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FROM THE SIMPLE  embedded processor in your washing 
machine to powerful processors in data center servers, 
most computing today takes place on general-purpose 
programmable processors or CPUs. CPUs are attractive 
because they are easy to program and because large 
code bases exist for them. The programmability of CPUs 
stems from their execution of sequences of simple 
instruc tions, such as ADD or BRANCH; however, the 
energy required to fetch and interpret an instruction is 
10× to 4000× more than that required to perform a simple 
operation such as ADD. This high overhead was accept-
able when processor performance and efficiency were 
scaling according to Moore’s Law.32 One could simply 
wait and an existing application would run faster and 
more efficiently. Our economy has become dependent on 
these increases in computing performance and ef-
ficiency to enable new features and new applications. 
Today, Moore’s Law has largely ended,12 and we must 

look to alternative architectures with 
lower overhead, such as domain-spe-
cific accelerators, to continue scaling 
of performance and efficiency. There 
are several ways to realize domain-spe-
cific accelerators as discussed in the 
sidebar on accelerator options.

A domain-specific accelerator is a 
hardware comput ing engine that is 
specialized for a particular domain of 
applications. Accelerators have been 
designed for graphics,26 deep learn-
ing,16 simulation,2 bioinformatics,49 
image processing,38 and many other 
tasks. Accelerators can offer orders of 
magnitude improvements in perfor-
mance/cost and performance/W com-
pared to general-purpose computers. 
For ex  ample, our bioinformatics accel-
erator, Darwin,49 is up to 15,000× faster 
than a CPU at  reference-based, long-read 
assembly. The performance and effi-
ciency of accelerators is due to a com-
bination of specialized operations, 
parallelism, efficient memory systems, 
and reduction of overhead. Domain-
specific accelerators7 are becoming more 
pervasive and more visible, because they 
are one of the few remaining ways to con-
tinue to improve performance and effi-
ciency now that Moore’s Law has ended.22

Most applications require modifi-
cations to achieve high speed up on 
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DSAs gain efficiency from specialization  
and performance from parallelism.
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 key insights
 ˽ Most speedup comes from parallelism 

enabled by specialization—the main 
source of efficiency. 

 ˽ The underlying algorithms often have to 
change—trading increased hardware-
friendly computation for reduced memory 
bandwidth demands. 

 ˽ Accelerator design is really parallel 
programming guided by a cost model—
arithmetic is free and global memory  
is expensive. 

 ˽ Memory typically dominates both area and 
power of domain-specific accelerators. 

 ˽ Specialized instructions give much of the 
advantage of a DSA at a fraction of the 
development cost and while retaining 
programmability.

 ˽ Domain-specific accelerators are one  
of the few ways to continue scaling  
the performance and efficiency of 
computing hardware. I
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dominated. The challenge of balancing 
 specialization with generality is exam-
ined, and later we describe how accel-
erator design can be viewed as design-
ing parallel programs with a set of costs 
reflecting modern hardware.

Sources of Acceleration
Domain-specific accelerators exploit 
four main techniques for performance 
and efficiency gains:

Data specialization: Specialized 
operations on domain-specific data 
types can do in one cycle what may 
take tens of cycles on a conventional 
computer. Specialized logic to per-
form an inner-loop function gains in 
both performance and efficiency.
Parallelism: High degrees of paral-
lelism, often exploited at several 
levels, provide gains in perfor-
mance. To be effective, the parallel 
units must exploit locality and 
make very few global memory ref-
erences or their performance will 
be memory bound.
Local and optimized memory: By 
storing key data structures in many 
small, local memories, very high 
memory bandwidth can be 
achieved with low cost and energy. 
Access patterns to global memory 
are optimized to achieve the 
greatest possible memory 
bandwidth. Key data structures 
may be compressed to multiply 
bandwidth. Memory accesses are 
load-balanced across memory 
channels and carefully scheduled to 
maximize memory utilization.
Reduced overhead: Specializing 
hardware eliminates or reduces the 
overhead of program interpretation.

The speedup gains from specialization 
and parallelism are multiplicative. 
The dynamic programming engine de-
scribed here, for example, gets a 37× 
speedup from specialization and an 
additional 4034× speedup from par-
allelism for a net 150,000× speedup 
compared to a conventional proces-
sor. Some of these factors are also de-
pendent. Achieving high degrees of 
parallelism, for example, depends on 
locality. The 4096 processing elements 
in the dynamic programming engine 
only reference small local traceback 
memories. This degree of parallelism 

would not be possible if global memory 
references were required. Optimizing 
memory may also rely on specializa-
tion. Compressing data structures may 
only make sense if specialized logic is 
available to do the compression.

Data specialization. The defining 
feature of many domain-specific accel-
erators is a set of hardware operations 
specialized to the application domain. 
The inner loops of many demanding ap-
plications perform tens to hundreds of 
arithmetic and logical operations with 
only very local memory references. In 
many cases, specialized logic can per-
form the entire inner loop in a single 
cycle with a small amount of area and 
power. This logic is fed by specialized 
registers and communication links that 
provide and consume data with very 
low energy. As an example, consider the 
Smith-Waterman algorithm44 with af-
fine gap penalties.14 This algorithm is 
widely used in genome analysis to align 
two gene sequences. Each iteration of 
the inner loop computes the following 
recurrence equations:

I(i, j) = max {H (i, j – 1) – o, I (i, j – 1) – e} (1)

D(i, j) = max {H (i–1, j)–o, D (i–1, j)–e} 
(2)

 

(3)

Here H(i, j) is the maximum score for 
an alignment ending at (i, j), o and e are 
the penalties for opening and extend-
ing an insertion or deletion, and W(r, q)  
is the cost of substituting base r for 
base q. The computation is performed 
in 16-bit integer arithmetic.

Performing this computation on 
a conventional x86 processor without 
SIMD vectorization takes around 35 
arithmetic and logical operations and 
15 load/store operations. On an Intel 
Xeon E5-2620 4-issue, out-of-order 14nm 
CPU, each iteration takes about 37 cycles 
and consumes 81nJ. On our 40 nm Dar-
win accelerator, each iteration takes a 
single  cycle, a 37× speedup, and con-
sumes 3.1pJ, a 26,000× reduction in en-
ergy. Of the 3.1pJ, only 0.3pJ is consumed 
computing the recurrence equations. 
The balance of 2.8pJ is used for a single 

domain- specific accelerators. These ap-
plications are highly tuned to balance 
the performance of conventional pro-
cessors with their memory systems. 
When specialization reduces the cost 
of pro cessing to near zero, they be-
come memory limited. The applica-
tion must be re  worked, codesigning 
the application with the accelerator, to 
reduce memory bandwidth and mem-
ory footprint. Even after rework, many 
domain-specific accelerators remain 
memory dominated.

A well-designed accelerator covers 
the broadest possible space of appli-
cations—accelerating a domain rather 
than a sing le application. Add ing 
domain- specific instructions to a pro-
grammable processor provides the ef-
ficiency of the specialized instruction 
while retaining flexibility. Complex 
instructions give better efficiency be-
cause they amortize the high overhead 
of programmability. Building a parallel 
computer from domain- specific pro-
cessing elements can also accelerate a 
large domain of applications with only 
a small loss of efficiency.

The design of a domain-specific ac-
celerator is really a form of parallel pro-
gramming, but with a cost model very 
different from what most program-
mers use. Arithmetic and logical oper-
ations are nearly free, and memory ac-
cesses have a cost that is a function of 
the size of the memory being accessed. 
Most of the effort in designing an ac-
celerator is refactoring the application 
to optimize efficiency under this mod-
el. We envision future programming 
systems where the programmer speci-
fies the algorithm and a mapping to 
hardware in space and time. From this 
description, the detailed design of the 
accelerator would be largely automat-
ed. Such tools will facilitate the rapid 
exploration of the accelerator design 
space and eliminate many of today’s 
obstacles to accelerator design.

The remainder of this article de -
scribes the current state of the art in do-
main-specific accelerators. We start by 
discussing the four techniques accel-
erators employ to achieve performance 
and efficiency: specialization, parallel-
ism, local and optimized memory, and 
reduced overhead. We then explore 
the process of codesigning applica-
tions and accelerators and we discuss 
how most accelerators are memory 
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cessing elements can be made very 
simple and very small. As an example, 
the alignment portion of our Darwin 
accelerator exploits parallelism at two 
levels. At the outer-loop level, A = 64 
systolic arrays of processing elements 
process 64 separate alignment prob-
lems in parallel. There is no communi-

memory access to store a 4-bit “traceback 
pointer” that identifies which preced-
ing cell was used to compute the value.

A large fraction of the area and en-
ergy savings of specialization are due to 
elimination of overhead. Much of the 
81nJ consumed by the x86 processor 
and much of its area are spent fetching, 
decoding, and reordering instructions. 
This overhead is largely eliminated by 
specialization. The processing element 
that computes the recurrence equations 
takes only 0.004mm2 of die area in a 
40nm process. Despite being three tech-
nology nodes behind the 14nm CPU, the 
specialized operations of the accelera-
tor offer orders of magnitude improve-
ment in performance, power, and area.

Specialization also enhances locality 
by reducing the cost of memory com-
pression. In our EIE accelerator for 
sparse neural networks,16 we store 10%–
30% dense networks in compressed-
sparse-column (CSC) format. We further 
compress the row pointers to 4-bits each 
using run-length coding and compress 
the network weights using a 16-entry 
codebook. The compressed-sparse rep-
resentation of network weights results 
in a 30× reduction in size allowing the 
weights of most networks to fit into ef-
ficient, local, on-chip memories, which 
takes two orders of magnitude less en-
ergy to access than off-chip memories.

On a conventional processor, the ex-
tra operations required to walk the point-
ers of the sparse-matrix data  structure 
make such representations inefficient 
for densities above 1%. Similarly, the 
overhead of the run-length and code-
book compression would be prohibi-
tive on a general-purpose processor. 
With specialized logic, the pointer 
walking is done in a dedicated pipe-
line stage, with the pointers fetched 
from a dedicated, local memory. The 
decompression, both for the run-length 
pointer encoding and the codebook 
lookup, is also done in a dedicated pipe-
line stage. The area needed to support 
sparsity and compression with special-
ized logic is relatively small: the 16-en-
try weight decoder takes less than 1% 
of the die area; the pointer RAM takes 
about 20% of the area and power. On 
a general-purpose processor, the over-
head is prohibitive.

Parallelism. Most domain-specific 
accelerators exploit parallelism at one 
or more levels. By specializing the par-

allelism to the application domain, 
the synchronization and communi-
cation between processing elements 
are greatly simplified. Only the com-
munication and synchronization 
patterns in the application being 
accelerated need to be supported. By 
eliminating overhead, the parallel pro-

Domains of applications can be accelerated with ASICs, FPGAs, or GPUs each offering 
different trade-offs between development cost, programmability, and efficiency. 
ASICs (application- specific integrated circuits) provide the highest efficiency but 
have a high nonrecurring engineering (NRE) cost and poor programmability. Their 
logic is hardwired at design time for a single application domain. Soft logic in FPGAs 
lowers the efficiency for specific tasks by 10–100×29 but enables the same chip to be 
dynamically configured for different applications, for example, for deep learning 
or genomics. Soft logic also allows for deeper specialization (for example, constant 
folding specific values of weights in a neural network5) and allows for an accelerator to 
be instantiated near the data it operates on, reducing communication costs.47 GPUs are 
platforms that accelerate multiple domains by incorporating specialized operations 
(such as HMMA4) and memory optimizations (such as compressed surface storage3). 
For the applications they accelerate, they provide near-ASIC efficiency. For other 
applications, their SIMT execution model33 offers order of magnitude better efficiency 
than CPUs at the expense of single-thread performance.

Figure 2 compares the efficiency of FPGAs, GPUs, and ASICs for two domains: deep 
learning and genomics. For domains where GPUs have specialized logic, such as deep 
learning, they provide near-ASIC efficiency.a In other domains, such as genomics, GPUs 
provide lower efficiency than FPGAs but offer faster development time. For genomics, 
we coded the banded Smith-Waterman algorithm50 in CUDA for the GPU in one day—
giving 25× improvement in efficiency over the CPU. Bringing this algorithm up on an 
FPGA took two months of RTL design and performance tuning—to achieve four times 
the efficiency of the GPU. Hardening this RTL into an ASIC gives 16× the efficiency 
of the FPGA but with significant nonrecurring costs and lack of flexibility. Adding a 
dynamic-programming step (DPS) instruction to the GPU matches the efficiency of the 
ASIC and with no loss of efficiency.

There are architectures that provide intermediate trade-off points for 
programmability and efficiency between FPGAs and ASICs. CHARM6 uses a number 
of programmable domain-specific accelerator building blocks (ABBs), organized into 
ABB islands, to compose domain-specific acceleration. CGRAs20 provide coarse grain 
reconfigurability, at word level or operator level instead of bit level, and incur lower 
overhead compared to FPGAs. 

a The NVIDIA T4 and Habana Goya have nearly identical arithmetic performance per Watt. 
The difference in the figure is due to the difference in memory interface, GDDR on the T4 
and LPDDR on the Goya.

Acceleration Options

Figure 2. Comparison of computation efficiency (in Tasks/s-Watt) for CPU, FPGA, GPU, 
and ASIC for deep learning and genomics domains.a

CPU
1000 1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

100

Im
ag

es
/s

-W
at

t

M
ce

ll
s/

s-
W

at
t

9.9

Deep Learning Genomics

10.8

70.6

150

10.7

976.6

256.0

16,279.1

10

1

FPGA GPU ASIC

a  Deep learning efficiency is measured in terms of inference images/s-Watt for Resnet-5021 
(sources: CPU,43 FPGA,53 GPU,36 ASIC15). Genomics efficiency is measured in Mcells/s-Watt 
for Banded Smith-Waterman algorithm (sources: CPU,9 FPGA,50 GPU (our implementation on 
NVIDIA V100), ASIC50). 



52    COMMUNICATIONS OF THE ACM   |   JULY 2020  |   VOL.  63  |   NO.  7

contributed articles

accumulating row sums locally. Other 
than the activation broadcast, there is 
no communication between the PEs. A 
FIFO queue of pending input activa-
tions at each PE load balances work 
across the PEs, improving PE utiliza-
tion from 50% without the FIFO to 90% 
with the FIFO.

Local and Optimized Memory. The 
gains from specialization and paral-
lelism are dependent on keeping the 
computation supplied from small, lo-
cal memories. Each cycle, each of the 
4096 PEs in the Darwin alignment en-
gine stores a traceback pointer to mem-
ory, achieving a net write bandwidth of 
nearly 2TBps. These pointers are used to 
construct the optimal alignment when 
the dynamic programming completes. 
If traceback pointers were stored to 
global memory, the computation would 
be bottlenecked by memory bandwidth. 
Instead, the traceback pointers are 
stored in 4096 small SRAMs, one asso-
ciated with each PE. A conventional 
memory subsystem, even one with 
many levels of caches, is largely serial 
and would limit the achievable paral-
lelism to a very small number.

In a similar manner, the filtering stage 
of the Darwin accelerator uses 16 dedi-
cated SRAMs to store the bin counts, the 
number of seeds that match within a 
range of a candidate alignment. Al-
though at most four bins are incremented 
each cycle, the speedup here is more 
than four times because the bin-count 
updates are random and cause interfer-
ence with the sequential accesses to the 
seed position tables. With the bin-count 
updates removed from the memory 
stream, the sequential reads of the seed 
tables achieve nearly ideal memory 
throughput. Overall, the speedup from 
memory access optimization is 9×–
24×—3× speedup from fewer accesses to 
DRAM (moving bin-count updates to 
SRAM) and 3×–8× speedup from the in-
creased bandwidth by changing a ran-
dom access pattern to mostly sequen-
tial. Four DRAM memory channels were 
added to the accelerator providing an-
other four times the speed up from 
memory parallelism.

Data compression can be employed 
to both increase the effective size of a 
local memory and to increase the effec-
tive bandwidth of a memory interface. 
The NVDLA,35 EIE,16 and SCNN,37 for 
example, all store the weights of a 

neural network as sparse data struc-
tures giving an average 3×−10× increase 
in the effective capacity of on-chip 
memories. The EIE and SCNN also run-
length encode the pointers of the sparse 
data structure as 4-bit increments. This 
gives a density advantage of 4×–8× com-
pared to storing these pointers in full 
16- or 32-bit form. The weights in EIE 
are further compressed using a 16-entry 
codebook. Each weight is represented 
by a 4-bit codeword, giving an 8× sav-
ings compared to a 32-bit float. The sav-
ings in the number of weights and the 
number of bits per weight is multiplica-
tive giving an overall compression rate of 
32×–64×. Whenever weights are loaded 
from off-chip DRAM memory, the effec-
tive off-chip bandwidth is increased by 
this rate—compared to loading uncom-
pressed data. GPUs have long stored sur-
faces in lossless compressed form3 to 
increase effective memory bandwidth.

Overhead reduction. Overhead reduc-
tion is an important aspect of specializa-
tion. Even a simple in-order processor 
spends over 90% of its energy on over-
head: instruction fetch, instruction de-
code, data supply, and control.10 A mod-
ern out-of-order processor spends over 
99.9% of its energy on overhead51 adding 
costs for branch prediction, specula-
tion, register renaming, and instruction 
scheduling. Performing a 32-b integer 
add takes only 63 fJ in 28nm CMOS.24 
Performing an integer add instruction 
on a 28nm ARM A-15 takes over 250pJ,51 
about 4000× the energy of the add itself. 
Special purpose engines such as Darwin 
and EIE completely eliminate this over-
head. Moreover, most adds do not need 
full 32-bit precision and just the number 
of bits needed are added, further saving 
energy. There are no instructions to be 
fetched and hence no instructions fetch 
and decode energy. There is no specu-
lation, and hence  no work lost due to 
mis-speculation. Most data is supplied 
directly from dedicated registers and 
thus no energy is required to read from 
a cache or from a large, multiported reg-
ister file.

The high energy and area costs of in-
struction and data supply overhead 
motivate complex instructions. The energy 
of a single add operation is swamped by 
the instruction overhead energy. A com-
plex instruction, such as the matrix- 
multiply-accumulate instruction (HMMA) 
of the NVIDIA Volta V100,4 on the other 

cation between the subproblems, and 
the only synchronization required is 
upon completion of each subproblem. 
A typical reference-based assembly per-
forms billions of alignments, so there 
is ample outer-loop parallelism.

At the inner-loop level, each array 
consists of P = 64 processing elements 
that compute 64 elements of the H, I, 
and D matrices in parallel. The com-
putation is performed along an an-
tidiagonal of the matrices as originally 
suggested in Lipton and Lopresti.30 
On cycle t, processing element p com-
putes the matrix elements at (p, t − p). 
Matrices with more than P rows are 
processed in swaths P rows at a time. 
Because matrix element (i, j) depends 
only on the elements directly above 
(i − 1, j), directly to the left (i, j − 1), and 
above and to the left (i − 1, j − 1), only 
systolic nearest neighbor communica-
tion between the processing elements 
is required. As with all systolic arrays, 
synchronization is implicit.

The parallelism exploited by special-
purpose accelerators typically has very 
high utilization. Utilization at the outer-
loop level is close to 100%. Until the very 
end of the computation, there is always 
another subproblem to process as soon 
as one finishes. With double buffering 
of the inputs and outputs, the arrays are 
working continuously. At the inner-loop 
level, utilization is 98.5%. Computation 
is performed in 512 × 512 tiles. At the 
start of each tile, only a single PE, at the 
upper left corner, is active. Each cycle 
another PE becomes active until all 64 
are operating. Similarly, at the bottom 
right corner, the number of active PEs 
ramps linearly down from 64 to 0. 
Although it is possible to have the idle 
PEs start on the next alignment immedi-
ately, this is not done in Darwin. Idling of 
PEs at the start and end makes the aver-
age PE utilization 98.5% and the overall 
speedup due to parallelism 4034×. This 
speedup due to parallelism is multipli-
cative with the 37× speedup due to spe-
cialization giving an overall speedup on 
alignment of 150,000×.

In EIE, we parallelize a sparse matrix 
× sparse vector multiplication by parti-
tioning the rows of the matrix across 
256 PEs. Each nonzero input activation 
and its column are broadcast to all PEs. 
Upon receipt of each activation, each 
PE walks the nonzero row entries for 
that column in its subset of rows, 
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conventional hardware. With special-
ized hardware, gapped extension be-
comes feasible50 giving much better 
sensitivity when comparing the genomes 
of distantly-related species—where the 
alignments have frequent gaps.

Memory Dominates Accelerators
The area and power of most accelerators 
are dominated by memory, and their per-
formance is often memory limited. As a 
result, much of the codesign described 
earlier is developing algorithms that 
have a small memory footprint. Most of 
their memory bandwidth requirements 
can be satisfied by small, local memo-
ries. They require only modest band-
width from large, global memories.

Table 1 shows the relative area and 
power for memory and logic in the Dar-
win GACT accelerator, the Darwin D-
SOFT accelerator, and the EIE sparse 
neural network accelerator. The EIE 
numbers are shown for 64 processing 
elements (PEs). D-SOFT and EIE, 
which accelerate a memory-limited ap-
plication (seed filtering and matrix-
vector multiplication, respectively) using 
large local memories, use over 90% of 
their die area for memory. In D-SOFT, 
the power component is over 90% as 
well, because the bin update logic is 
relatively simple, consisting of on-chip 
routing and simple arithmetic opera-
tions (add and compare). Even in the 
EIE, where the 16-bit multiply opera-
tions are more expensive, memory still 
consumes more than half of the chip 
power. For the GACT accelerator, 
which performs a compute-intensive 
dynamic programming operation, the 
memory that stores the traceback 
pointers consumes about 80% of the 
die area and over 75% of the power. 
The simple 16-bit additions and com-
parisons at the core of the dynamic pro-
gramming recurrence equations take 
very little area and power. The low area 
and power of simple logic and arithmetic 

hand, performs 128 floating-point opera-
tions in a single instruction and thus has 
an operation energy that is many times 
the instruction overhead. Using complex, 
specialized instructions, one can build 
efficient, specialized, programmable 
computer systems. We revisit the concept 
of complex, specialized instructions later.

Codesign is Needed
Achieving high speedups and gains in 
efficiency from specialized hardware  
usually requires modifying the underly-
ing algorithm. Because existing algori-
thms are highly tuned for conventional 
general-purpose processors, they are 
rarely the optimal approach for a spe-
cialized solution. Instead, the algo-
rithm and hardware must be codesigned 
to jointly optimize performance and 
efficiency while preserving or enhanc-
ing accuracy.

Many existing algorithms are tuned 
to balance the performance of conven-
tional processors with their memory 
systems. When the cost of the process-
ing is made nearly zero via specializa-
tion, they become completely memory 
dominated. To get significant speedup, 
such algorithms must be refactored to 
reduce the bandwidth demands on 
global memory. Although methods 
such as tiling52 and compression can be 
used to reduce global bandwidth to 
some degree, often more fundamental 
restructuring is required.

One approach to codesign is to trade 
more of an operation that is inexpen-
sive in hardware (that is, logic limited) 
for less of an operation that is expensive 
(that is, memory limited). For example, 
conventional applications for long-read 
genomic sequence alignment such as 
GraphMap45 spend most of their com-
pute time on filtering and relatively lit-
tle time on alignment. This approach 
makes sense for a general-purpose pro-
cessor where filtering is relatively cheap 
and alignment is expensive. It is exactly 
the wrong optimization for specialized 
hardware where alignment can be 
made extremely efficient (26,000× more 
efficient and 150,000× faster than on a 
general-purpose processor) but filter-
ing is fundamentally limited by global 
memory bandwidth. If we were to apply 
hardware specialization to the existing 
algorithm, we would be limited to a 
speedup of 4–5× due to the memory 
bandwidth required.

To exploit this difference in costs, 
Darwin spends 200× less time on filter-
ing than GraphMap. This results in a 
560× increase in candidate positions 
to be aligned and hence 560× more 
work for the alignment stage. However, 
because alignment is accelerated by 
150,000×, the net result is a speedup of 
more than 200×. Darwin’s parameters for 
filtering and alignment are adjusted so 
that the new alignment-heavy algorithm 
has equal or higher sensitivity than the 
filtering-heavy algorithm it replaces.

Codesign may also be used to reduce 
memory footprint—to make the use 
of small local memories feasible. The 
conventional Smith-Waterman algo-
rithm for long, 104 base-pair, reads, for 
example, would require a prohibitively 
large, 108 entry, store for traceback 
pointers. To reduce the memory foot-
print to more feasible 2 × 105 entries, 
we developed the GACT algorithm that 
performs the dynamic programming 
in overlapping tiles.49 Tiling reduces 
the memory footprint to that of a single 
512 × 512-entry tile. Overlapping the 
tiles by an amount O = 128 that is larger 
than the largest expected deviation of 
the optimal path from the diagonal in 
practice gives optimal alignments.

In other cases, codesign enables algo-
rithms that would otherwise be ineffi-
cient on conventional hardware. For ex-
ample, in Han et al.,17,18 we showed how 
neural networks could be pruned to 
10%–30% density and compressed by 
30×. The overhead of sparse methods on 
conventional hardware made these algo-
rithms uninteresting except for memory 
compression. Codesigning special-pur-
pose hardware for sparse operations en-
ables these algorithms to be used to re-
duce computation as well.

As another example, software for 
whole genome alignment, such as 
LASTZ,19 uses ungapped extension to 
filter seed hits because gapped exten-
sion is prohibitively expensive on 

Table 1. Breakdown of chip area and power into logic and memory units for the GACT and  
D-SOFT accelerators in Darwin49 and for the EIE accelerator16 using TSMC 40 nm.

 Unit Area (mm2) (%) Power (W) (%)

GACT Logic
Memory

17.6
68.0

20.5
79.5

1.04
3.36

23.6
76.4

D-SOFT Logic
Memory

6.2
320.3

1.8
98.2

0.41
8.80

4.4
95.6

EIE Logic
Memory

2.8
38.0

6.9
93.1

0.23
0.34

40.3
59.7
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the other hand, would result in poor ef-
ficiency. A happy medium lies in build-
ing an engine that accelerates a domain 
of applications where the breadth of 
applications is increased while retain-
ing most of the efficiency of the com-
pletely specialized accelerator.

Special instructions vs. special en-
gines. One approach to building ac -
celerators for broad domains is to 
add specialized instructions to a gen-
eral-purpose processor. A hardware 
block is built to accelerate the core op-
erations for a domain of algorithms—
matrix multiply for deep learning or 
dynamic programming for genomics—
and the operations are made available as 
instructions on a general-purpose pro-
cessor. This approach makes the core 
operation as efficient as a completely 
specialized accelerator but allows the 
use of the programmable general-
purpose processor to adapt its use to 
different algorithms and applications.

The HMMA (half-precision matrix 
multiply-accumulate) instruction in 
the NVIDIA Volta V100 GPU4 is an ex-
ample of adding a specialized instruc-
tion to a general-purpose processor. 
The instruction multiplies two 4 × 4 
half-precision (16-bit) floating-point 
matrices accumulating the results in a 
4 × 4 single-precision (32-bit) floating-
point matrix. The Turing IMMA (inte-
ger matrix multiply accumulate) in-
struction performs this same 
operation on 8 × 8 8-bit integer matri-
ces accumulating an 8 × 8 32-bit integer 
result matrix.26 These operations accel-
erate the inner loops of both training 
and inference for convolutional, fully-
connected, and recurrent layers of deep 
neural networks. A single HMMA in-
struction performs 128 floating-point 

operations: 64 half-precision multi-
plies and 64 single-precision adds. An 
IMMA instruction performs 1024 inte-
ger operations. This large amount of 
math amortizes the overhead. Using 
data from Horowitz,24 we estimate that 
when executing an HMMA (IMMA) in-
struction, 77% (87%) of the energy is 
consumed by arithmetic. The balance 
of the energy is consumed by instruc-
tion overhead and fetching the data op-
erands from the large GPU register files 
and shared memory. A dedicated accel-
erator, such as the Google TPU,27 could 
be at most 23% (13%) more efficient on 
half- precision (8-bit integer) matrix 
multiply. This bound is just for the 
core matrix multiply operation. The 
accelerator may be more efficient at 
staging data in on-chip memories and 
in optimizing data movement. Also, 
the GPU die will be larger and hence 
more expensive, because it includes 
area for the general-purpose functions, 
and for other accelerators, which are 
unused when doing matrix multiply. 
This die cost factors into the recurring 
portion of total cost of ownership.

The advantage of implementing the 
accelerator as an instruction is that the 
full power of the general-purpose pro-
cessor is available to implement other 
layers of the network. Pooling, normal-
ization, batch-normalization, sparsity-
mask, and nonlinear function layers are 
easily implemented. As new algorithms 
and methods are developed, they are 
easily incorporated as custom layers 
while retaining the efficiency of the ac-
celerator for the bulk of the operations.

In a similar manner, one could im-
plement a special-purpose dynamic 
programming instruction to acceler-
ate genomics calculations. A dynamic-
programming step (DPS) instruction 
would take as input the values of H, 
I, and D (Eqs. (1)–(3) ) for a portion of 
the current diagonal and generate cor-
responding values for a portion of the 
next diagonal along with their trace-
back pointers. Adding such an instruc-
tion to a general-purpose GPU or CPU 
would provide most of the efficiency 
gains of a hardwired accelerator such 
as Darwin.

One advantage of building a special-
ized instruction rather than an entire 
engine is that only the instruction must 
be developed, not the entire system. 
Most of the complexity of a computing 

make domain-specific accelerators ef-
ficient. However, it also makes them 
memory limited. When logic is “free,” 
memory dominates.

Because the area and power of most 
accelerators are memory dominated, a 
reasonable first estimate of these costs 
can be made by considering only the 
memory. This allows rapid design 
space exploration.

Because global memory bandwidth 
is extremely expensive, many accelera-
tors are designed to be global memory 
limited—to keep this expensive re-
source busy. In Darwin, for example, 
the four DRAM memory channels pro-
vide at most four seeds per cycle. We 
sized the D-SOFT filtering hardware 
with 16 bin-count banks so it can al-
ways keep up with the four seeds per 
cycle from external DRAM. Similarly, 
the 4K GACT PEs are provisioned so 
that alignment can keep ahead of the 
filtering stage.

Because external memory band-
width is so critical, it should be opti-
mized. Memory schedulers should be 
employed that maximize memory 
throughput41 and memory contents 
should be compressed where possible.

Balancing Specialization 
and Generality
In the design of domain-specific accel-
erators, there is a tension between gen-
erality and efficiency. Building an en-
gine specialized for just one application 
can give the highest possible efficiency. 
However, its range of use may be too 
limited to generate enough volume to 
recover design costs, or a new algo-
rithm may be developed rendering the 
accelerator obsolete. Building a com-
pletely general-purpose computer, on 

Figure 1. TCO for a genomics accelerator as a function of volume. At low volumes, older  
technology nodes give a lower TCO because of their lower nonrecurring costs (NRE).
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cated accelerator to the cost of add-
ing specialized instructions to a CPU 
or GPU, or to the cost of combining 
several accelerators—perhaps sharing 
memory and I/O systems—on a single 
chip. Adding specialized instructions 
or combining accelerators gives a 
higher recurring cost but gives a larg-
er volume over which to amortize the 
nonrecurring costs.

Accelerator Design
The design of a domain-specific acceler-
ator is really the design of a fine-grained, 
memory-constrained, parallel program 
for a limited set of tasks. Most of the 
effort is in crafting an algorithm that 
achieves high parallelism with a small 
local memory footprint and low global 
memory bandwidth. Once a highly-par-
allel, highly local algorithm is developed, 
the design of the hardware is straight-
forward—and is largely dominated by 
memory as described previously.

The major difference between design-
ing a DSA and writing a parallel program 
for a conventional parallel machine such 
as Summit23 is the cost model. The cost 
model in turn drives differences in 
granularity and memory footprint. 
Most programmers use a cost model 
based loosely on the PRAM model.40 
Arithmetic functions and accesses to 
anywhere in a large global memory are 
all counted as unit-cost operations.

Even on a conventional x86 proces-
sor, the PRAM model is highly unreal-
istic, and on a modern GPU, even more so. 
Global memory operations are hun-
dreds of times more expensive than arith-
metic operations and local memory  
operations—those that hit in the cache. 
On multinode machines such as Sum-
mit, communication between nodes 
takes microseconds, the equivalent of 
thousands of operations. This leads to 
very coarse-grained parallelism and 
communication.a Adjusting the PRAM 
model for the realities of conventional 
parallel machines has led to models 
such as log P8 that weight global ac-
cesses and communication with ap-
proximations of their actual cost.

a Many parallel machines have been built with 
very efficient hardware communication and 
synchronization.13,34,42 Unfortunately the need 
to use commodity processors for the nodes of 
mainstream machines has prevented most 
programmers from benefiting from such ef-
ficient mechanisms.

engine, specialized or general purpose, 
is in the memory system, on-chip inter-
connect, I/O system, and global control. 
When a DSA is implemented by adding 
an instruction to a general-purpose 
GPU or CPU, it can leverage the existing 
system components. The complexity of 
the domain-specific block is 100s–1000s 
of times smaller than the complexity of 
the system (as measured by lines of 
code). With a dedicated engine, the 
entire system must be developed.

Today, architects pressed to 
increase efficiency are turning to com-
plex instructions, such as HMMA, 
IMMA, and DPS to amortize fixed 
instruction overhead. Complex, 
domain-specific instructions enable 
the efficiency of domain-specific 
accelerators to be combined with the 
generality of a programmable proces-
sor and with development costs a frac-
tion of that required to develop a 
dedicated accelerator.

Domain-specific parallel computers. 
The ability to increase generality with 
little loss of efficiency is illustrated by 
comparing two simulation accelera-
tors: the MSE11 and MARS.2 The MSE 
was a parallel computer where process-
ing elements were highly specialized to 
different stages of the simulation pipe-
line. The MSE was 300× faster than a 
contemporary general-purpose com-
puter (a VAX 11-780), but it could only 
accelerate switch-level simulation.

MARS used a single domain-specif-
ic programmable processing element 
that could serve as any of the pipeline 
stages. In a single cycle, each MARS 
PE could read a word from the input 
queue, perform an address calcula-
tion, read or write a word from external 
SRAM, extract a bit field from a word, 
perform an arithmetic or logical opera-
tion on the bit field, insert the resulting 
bit field into another word, and write a 
word to the output queue. The net re-
sult was a speedup of about 200× com-
pared to a contemporary general-pur-
pose computer (a Sun 3/260),2 and this 
performance doubled over a period of 
years as the pipeline was refactored to 
eliminate bottlenecks and individual 
pipeline stages were tuned. MARS was 
nearly as fast as a hardwired engine, 
and because the area was dominated 
by memory, smaller, hardwired PEs 
would have made little difference to 
the overall area.

A key factor in the success of MARS 
was the low-overhead associated with 
horizontal microcode control. The 
energy overhead of programmability 
was largely the cost of fetching a 64-bit 
microinstruction from a 64-bit ×  
64-word microinstruction store. This 
energy was small compared to the 
access to a much larger SRAM made 
almost every cycle by most pipeline 
stages. The instruction fetch and con-
trol overhead of a conventional pro-
cessor would have been prohibitive.

By defining the right domain-spe-
cific architecture, MARS was able to 
implement many simulation pipelines 
(and other tasks, such as speech recog-
nition) with performance and effi-
ciency approaching that of full-custom 
hardware. MARS proved so useful that 
it was reimplemented in five different 
generations of CMOS technology from 
1.25 µm to 0.35 µm.

Total Cost of Ownership (TCO)
The technology node used to imple-
ment an accelerator should be chosen 
to give minimum total cost of owner-
ship (TCO). As shown in Figure 1 for a 
genomics accelerator, at low volumes, 
the minimum TCO occurs at older 
(larger geometry) technology nodes. 
For each volume (number of de-novo, 
long-read genome assemblies), the 
bar shows the technology node that 
gives the minimum TCO. Nonrecur-
ring costs are from Khazraee et al.28 
The lines show the nonrecurring en-
gineering (NRE) cost per genome and 
TCO per genome for the minimum 
TCO technology. Darwin’s 40nm tech-
nology gives minimum TCO at 105 
genomes assembled. Paying the high 
nonrecurring costs for a 16nm tech-
nology is not justified until a volume 
of 106 genomes is reached. De-novo, 
long-read assembly of noisy reads on a 
CPU would cost around $1,500 per ge-
nome,25 so a custom accelerator gives 
lower TCO even for a volume as low as 
104 genomes—in a 65nm technology. 
At this point, the cost per genome is 
almost entirely NRE. Backend devel-
opment costs are roughly the same for 
130 nm and 65 nm ($4.3M) and domi-
nate mask costs, so nodes older than 
65 nm do not offer a material savings 
in NRE.

A similar TCO calculation can be 
used to compare the cost of a dedi-
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while supply voltage is held constant.b 
Communication energy remains 
roughly constant. This nonuniform 
scaling makes communication—such 
as nonlocal memory access—even 
more critical in future systems.

Programming accelerators. Each DSA 
requires firmware and a software devel-
opment kit (SDK) to facilitate program-
ming. Darwin-WGA,50 for example, uses 
the OpenCL programming frame-
work,46 which provides a software API 
(in C/C++) for the two kernels it acceler-
ates in hardware, Banded Smith-Wa-
terman and GACT-X, along with a 
memory model API for exchanging 
data between the host and accelerator 
global memory. The application is then 
written in C++ with calls to this API. The 
API allows Darwin-WGA to be repur-
posed for different genomic applica-
tions, such as reference-guided assem-
bly, de novo assembly, and cross-species 
whole genome alignments. Accelerators 
that support a more flexible domain- 
specific language (DSL), such as Halide,39 
or a broad software library, such as Ten-
sorflow,1 require adding a back-end to 
the domain- specific compiler to map the 
compiler IR to the accelerator. Back-end 
optimizations, particularly those that 
minimize off-chip data transfers, signifi-
cantly impact accelerator performance.

Creating accelerators with pro-
grams. Although the accelerators we 
have built to date have been designed 
by directly writing Verilog RTL,48 we 
envision a future in which an accel-
erator is designed by writing a parallel 
program describing the function of the 
accelerator along with mapping direc-
tives that specify how the computation 
and state of the program is mapped to 
hardware in space and time.

For example, for our dynamic pro-
gramming accelerator, the program is 
largely Eqs. (1) through (3), along with a 
write to a traceback memory. We 
describe all possible parallelism and 
rely on dependence analysis to serialize 
the computation as required:

Algorithm 1: GACT

 tb ← GACT(r, q)

b For recent technology nodes, scaling linear 
dimensions by 0.7× has given only a 0.8–0.9× 
reduction in logic energy due to the complex-
ity and overhead of current multi-patterned 
design rules.

 input    : r[TS], q[TS]
 output : tb[TS,TS]
 for i = 0..TS-1 do
  for j = 0..TS-1 do
     in (i,j) ← Max (h (i,j-1) - O, in  

 (i, j-1) - E)
     del (i,j) ← Max (h(i-1,j) - O, del  

 (i-i,j) -E)
     h (i,j) ← Max (0, in(i,j), del (i,j),  

 h (i-1, j-1) + W (r[i],q[j]) )
     tb [i,j] ← ComputeTb (h (i,j),  

 in (i,j), del (i,j) )
  end
 end

In this pseudocode, the curved brackets  
(for example ,   in(i,j) ) specify ab-
stract indices. The square brackets indi-
cate memory (for example, tb[i,j]). 
The recurrence matrices, in, del, and 
h are never fully materialized. Only the 
diagonal of indices needed for the cur-
rent computation is held in storage at 
any given time. The input strings r and 
q are vectors of size TS (tile size) and the 
resulting traceback array tb is an array 
of size TS × TS.

To map this computation to a proces-
sor array, we first declare the array and 
then specify the mapping. A straightfor-
ward mapping is described here. We de-
clare an array of AS (array size) process-
ing elements and an array of AS memory 
arrays each of the size STRIPES×TS. 
We then map h(i,j) to processing el-
ements by row i and specify the time t 
each element is computed according to 
the diagonal wavefront. The in and del 
matrices (not shown) are mapped iden-
tically. The traceback matrix is mapped 
across the traceback memories by row.

Algorithm 2: Mapping

 STRIPES ← TS / AS
 processor_array p (AS)
 memory_array tbm (AS)[STRIPES, TS ]
 Map h (i,j) → p (i % AS)
   at t = (i % AS) ⋅ TS + j - i / AS
 Map tb [i,j] → tbm (i % AS) [i / AS, j]

We expect that having a program-
ming system for accelerators of this type 
will facilitate the rapid exploration of al-
ternative algorithms and mappings. A 
compilation tool can quickly determine 
the execution time and energy associ-
ated with a particular mapping. Once 
an efficient algorithm and mapping 
are settled on, the tool can generate the 

Accelerator costs. A DSA has a very 
different cost model than a machine 
such as Summit. If we use energy 
and area as a proxy for cost, a simple 
model is that arithmetic is free and 
accessing memory has a cost depen-
dent on the size of memory being ac-
cessed. A more accurate cost model is 
as follows:

Arithmetic: In 14 nm technology, 
arithmetic costs range from 10fJ 
and 4 µm2 for an 8-bit add opera-
tion to 5pJ and 3600 µm2 for a dou-
ble-precision floating-point mul-
tiply.24 As described earlier, these 
costs are usually small compared 
to those of memory.
Local memory: Accessing a small 
(8KByte) local memory in 14nm 
costs 50fJ/bit and SRAM memory 
has an area of 0.013 µm2 per bit. 
The additional cost of accessing 
larger on-chip memories is the 
communication cost of getting to 
and from a small 8KByte subarray. 
This communication costs 100fJ/
bit-mm, so the cost of accessing a 
memory of size S (in bits) is 

. On-chip memo-
ries of up to several hundred mega-
bytes can be realized in today’s 
technology. A 100MB (800Mbit) 
memory has an access cost of about 
0.7pJ/bit.

Global memory: Off-chip global 
memory is even more expensive. 
Accessing a relatively energy-effi-
cient LPDDR4 memory costs about 
4pJ/bit and higher-speed SDDR4 
memory costs about 20pJ/bit.31 
Global memory is also bandwidth 
limited. Memory band width off of 
an accelerator chip is limited to 
about 400GB/s. Placing memories 
on interposers can give bandwidths 
up to 1TB/s, but at the expense of 
limited capacity.
Local Communication: Communi-
cation between blocks on chip has an 
energy cost that increases linearly 
with distance at a rate of 100fJ/
bit-mm.
Global communication: High-speed 
off-chip channels use SerDes that 
have an energy of about 10pJ/bit.

Logic and local memory energies 
scale linearly with technology—as the 
capacitance of the devices scales down 
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RTL. More advanced tools could auto-
mate the generation of the mapping 
given constraints on time and space.

Conclusion
With the end of Moore’s Law, domain-
specific accelerators (DSAs) remain one 
of the few paths to continuing to increase 
the performance and efficiency of com-
puting hardware. This paper has ex-
plored how DSAs achieve performance 
and efficiency drawing on the authors’ 
designs of DSAs for genomics, deep 
learning, simulation, and graphics span-
ning four decades. DSAs gain much of 
their efficiency from specialization and 
elimination of overhead. This efficiency, 
in turn, enables parallelism, which ac-
counts for much of the performance of 
DSAs. Most accelerators are memory 
dominated with much of their die area 
and power dissipation dominated by lo-
cal memories. To benefit from special-
ization, many existing applications must 
be refactored to reduce their bandwidth 
demands on global memory.

A successful DSA accelerates a broad 
domain of applications. It may achieve 
such flexibility by adding specialized 
instructions to a programmable pro-
cessor such as a GPU or CPU. Breadth 
can also be achieved by building a do-
main-specific parallel computer where 
domain-specific programmable pro-
cessing elements carry out the process-
ing of each pipeline stage in place of 
specialized logic. Such processing ele-
ments must be very lean to avoid losing 
much of the advantage of specializa-
tion to overhead.

Although DSAs today are designed 
at the RTL level, we envision a future 
where DSAs are designed by writing a 
parallel program and specifying the 
mapping of this program to hardware 
resources in time and space. Most of 
the intellectual effort in designing a 
DSA is a programming task: develop-
ing algorithms that give good perfor-
mance and efficiency with the DSA 
cost model. Lowering this program to 
detailed hardware can be largely auto-
mated.

In the future, we expect many pro-
grammers will become designers of 
DSAs. An ecosystem will emerge to sup-
port these programmers with better tools 
to describe and evaluate their programs. 
Ultimately, we expect that computer sci-
ence curricula will evolve to teach algo-

rithms and complexity with a cost model 
that more accurately reflects the reality of 
modern computing hardware. 
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