
onvey W
hite P

aper
C

The Convey HC-1™ Compute r
A r c h i t e c t u r e O v e r v i e w

The Convey HC-1 Computer
Architecture Overview

Introduction
For decades, the evolution of computer systems has been driven by the exponential
increase in logic density predicted by Moore’s Law. Performance has increased
exponentially as clock rates increased, and soaring transistor counts are utilized in a
wide variety of architectural innovations to increase performance per clock.

However, in recent years performance has begun to stagnate as power density—caused
by increasing system complexity and increasing clock frequency—has become the
limiting factor in design. In effect, the laws of physics have created a heat and power
brick wall that is nearly impossible to circumvent with traditional processor and
semiconductor architectures.

Many companies have turned to asymmetric or hybrid computing architectures that
combine industry standard processors with specialized processors that focus on specific
operations. Typically, these specific operations are those that represent a large
component of an application. But specialized add-on processors are generally not tightly
integrated with the host processors, presenting different architectural models that are
notoriously difficult to program.

Convey hybrid-core computers overcome these challenges by tightly integrating an
FPGA-based, reconfigurable coprocessor with an industry standard Intel® 64 processor.
The coprocessor shares memory with the commodity processor, and can be dynamically
reloaded with different instruction sets, called “personalities,” targeted at specific
workloads. A unified C/C++ and Fortran development environment generates both x86
and coprocessor code, allowing a single executable to utilize both elements.

The ability to support different instruction sets in a common hardware platform allows
the implementation of new instruction sets in months instead of the years required to
design and introduce a new microprocessor. The huge reduction in implementation time
makes it practical to develop instruction sets tailored to specific applications and
algorithms. Convey is developing a series of personalities for key application areas such
as search/indexing, signal processing, financial analytics, image processing and finite
element modeling.

The combination of an off-the-shelf development environment with custom hardware
provides a system that offers enhanced performance without sacrificing the flexibility
and ease of use of a general purpose system. When used as nodes in a high
performance computing cluster, Convey systems deliver higher performance for a given
number of nodes, providing substantially better performance per dollar or watt than
conventional clusters.

Convey White Paper

Contents

2 Introduction

3 Convey System Architecture

5 Personalities

8 Programming Environment

10 Custom Personalities

10 Summary

Convey System Architecture
Convey systems utilize a commodity two socket motherboard that includes an Intel®
host processor and standard Intel I/O chipset, along with a reconfigurable coprocessor
based on FPGA technology. The coprocessor can be dynamically reloaded with
instructions that are optimized for different workloads. It also includes its own high
bandwidth memory subsystem that logically shares a cache-coherent global memory
space with the host processor.

Figure 1. Hybrid-Core Computing

An application executable can contain both Intel and coprocessor instructions, and
those instructions execute in the same virtual and physical address space (Figure 1).
Coprocessor instructions can therefore be thought of as extensions to the Intel
instruction set—they execute in the same address space and on the same data as x86
instructions.

Coprocessor instructions are grouped into sets (referred to as “personalities”) that can
be reloaded at runtime, allowing the system to present a customized set of instructions
to each application. Each personality includes a base, or canonical set of instructions
that are common to all personalities. The base set includes instructions that perform
scalar operations on integer and floating point data, address computations, conditionals
and branches, as well as miscellaneous control and status operations. A personality also
includes a set of extended instructions that are designed for a particular workload. For
example, the extended instructions for a personality designed for signal processing
might implement a SIMD model and include vector instructions for 32-bit complex
arithmetic.

The coprocessor has three major sets of components, referred to as the Application
Engine Hub (AEH), the Memory Controllers (MCs), and the Application Engines (AEs)
(Figure 2).

The AEH is the central hub for the coprocessor. It implements the interface to the host
processor and to the Intel I/O chipset, fetches and decodes instructions, and executes
Convey canonical instructions. It processes coherence and data requests from the host
processor, and routing requests for addresses in coprocessor memory to the MCs.

Key Benefits of the Convey
System Architecture
• Breaks the current power/

performance wall
• Significantly reduces

support, power, and facilities
costs

• Lowers system management
costs by using industry-
standard, Linux-based
system management tools

• Reduces application porting
and development efforts
for high-performance
applications

2

A cache for memory requests from the coprocessor to host memory reduces latency for
remote references. Canonical instructions are executed in the AEH, while extended
instructions are passed to the AEs for execution.

Figure 2. Convey Coprocessor

To support the bandwidth demands of the coprocessor, 8 Memory Controllers support a
total of 16 DDR2 memory channels, which provide an aggregate of over 80GB/sec of
bandwidth. The MCs translate virtual to physical addresses on behalf of the AEs, and
include snoop filters to minimize snoop traffic to the host processor. The Memory
Controllers support standard DIMMs as well as Convey designed Scatter-Gather DIMMs.

Most modern microprocessors transfer whole cache lines to and from memory, and
waste bandwidth when executing programs that perform strided or random accesses to
individual words. The degradation can be as much as 8x for an application that only uses
8 bytes from a 64-byte cache line. In contrast, the Convey memory system operates on
individual words. The Scatter-Gather DIMMs are optimized for transfers of 8-byte bursts,
and provide near peak bandwidth for non-sequential 8-byte accesses. The coprocessor
therefore not only has a much higher peak bandwidth than is available to commodity
processors, but also delivers a much higher percentage of that peak for non-sequential
accesses.

Together the AEH and the MC’s implement features that are present in all personalities.
This ensures that important functions such as memory protection, access to
coprocessor memory, and communication with the host processor are always available.

The Application Engines (AEs) are the heart of the coprocessor and implement the
extended instructions that deliver performance for a personality. There are 4 AEs,
connected to the AEH by a command bus that transfers opcodes and scalar operands,
and connected via a network of point-to-point links to each of the memory controllers.
Each AE instruction is passed to all four AEs. How they process the instructions depends
on the personality.

While the clock rate for the FPGAs used to implement the coprocessor is lower than that
of a commodity processor, each AE will have many functional units operating in parallel.
This high degree of parallelism is the key to the coprocessor’s performance. By
implementing just those operations that are needed for a particular workload, many
more of those units can be packed into each chip.

The Convey memory
subsystem provides
up to 80 GB/second of
memory bandwidth to the
Application Engines.

3

Personalities
A personality includes the precompiled FPGA bit files that implement a coprocessor
instruction set, a description of the machine state model sufficient for the compiler to
generate and schedule instructions, and an ID used by the application to load the
correct image at runtime. A system can contain multiple personalities that can be
dynamically loaded, but only one personality is loaded at any one time. Each personality
supports the entire canonical instruction set, plus extended instructions that may be
unique to that personality. Extended instructions are designed for particular workloads,
and may include only the operations that represent the largest portion of the execution
time for an application.

All personalities have some elements in common, however:

• Coprocessor execution is initiated and controlled via instructions, as defined by the
Convey Instruction Set Architecture.

• All personalities use a common host interface to dispatch coprocessor instructions and
return status. This interface uses shared memory and leverages the cache coherency
protocol to minimize latency.

• Coprocessor instructions use virtual addresses and coherently share memory with the
host processor. The host processor and I/O system can access coprocessor memory
and the coprocessor can access host memory. The virtual memory implementation
provides protection for process address spaces as in a conventional system.

• All personalities support the canonical instruction set, and the Convey compilers
assume that the canonical instructions can be generated and executed.

These common elements ensure that compilers and other tools can be leveraged across
multiple personalities, while still allowing customization for different workloads.

A personality therefore implements a computer architecture customized for a particular
type of algorithm or workload. Figure 3 presents a diagram of the Convey SPvector
personality, designed for signal processing algorithms such as FFTs.

Figure 3. Convey SPvector Personality

Personalities are the key
to the Convey systems’
performance and flexibility.

4

This personality implements a vector register architecture optimized for single precision
complex arithmetic. It includes multiple functional units and a large vector register set,
supports out-of-order execution, and leverages the high sustained bandwidth of the
word-oriented Convey coprocessor memory system. Convey compilers automatically
generate both x86-64 and SPvector instructions from standard C, C++ and Fortran, and
the resulting applications can be debugged using familiar tools such as gdb.

This vector model is applicable to a wide variety of applications that are loop intensive
and perform the same set of operations on a large array of data. For instance, Convey is
developing a personality optimized for financial analytics applications that uses the
same basic structure and datapaths as the SPvector personality, but replaces the
functional units with ones appropriate for codes that use double precision arithmetic,
and make heavy use of intrinsics (Figure 4).

Figure 4. Convey Financial Analytic Personality

In this personality, pairs of single precision units are replaced with double precision
units, and specialized units are added that support heavily used intrinsics, parallel
random number generation, and computation of the cumulative normal distribution.

This approach isn’t limited to just floating point applications. The SPvector and
FINvector personalities already implement vector integer and bit operations; by
replacing the floating point units with units devoted to these types of operations the
coprocessor can achieve very high levels of parallelism and very high throughput for
integer and bit operation intensive applications.

An even higher level of specialization is possible, however. Convey supports a
personality development kit that allows customers to incorporate their own logic
designs in a personality. The PDK allows the customer to leverage the coprocessor
infrastructure, and operate on shared memory using virtual addresses. Since these
personalities replace a particular routine, they are specific to that algorithm and are
referred to as “procedural” personalities. Novel architectures can be implemented that
coexist with x86-64 instructions in a process address space, leading to much higher
application performance.

The SPvector personality
is more general-purpose
and is applicable to many
scientific applications.

5

Figure 5.

Pi
pe

0

Pi
pe

1

Pi
pe

2

Pi
pe

31

Peptide
Mass

Memory

Substring
Fetch

Save
Match

Store-
Matchs

Update
Score To

Beat
Temp
Match

Memory

Score

Protein
Fetch

ProteinLen

lengthmbuf

Match
Score

Temp
Matches

Score
To Beat

Score To
Beat

Protein Database

PRM
Scores

Memory

InsPect Procedural Personality

Figure 5 presents a diagram of a procedural personality that implements the search
function in the InsPecT mass spectrometry bioinformatics application from the
University of California, San Diego. The entire search algorithm is implemented as a
pipelined set of logic blocks, which fetch samples from memory, compare them to a
protein database, and accumulate scores for the best matches. The core logic is
replicated 32 times and executed in parallel on the coprocessor. Since the coprocessor
infrastructure handles virtual-to-physical translation, the pipes operate on virtual
addresses passed by the main application. This example demonstrates how complex
functions can be implemented entirely in hardware, yet execute in the context of a Linux
process address space.

The InsPect personality
is procedural—an entire
algorithm implemented in
hardware.

6

Programming Environment
The operating system for the Convey platform is based on the industry standard Linux
operating system, with extensions to support the high performance features of the
coprocessor. Application binaries built for a standard Intel 64 system running Linux®
can run unmodified on the host processor. Applications can access the coprocessor
either by linking in Convey math libraries with coprocessor versions of common
algorithms or by recompiling with the Convey compilers.

The Convey compilers use a dual-path optimization system that generates both Intel 64
and coprocessor instructions from standard ANSI C/C++ or Fortran. A common front
end and high level optimizer translate source files into the compiler’s intermediate
language and perform architecture independent optimizations.

Figure 6. Convey Compilers

Code regions that appear suitable for execution on the coprocessor are cloned and
tagged, with one copy of the code passed to the Intel 64 optimizer and code generator,
and the other copy passed to the Convey vectorizer and code generator. The resulting
executable contains both the Intel 64 and coprocessor code, along with a runtime test
to determine which to execute based on a profitability test of which is likely to be faster.

The Convey optimizer and code generator automatically identify code that can be
vectorized, and generates coprocessor instructions and interface calls that dispatch
them to the coprocessor (Figure 7). The compiler examines each loop in the program
and performs a dependency analysis to determine whether iterations can be executed in
parallel. Where it is safe to do so, the compiler translates scalar operations into vector
operations from those supported by the target personality. Use of hardware features
such as non-unit-stride and indexed vector loads, operations under mask, and reduction
instructions enable transformation of many loops that would otherwise not be
vectorizable. Higher level transformations such as inlining, loop interchange, and loop
distribution also enable vectorization of loops that would otherwise be inefficient or
impossible to vectorize.

The Convey Compilers
go to great lengths to
discover opportunities
for inserting coprocessor
instructions.

A run-time profitability
test determines the
optimal hardware on which
to execute the generated
code.

7

Figure 7.

$ cat saxpy.f
 parameter (N=100000)
 common a,b,c
 real*4 a(N),b(N),c(N),s

 s = 3.0
 do i=1,N
 a(i) = 2.0
 b(i) = 2.0
 enddo

 do i=1,N
 c(i) = a(i)+s*b(i)
 enddo

 write(6,1000) N
1000 format(i8,' iterations')

 end
$ cnyf90 -mcny_auto_vector -mcny_sig=sp saxpy.f
VECTORIZED STMT in MAIN__0 at 6
VECTORIZED STMT in MAIN__1 at 11

Example of automatic translation for SPvector personality.

The compiler also automatically inserts the calls and interface code required to allocate
the coprocessor, load the appropriate personality, and control execution. The host
processor initiates execution on the coprocessor by writing the address of the
coprocessor code to be executed and any associated parameters to a command block in
memory. When the coprocessor sees the command block updated, it fetches the first
instruction at the specified address and begins execution. This mechanism leverages the
cache coherency hardware to minimize latency. Since the coprocessor and host
processor share the same view of memory, parameters can be in the form of scalar
values or pointers to data structures in memory. When the coprocessor completes
execution, it updates a status block. The host processor can either spin wait on this
status block or execute other code while waiting for the coprocessor.

This low latency mechanism to transfer control to the coprocessor, along with the
coherent shared memory architecture, allow the compiler and other tools to treat code
executing on the x86 host processor and coprocessor as part of one seamless
architecture. The strengths of both architectures can be applied to the parts of a
program where they are most effective.

8

Custom Personalities
Many emerging applications in fields such as bioinformatics and data mining incorporate
algorithms that don’t fit classic architectural models like vector processing. Convey
provides a Personality Development Kit (PDK) that allows custom instructions to be
implemented to support such applications. Custom instructions might be as simple as a
single instruction that instructs the AEs to process a large in-memory data structure.

The PDK includes logic blocks that implement the interfaces between the AEs and the
other components of the coprocessor, tools to package bitfiles produced by the Xilinx®
FPGA development tools into a personality, a simulator for debugging, and system and
compiler APIs to allow execution of the user-defined instructions. The custom logic is
loaded only in the AEs, however the system interface, virtual memory, and canonical
instruction set implementation in the AEH and Memory Controllers is unchanged.

An architected set of instructions transfer data between the canonical register set in the
AEH and the AEs, and initiate execution by the custom logic. This allows the user to
develop FPGA logic that executes within a process address space using virtual memory
addresses. The FPGA logic therefore can operate directly on the same data structures
created by the application code running on the host processor. Other processes and
system memory are protected from invalid accesses by the virtual memory protection
system.

The ability to create new instructions that can be loaded dynamically allows the
implementation of highly parallel instructions that are specific to algorithms and data
structures not well served by classic scalar and vector architectures. As these
applications evolve, the instruction set architecture can evolve along with new
instructions.

Summary
The Convey HC-1 hybrid-core computer provides increased scalability and cost
effectiveness by delivering higher performance per node for compute intensive
workloads. It leverages high density programmable logic, allowing the creation of
multiple specialized architectures optimized for specific workloads. These specialized
architectures are integrated into an industry standard Intel 64 system—leveraging
commodity components and allowing easy integration into an existing environment.

The Convey systems maximize productivity by delivering prebuilt personalities for
important applications and a unified development environment based on standard ANSI
C/C++ and Fortran. Users can create new personalities, allowing new instruction sets
to be innovated for emerging applications.

Convey Computer Corporation
1302 E. Collins Boulevard
Richardson, Texas 75081
Phone: 214.666.6024 Fax: 214.576.9848
Toll Free: 866.338.1768
www.conveycomputer.com

Convey Computer, the Convey logo, and Convey HC-1 are trademarks of Convey Computer Corporation in the U.S. and other countries. Intel® is a registered
trademark of Intel Corporation in the U.S. and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Xilinx®
is a registered trademark of Xilinx in the U.S. and other countries.
November 2008

Customers can create their
own personalities with the
Personality Development
Kit.

9

Convey Computer Corporation
1302 E. Collins Boulevard
Richardson, Texas 75081
Phone: 214.666.6024 Fax: 214.576.9848
Toll Free: 866.338.1768
www.conveycomputer.com

Convey Computer, the Convey logo, and Convey HC-1 are trademarks of Convey Computer Corporation in the U.S. and other countries. Intel® is a registered
trademark of Intel Corporation in the U.S. and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Xilinx®
is a registered trademark of Xilinx in the U.S. and other countries.
November 2008

