 0.
Although it is possible to have the idle
PEs start on the next alignment immedi-
ately, this is not done in Darwin. Idling of
PEs at the start and end makes the aver-
age PE utilization 98.5% and the overall
speedup due to parallelism 4034×. This
speedup due to parallelism is multipli-
cative with the 37× speedup due to spe-
cialization giving an overall speedup on
alignment of 150,000×.

In EIE, we parallelize a sparse matrix
× sparse vector multiplication by parti-
tioning the rows of the matrix across
256 PEs. Each nonzero input activation
and its column are broadcast to all PEs.
Upon receipt of each activation, each
PE walks the nonzero row entries for
that column in its subset of rows,

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 53

contributed articles

conventional hardware. With special-
ized hardware, gapped extension be-
comes feasible50 giving much better
sensitivity when comparing the genomes
of distantly-related species—where the
alignments have frequent gaps.

Memory Dominates Accelerators
The area and power of most accelerators
are dominated by memory, and their per-
formance is often memory limited. As a
result, much of the codesign described
earlier is developing algorithms that
have a small memory footprint. Most of
their memory bandwidth requirements
can be satisfied by small, local memo-
ries. They require only modest band-
width from large, global memories.

Table 1 shows the relative area and
power for memory and logic in the Dar-
win GACT accelerator, the Darwin D-
SOFT accelerator, and the EIE sparse
neural network accelerator. The EIE
numbers are shown for 64 processing
elements (PEs). D-SOFT and EIE,
which accelerate a memory-limited ap-
plication (seed filtering and matrix-
vector multiplication, respectively) using
large local memories, use over 90% of
their die area for memory. In D-SOFT,
the power component is over 90% as
well, because the bin update logic is
relatively simple, consisting of on-chip
routing and simple arithmetic opera-
tions (add and compare). Even in the
EIE, where the 16-bit multiply opera-
tions are more expensive, memory still
consumes more than half of the chip
power. For the GACT accelerator,
which performs a compute-intensive
dynamic programming operation, the
memory that stores the traceback
pointers consumes about 80% of the
die area and over 75% of the power.
The simple 16-bit additions and com-
parisons at the core of the dynamic pro-
gramming recurrence equations take
very little area and power. The low area
and power of simple logic and arithmetic

hand, performs 128 floating-point opera-
tions in a single instruction and thus has
an operation energy that is many times
the instruction overhead. Using complex,
specialized instructions, one can build
efficient, specialized, programmable
computer systems. We revisit the concept
of complex, specialized instructions later.

Codesign is Needed
Achieving high speedups and gains in
efficiency from specialized hardware
usually requires modifying the underly-
ing algorithm. Because existing algori-
thms are highly tuned for conventional
general-purpose processors, they are
rarely the optimal approach for a spe-
cialized solution. Instead, the algo-
rithm and hardware must be codesigned
to jointly optimize performance and
efficiency while preserving or enhanc-
ing accuracy.

Many existing algorithms are tuned
to balance the performance of conven-
tional processors with their memory
systems. When the cost of the process-
ing is made nearly zero via specializa-
tion, they become completely memory
dominated. To get significant speedup,
such algorithms must be refactored to
reduce the bandwidth demands on
global memory. Although methods
such as tiling52 and compression can be
used to reduce global bandwidth to
some degree, often more fundamental
restructuring is required.

One approach to codesign is to trade
more of an operation that is inexpen-
sive in hardware (that is, logic limited)
for less of an operation that is expensive
(that is, memory limited). For example,
conventional applications for long-read
genomic sequence alignment such as
GraphMap45 spend most of their com-
pute time on filtering and relatively lit-
tle time on alignment. This approach
makes sense for a general-purpose pro-
cessor where filtering is relatively cheap
and alignment is expensive. It is exactly
the wrong optimization for specialized
hardware where alignment can be
made extremely efficient (26,000× more
efficient and 150,000× faster than on a
general-purpose processor) but filter-
ing is fundamentally limited by global
memory bandwidth. If we were to apply
hardware specialization to the existing
algorithm, we would be limited to a
speedup of 4–5× due to the memory
bandwidth required.

To exploit this difference in costs,
Darwin spends 200× less time on filter-
ing than GraphMap. This results in a
560× increase in candidate positions
to be aligned and hence 560× more
work for the alignment stage. However,
because alignment is accelerated by
150,000×, the net result is a speedup of
more than 200×. Darwin’s parameters for
filtering and alignment are adjusted so
that the new alignment-heavy algorithm
has equal or higher sensitivity than the
filtering-heavy algorithm it replaces.

Codesign may also be used to reduce
memory footprint—to make the use
of small local memories feasible. The
conventional Smith-Waterman algo-
rithm for long, 104 base-pair, reads, for
example, would require a prohibitively
large, 108 entry, store for traceback
pointers. To reduce the memory foot-
print to more feasible 2 × 105 entries,
we developed the GACT algorithm that
performs the dynamic programming
in overlapping tiles.49 Tiling reduces
the memory footprint to that of a single
512 × 512-entry tile. Overlapping the
tiles by an amount O = 128 that is larger
than the largest expected deviation of
the optimal path from the diagonal in
practice gives optimal alignments.

In other cases, codesign enables algo-
rithms that would otherwise be ineffi-
cient on conventional hardware. For ex-
ample, in Han et al.,17,18 we showed how
neural networks could be pruned to
10%–30% density and compressed by
30×. The overhead of sparse methods on
conventional hardware made these algo-
rithms uninteresting except for memory
compression. Codesigning special-pur-
pose hardware for sparse operations en-
ables these algorithms to be used to re-
duce computation as well.

As another example, software for
whole genome alignment, such as
LASTZ,19 uses ungapped extension to
filter seed hits because gapped exten-
sion is prohibitively expensive on

Table 1. Breakdown of chip area and power into logic and memory units for the GACT and
D-SOFT accelerators in Darwin49 and for the EIE accelerator16 using TSMC 40 nm.

 Unit Area (mm2) (%) Power (W) (%)

GACT Logic
Memory

17.6
68.0

20.5
79.5

1.04
3.36

23.6
76.4

D-SOFT Logic
Memory

6.2
320.3

1.8
98.2

0.41
8.80

4.4
95.6

EIE Logic
Memory

2.8
38.0

6.9
93.1

0.23
0.34

40.3
59.7

54 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

the other hand, would result in poor ef-
ficiency. A happy medium lies in build-
ing an engine that accelerates a domain
of applications where the breadth of
applications is increased while retain-
ing most of the efficiency of the com-
pletely specialized accelerator.

Special instructions vs. special en-
gines. One approach to building ac -
celerators for broad domains is to
add specialized instructions to a gen-
eral-purpose processor. A hardware
block is built to accelerate the core op-
erations for a domain of algorithms—
matrix multiply for deep learning or
dynamic programming for genomics—
and the operations are made available as
instructions on a general-purpose pro-
cessor. This approach makes the core
operation as efficient as a completely
specialized accelerator but allows the
use of the programmable general-
purpose processor to adapt its use to
different algorithms and applications.

The HMMA (half-precision matrix
multiply-accumulate) instruction in
the NVIDIA Volta V100 GPU4 is an ex-
ample of adding a specialized instruc-
tion to a general-purpose processor.
The instruction multiplies two 4 × 4
half-precision (16-bit) floating-point
matrices accumulating the results in a
4 × 4 single-precision (32-bit) floating-
point matrix. The Turing IMMA (inte-
ger matrix multiply accumulate) in-
struction performs this same
operation on 8 × 8 8-bit integer matri-
ces accumulating an 8 × 8 32-bit integer
result matrix.26 These operations accel-
erate the inner loops of both training
and inference for convolutional, fully-
connected, and recurrent layers of deep
neural networks. A single HMMA in-
struction performs 128 floating-point

operations: 64 half-precision multi-
plies and 64 single-precision adds. An
IMMA instruction performs 1024 inte-
ger operations. This large amount of
math amortizes the overhead. Using
data from Horowitz,24 we estimate that
when executing an HMMA (IMMA) in-
struction, 77% (87%) of the energy is
consumed by arithmetic. The balance
of the energy is consumed by instruc-
tion overhead and fetching the data op-
erands from the large GPU register files
and shared memory. A dedicated accel-
erator, such as the Google TPU,27 could
be at most 23% (13%) more efficient on
half- precision (8-bit integer) matrix
multiply. This bound is just for the
core matrix multiply operation. The
accelerator may be more efficient at
staging data in on-chip memories and
in optimizing data movement. Also,
the GPU die will be larger and hence
more expensive, because it includes
area for the general-purpose functions,
and for other accelerators, which are
unused when doing matrix multiply.
This die cost factors into the recurring
portion of total cost of ownership.

The advantage of implementing the
accelerator as an instruction is that the
full power of the general-purpose pro-
cessor is available to implement other
layers of the network. Pooling, normal-
ization, batch-normalization, sparsity-
mask, and nonlinear function layers are
easily implemented. As new algorithms
and methods are developed, they are
easily incorporated as custom layers
while retaining the efficiency of the ac-
celerator for the bulk of the operations.

In a similar manner, one could im-
plement a special-purpose dynamic
programming instruction to acceler-
ate genomics calculations. A dynamic-
programming step (DPS) instruction
would take as input the values of H,
I, and D (Eqs. (1)–(3)) for a portion of
the current diagonal and generate cor-
responding values for a portion of the
next diagonal along with their trace-
back pointers. Adding such an instruc-
tion to a general-purpose GPU or CPU
would provide most of the efficiency
gains of a hardwired accelerator such
as Darwin.

One advantage of building a special-
ized instruction rather than an entire
engine is that only the instruction must
be developed, not the entire system.
Most of the complexity of a computing

make domain-specific accelerators ef-
ficient. However, it also makes them
memory limited. When logic is “free,”
memory dominates.

Because the area and power of most
accelerators are memory dominated, a
reasonable first estimate of these costs
can be made by considering only the
memory. This allows rapid design
space exploration.

Because global memory bandwidth
is extremely expensive, many accelera-
tors are designed to be global memory
limited—to keep this expensive re-
source busy. In Darwin, for example,
the four DRAM memory channels pro-
vide at most four seeds per cycle. We
sized the D-SOFT filtering hardware
with 16 bin-count banks so it can al-
ways keep up with the four seeds per
cycle from external DRAM. Similarly,
the 4K GACT PEs are provisioned so
that alignment can keep ahead of the
filtering stage.

Because external memory band-
width is so critical, it should be opti-
mized. Memory schedulers should be
employed that maximize memory
throughput41 and memory contents
should be compressed where possible.

Balancing Specialization
and Generality
In the design of domain-specific accel-
erators, there is a tension between gen-
erality and efficiency. Building an en-
gine specialized for just one application
can give the highest possible efficiency.
However, its range of use may be too
limited to generate enough volume to
recover design costs, or a new algo-
rithm may be developed rendering the
accelerator obsolete. Building a com-
pletely general-purpose computer, on

Figure 1. TCO for a genomics accelerator as a function of volume. At low volumes, older
technology nodes give a lower TCO because of their lower nonrecurring costs (NRE).

Technology Node

1.E+4

70

60

50

40

1000

100

10

1

30

20

10

0
3.E+4

T
ec

hn
ol

og
y

N
od

e
(n

m
)

C
os

t
pe

r
G

en
om

e
($

)

1.E+5

Volume (Genomes)
3.E+5 1.E+6 3.E+6

65 65

40

28

16 16

Cost per Genome

NRE per Genome

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 55

contributed articles

cated accelerator to the cost of add-
ing specialized instructions to a CPU
or GPU, or to the cost of combining
several accelerators—perhaps sharing
memory and I/O systems—on a single
chip. Adding specialized instructions
or combining accelerators gives a
higher recurring cost but gives a larg-
er volume over which to amortize the
nonrecurring costs.

Accelerator Design
The design of a domain-specific acceler-
ator is really the design of a fine-grained,
memory-constrained, parallel program
for a limited set of tasks. Most of the
effort is in crafting an algorithm that
achieves high parallelism with a small
local memory footprint and low global
memory bandwidth. Once a highly-par-
allel, highly local algorithm is developed,
the design of the hardware is straight-
forward—and is largely dominated by
memory as described previously.

The major difference between design-
ing a DSA and writing a parallel program
for a conventional parallel machine such
as Summit23 is the cost model. The cost
model in turn drives differences in
granularity and memory footprint.
Most programmers use a cost model
based loosely on the PRAM model.40
Arithmetic functions and accesses to
anywhere in a large global memory are
all counted as unit-cost operations.

Even on a conventional x86 proces-
sor, the PRAM model is highly unreal-
istic, and on a modern GPU, even more so.
Global memory operations are hun-
dreds of times more expensive than arith-
metic operations and local memory
operations—those that hit in the cache.
On multinode machines such as Sum-
mit, communication between nodes
takes microseconds, the equivalent of
thousands of operations. This leads to
very coarse-grained parallelism and
communication.a Adjusting the PRAM
model for the realities of conventional
parallel machines has led to models
such as log P8 that weight global ac-
cesses and communication with ap-
proximations of their actual cost.

a Many parallel machines have been built with
very efficient hardware communication and
synchronization.13,34,42 Unfortunately the need
to use commodity processors for the nodes of
mainstream machines has prevented most
programmers from benefiting from such ef-
ficient mechanisms.

engine, specialized or general purpose,
is in the memory system, on-chip inter-
connect, I/O system, and global control.
When a DSA is implemented by adding
an instruction to a general-purpose
GPU or CPU, it can leverage the existing
system components. The complexity of
the domain-specific block is 100s–1000s
of times smaller than the complexity of
the system (as measured by lines of
code). With a dedicated engine, the
entire system must be developed.

Today, architects pressed to
increase efficiency are turning to com-
plex instructions, such as HMMA,
IMMA, and DPS to amortize fixed
instruction overhead. Complex,
domain-specific instructions enable
the efficiency of domain-specific
accelerators to be combined with the
generality of a programmable proces-
sor and with development costs a frac-
tion of that required to develop a
dedicated accelerator.

Domain-specific parallel computers.
The ability to increase generality with
little loss of efficiency is illustrated by
comparing two simulation accelera-
tors: the MSE11 and MARS.2 The MSE
was a parallel computer where process-
ing elements were highly specialized to
different stages of the simulation pipe-
line. The MSE was 300× faster than a
contemporary general-purpose com-
puter (a VAX 11-780), but it could only
accelerate switch-level simulation.

MARS used a single domain-specif-
ic programmable processing element
that could serve as any of the pipeline
stages. In a single cycle, each MARS
PE could read a word from the input
queue, perform an address calcula-
tion, read or write a word from external
SRAM, extract a bit field from a word,
perform an arithmetic or logical opera-
tion on the bit field, insert the resulting
bit field into another word, and write a
word to the output queue. The net re-
sult was a speedup of about 200× com-
pared to a contemporary general-pur-
pose computer (a Sun 3/260),2 and this
performance doubled over a period of
years as the pipeline was refactored to
eliminate bottlenecks and individual
pipeline stages were tuned. MARS was
nearly as fast as a hardwired engine,
and because the area was dominated
by memory, smaller, hardwired PEs
would have made little difference to
the overall area.

A key factor in the success of MARS
was the low-overhead associated with
horizontal microcode control. The
energy overhead of programmability
was largely the cost of fetching a 64-bit
microinstruction from a 64-bit ×
64-word microinstruction store. This
energy was small compared to the
access to a much larger SRAM made
almost every cycle by most pipeline
stages. The instruction fetch and con-
trol overhead of a conventional pro-
cessor would have been prohibitive.

By defining the right domain-spe-
cific architecture, MARS was able to
implement many simulation pipelines
(and other tasks, such as speech recog-
nition) with performance and effi-
ciency approaching that of full-custom
hardware. MARS proved so useful that
it was reimplemented in five different
generations of CMOS technology from
1.25 µm to 0.35 µm.

Total Cost of Ownership (TCO)
The technology node used to imple-
ment an accelerator should be chosen
to give minimum total cost of owner-
ship (TCO). As shown in Figure 1 for a
genomics accelerator, at low volumes,
the minimum TCO occurs at older
(larger geometry) technology nodes.
For each volume (number of de-novo,
long-read genome assemblies), the
bar shows the technology node that
gives the minimum TCO. Nonrecur-
ring costs are from Khazraee et al.28
The lines show the nonrecurring en-
gineering (NRE) cost per genome and
TCO per genome for the minimum
TCO technology. Darwin’s 40nm tech-
nology gives minimum TCO at 105
genomes assembled. Paying the high
nonrecurring costs for a 16nm tech-
nology is not justified until a volume
of 106 genomes is reached. De-novo,
long-read assembly of noisy reads on a
CPU would cost around $1,500 per ge-
nome,25 so a custom accelerator gives
lower TCO even for a volume as low as
104 genomes—in a 65nm technology.
At this point, the cost per genome is
almost entirely NRE. Backend devel-
opment costs are roughly the same for
130 nm and 65 nm ($4.3M) and domi-
nate mask costs, so nodes older than
65 nm do not offer a material savings
in NRE.

A similar TCO calculation can be
used to compare the cost of a dedi-

56 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

while supply voltage is held constant.b
Communication energy remains
roughly constant. This nonuniform
scaling makes communication—such
as nonlocal memory access—even
more critical in future systems.

Programming accelerators. Each DSA
requires firmware and a software devel-
opment kit (SDK) to facilitate program-
ming. Darwin-WGA,50 for example, uses
the OpenCL programming frame-
work,46 which provides a software API
(in C/C++) for the two kernels it acceler-
ates in hardware, Banded Smith-Wa-
terman and GACT-X, along with a
memory model API for exchanging
data between the host and accelerator
global memory. The application is then
written in C++ with calls to this API. The
API allows Darwin-WGA to be repur-
posed for different genomic applica-
tions, such as reference-guided assem-
bly, de novo assembly, and cross-species
whole genome alignments. Accelerators
that support a more flexible domain-
specific language (DSL), such as Halide,39
or a broad software library, such as Ten-
sorflow,1 require adding a back-end to
the domain- specific compiler to map the
compiler IR to the accelerator. Back-end
optimizations, particularly those that
minimize off-chip data transfers, signifi-
cantly impact accelerator performance.

Creating accelerators with pro-
grams. Although the accelerators we
have built to date have been designed
by directly writing Verilog RTL,48 we
envision a future in which an accel-
erator is designed by writing a parallel
program describing the function of the
accelerator along with mapping direc-
tives that specify how the computation
and state of the program is mapped to
hardware in space and time.

For example, for our dynamic pro-
gramming accelerator, the program is
largely Eqs. (1) through (3), along with a
write to a traceback memory. We
describe all possible parallelism and
rely on dependence analysis to serialize
the computation as required:

Algorithm 1: GACT

 tb ← GACT(r, q)

b For recent technology nodes, scaling linear
dimensions by 0.7× has given only a 0.8–0.9×
reduction in logic energy due to the complex-
ity and overhead of current multi-patterned
design rules.

 input : r[TS], q[TS]
 output : tb[TS,TS]
 for i = 0..TS-1 do
 for j = 0..TS-1 do
 in (i,j) ← Max (h (i,j-1) - O, in

 (i, j-1) - E)
 del (i,j) ← Max (h(i-1,j) - O, del

 (i-i,j) -E)
 h (i,j) ← Max (0, in(i,j), del (i,j),

 h (i-1, j-1) + W (r[i],q[j]))
 tb [i,j] ← ComputeTb (h (i,j),

 in (i,j), del (i,j))
 end
 end

In this pseudocode, the curved brackets
(for example , in(i,j)) specify ab-
stract indices. The square brackets indi-
cate memory (for example, tb[i,j]).
The recurrence matrices, in, del, and
h are never fully materialized. Only the
diagonal of indices needed for the cur-
rent computation is held in storage at
any given time. The input strings r and
q are vectors of size TS (tile size) and the
resulting traceback array tb is an array
of size TS × TS.

To map this computation to a proces-
sor array, we first declare the array and
then specify the mapping. A straightfor-
ward mapping is described here. We de-
clare an array of AS (array size) process-
ing elements and an array of AS memory
arrays each of the size STRIPES×TS.
We then map h(i,j) to processing el-
ements by row i and specify the time t
each element is computed according to
the diagonal wavefront. The in and del
matrices (not shown) are mapped iden-
tically. The traceback matrix is mapped
across the traceback memories by row.

Algorithm 2: Mapping

 STRIPES ← TS / AS
 processor_array p (AS)
 memory_array tbm (AS)[STRIPES, TS]
 Map h (i,j) → p (i % AS)
 at t = (i % AS) ⋅ TS + j - i / AS
 Map tb [i,j] → tbm (i % AS) [i / AS, j]

We expect that having a program-
ming system for accelerators of this type
will facilitate the rapid exploration of al-
ternative algorithms and mappings. A
compilation tool can quickly determine
the execution time and energy associ-
ated with a particular mapping. Once
an efficient algorithm and mapping
are settled on, the tool can generate the

Accelerator costs. A DSA has a very
different cost model than a machine
such as Summit. If we use energy
and area as a proxy for cost, a simple
model is that arithmetic is free and
accessing memory has a cost depen-
dent on the size of memory being ac-
cessed. A more accurate cost model is
as follows:

Arithmetic: In 14 nm technology,
arithmetic costs range from 10fJ
and 4 µm2 for an 8-bit add opera-
tion to 5pJ and 3600 µm2 for a dou-
ble-precision floating-point mul-
tiply.24 As described earlier, these
costs are usually small compared
to those of memory.
Local memory: Accessing a small
(8KByte) local memory in 14nm
costs 50fJ/bit and SRAM memory
has an area of 0.013 µm2 per bit.
The additional cost of accessing
larger on-chip memories is the
communication cost of getting to
and from a small 8KByte subarray.
This communication costs 100fJ/
bit-mm, so the cost of accessing a
memory of size S (in bits) is

. On-chip memo-
ries of up to several hundred mega-
bytes can be realized in today’s
technology. A 100MB (800Mbit)
memory has an access cost of about
0.7pJ/bit.

Global memory: Off-chip global
memory is even more expensive.
Accessing a relatively energy-effi-
cient LPDDR4 memory costs about
4pJ/bit and higher-speed SDDR4
memory costs about 20pJ/bit.31
Global memory is also bandwidth
limited. Memory band width off of
an accelerator chip is limited to
about 400GB/s. Placing memories
on interposers can give bandwidths
up to 1TB/s, but at the expense of
limited capacity.
Local Communication: Communi-
cation between blocks on chip has an
energy cost that increases linearly
with distance at a rate of 100fJ/
bit-mm.
Global communication: High-speed
off-chip channels use SerDes that
have an energy of about 10pJ/bit.

Logic and local memory energies
scale linearly with technology—as the
capacitance of the devices scales down

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 57

contributed articles

31. MICRON. System power calculators, 2019.
https://tinyurl.com/y5cvl857

32. Moore, G.E., et al. Cramming more components onto
integrated circuits. 1965

33. Nickolls, J., Dally, W.J. The GPU computing era. IEEE
Micro 30, 2 (2010), 56–69.

34. Noakes, M.D., Wallach, D.A., Dally, W.J. The J-machine
multicomputer: An architectural evaluation. Comput.
Arch. News 21, 2 (1993), 224–235.

35. NVIDIA. NVIDIA deep learning accelerator (NVDLA),
2017. http://nvdla.org

36. NVIDIA. NVIDIA Tesla deep learning product
performance, 2019. https://tinyurl.com/yyu9amxh

37. Parashar, A., et al. SCNN: An accelerator for
compressed-sparse convolutional neural networks. In
ISCA (2017), IEEE, 27–40.

38. Qadeer, W., et al. Convolution engine: Balancing
efficiency & flexibility in specialized computing. In
Computer Architecture News, Vol. 41 (2013). ACM, 24–35.

39. Ragan-Kelley, J., et al. Halide: A language and
compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In ACM
Sigplan Notices, Vol. 48 (2013). ACM, 519–530.

40. Karpand, R.M., Ramachandran, V., Karpand, V., Karp,
R.M. A survey of parallel algorithms for shared-
memory machines. In Handbook of Theoretical
Computer Science. North-Holland, 1988

41. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P.,
Owens, J.D. Memory access scheduling. In Computer
Architecture News, Vol. 28 (2000). ACMe, 128–138.

42. Scott, S.L. Synchronization and communication in
the T3E multiprocessor. In ACM SIGPLAN Notices,
Vol. 31 (1996). ACM, 26–36.

43. Shen, H., et al. Intel CPU outperforms NVIDIA GPU
on ResNet-50 deep learning inference, 2019.
https://tinyurl.com/y6xewz8r

44. Smith, T.F., Waterman, M.S. Identification of common
molecular subsequences. J. Mol. Biol. 147, 1 (1981),
195–197.

45. Sović, I., Šikić, M., Wilm, A., Fenlon, S.N., Chen, S.,
Nagarajan, N. Fast and sensitive mapping of nanopore
sequencing reads with GraphMap. Nat. Commun. 7, (2016).

46. Stone, J.E., et al. OpenCL: A parallel programming
standard for heterogeneous computing systems.
Comput. Sci. Eng. 12, 3 (2010), 66.

47. Tan, T., Nurvitadhi, E., Chiou, D. Dark wires and the
opportunities for reconfigurable logic. IEEE Comput.
Architect. Lett. (2019).

48. Thomas, D., Moorby, P. The Verilog® Hardware Description
Language. Springer Science & Business Media, 2008.

49. Turakhia, Y., Bejerano, G., Dally, W.J. Darwin: A
genomics co-processor provides up to 15,000×
acceleration on long read assembly. In ASPLOS
(2018). ACM, 199–213.

50. Turakhia, Y., Goenka, S.D., Bejerano, G., Dally, W.J.
Darwin-WGA: A co-processor provides increased
sensitivity in whole genome alignments with high
speedup. In HPCA (2019). IEEE, 359–372.

51. Vasilakis, E. An instruction level energy
characterization of arm processors. Tech. Rep. FORTH-
ICS/TR-450. Foundation of Research and Technology
Hellas, Institute of Computer Science, 2015.

52. Wolfe, M. Iteration space tiling for memory hierarchies.
In Proceedings of the Third SIAM Conference on
Parallel Processing for Scientific Computing (1987),
Society for Industrial and Applied Mathematics, 357–361.

53. Xilinx. Xilinx Imagenet Benchmarks, 2019.
https://tinyurl.com/y5l4ajff

William J. Dally (bdally@nvidia.com), NVIDIA, Stanford
University, CA, USA.

Yatish Turakhia (yturakhi@ucsc.edu), University of
California, Santa Cruz, CA, USA.

Song Han (songhan@mit.edu), Massachusetts Institute of
Technology, Cambridge, MA, USA.

Copyright held by authors/owners.
Publication rights licensed to ACM.

RTL. More advanced tools could auto-
mate the generation of the mapping
given constraints on time and space.

Conclusion
With the end of Moore’s Law, domain-
specific accelerators (DSAs) remain one
of the few paths to continuing to increase
the performance and efficiency of com-
puting hardware. This paper has ex-
plored how DSAs achieve performance
and efficiency drawing on the authors’
designs of DSAs for genomics, deep
learning, simulation, and graphics span-
ning four decades. DSAs gain much of
their efficiency from specialization and
elimination of overhead. This efficiency,
in turn, enables parallelism, which ac-
counts for much of the performance of
DSAs. Most accelerators are memory
dominated with much of their die area
and power dissipation dominated by lo-
cal memories. To benefit from special-
ization, many existing applications must
be refactored to reduce their bandwidth
demands on global memory.

A successful DSA accelerates a broad
domain of applications. It may achieve
such flexibility by adding specialized
instructions to a programmable pro-
cessor such as a GPU or CPU. Breadth
can also be achieved by building a do-
main-specific parallel computer where
domain-specific programmable pro-
cessing elements carry out the process-
ing of each pipeline stage in place of
specialized logic. Such processing ele-
ments must be very lean to avoid losing
much of the advantage of specializa-
tion to overhead.

Although DSAs today are designed
at the RTL level, we envision a future
where DSAs are designed by writing a
parallel program and specifying the
mapping of this program to hardware
resources in time and space. Most of
the intellectual effort in designing a
DSA is a programming task: develop-
ing algorithms that give good perfor-
mance and efficiency with the DSA
cost model. Lowering this program to
detailed hardware can be largely auto-
mated.

In the future, we expect many pro-
grammers will become designers of
DSAs. An ecosystem will emerge to sup-
port these programmers with better tools
to describe and evaluate their programs.
Ultimately, we expect that computer sci-
ence curricula will evolve to teach algo-

rithms and complexity with a cost model
that more accurately reflects the reality of
modern computing hardware.

References
1. Abadi, M., et al. Tensorflow: A system for large-scale

machine learning. In OSDI (2016), 265–283.
2. Agrawal, P., Dally, W.J. A hardware logic simulation

system. IEEE TCAD 9, 1 (1990), 19–29.
3. Beers, A.C., Agrawala, M., Chaddha, N. Rendering from

compressed textures. ACM Trans. Graph. (SIGGRAPH)
96 (1996), 373–378.

4. Choquette, J., Giroux, O., Foley, D. Volta: Performance
and programmability. IEEE Micro 38, 2 (2018), 42–52.

5. Chung, E., Fowers, J., et al. Serving DNNs in real time
at datacenter scale with project brainwave. IEEE
Micro 38, 2 (2018), 8–20.

6. Cong, J., et al. Charm: A composable heterogeneous
accelerator-rich microprocessor. In ISLPED (2012).
ACM, 379–384.

7. Cong, J., Sarkar, V., Reinman, G., Bui, A. Customizable
domain-specific computing. IEEE Des. Test Comput.
28, 2 (2010), 6–15.

8. Culler, D., Karp, R., et al. LogP: Towards a realistic
model of parallel computation. In ACM.Sigplan Notices,
Vol. 28 (1993). ACM, 1–12.

9. Daily, J. Parasail: SIMD C library for global, semi-
global, and local pairwise sequence alignments.
BMC Bioinform. 17, 1 (2016), 81.

10. Dally, W.J., Balfour, J., Black-Shaffer, D., Chen, J.,
Harting, R.C., Parikh, V., Park, J., Sheffield, D. Efficient
embedded computing. Computer 41, 7 (2008), 27–32.

11. Dally, W.J., Bryant, R.E. A hardware architecture
for switch-level simulation. IEEE TCAD 4, 3 (1985),
239–250.

12. Esmaeilzadeh, H., Blem, E., Amant, R.S., et al. Dark
silicon and the end of multicore scaling. In ISCA
(2011). IEEE, 365–376.

13. Fillo, M., Keckler, S.W., Dally, W.J., Carter, N.P., Chang, A.,
Gurevich, Y., Lee, W.S. The M-machine multicomputer.
Int. J. Parallel Program. 25, 3 (1997), 183–212.

14. Gotoh, O. An improved algorithm for matching biological
sequences. J. Mol. Biol. 162, 3 (1982), 705–708.

15. Habana Labs. Goya Inference Platform White Paper
v1.7, 2019. https://tinyurl.com/yxlcfx54

16. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M.A., Dally, W.J. EIE: Efficient inference engine on
compressed deep neural network. In ISCA (2016).
IEEE, 243–254.

17. Han, S., Mao, H., Dally, W.J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. In ICLR (2016).

18. Han, S., Pool, J., Tran, J., Dally, W. Learning both
weights and connections for efficient neural network.
In NIPS (2015), 1135–1143.

19. Harris, R.S. Improved pairwise alignment of
genomic DNA. PhD thesis, The Pennsylvania State
University (2007).

20. Hartenstein, R. Coarse grain re-configurable
architecture (Embedded Tutorial). In ASPDAC (2001),
ACM, 564–570.

21. He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning
for image recognition. In CVPR (2016), 770–778.

22. Hennessy, J.L., Patterson, D.A. A new golden age for
computer architecture. Commun. ACM 62, 2 (2019),
48–60.

23. Hines, J. Stepping up to summit. Comput. Sci. Eng. 20,
2 (2018), 78–82.

24. Horowitz, M. Computing’s energy problem (and what
we can do about it). In ISSCC (2014), IEEE, 10–14.

25. Jain, M., Koren, S., Miga, K.H., Quick, J., Rand, A.C.,
Sasani, T.A., Tyson, J.R., Beggs, A.D., Dilthey, A.T.,
Fiddes, I.T., et al. Nanopore sequencing and assembly
of a human genome with ultra-long reads. Nat.
Biotechnol. 36, 4 (2018), 338.

26. Jia, Z., Maggioni, M., Smith, J., Scarpazza, D.P.
Dissecting the NVIDIA turing T4 GPU via
microbenchmarking. arXiv:1903.07486 (2019).

27. Jouppi, N.P., Young, C., Patil, N., Patterson, D. A
domain-specific architecture for deep neural networks.
Commun. ACM 61, 9 (2018), 50–59.

28. Khazraee, M., et al. Moonwalk: NRE optimization in
ASIC clouds. In Computer Architecture News, Vol. 45
(2017), ACM, 511–526.

29. Kuon, I., Rose, J. Measuring the gap between FPGAs
and ASICs. IEEE TCAD 26, 2 (2007), 203–215.

30. Lipton, R.J., Lopresti, D.P. Comparing Long Strings on a
Short Systolic Array. Princeton University, Department
of Computer Science, 1986.

Watch the authors discuss
this work in this exclusive
Communications video.
https://cacm.acm.org/videos/
domain-specific-accelerators

