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Abstract

In this paper we present a hardware/software co-design
based computation platform for online data processing in
particle physics experiments. Our goal is to ease and accel-
erate the development and make it universal and scalable
for multiple applications, on the premise of guaranteeing
high communicating and processing capabilities. The entire
computation network consists of quite a few interconnected
compute nodes, each of which has multiple FPGAs to imple-
ment specific algorithms for data processing. High-speed
communication features including RocketIO multi-gigabit
transceiver and Gigabit Ethernet are supported by FPGAs
to construct internal and external connections. An embed-
ded Linux operating system is fitted on the PowerPC CPU
core inside the Xilinx Virtex-4 FX FPGA. Thus program-
mers can access hardware resources via device drivers and
write application programs to manage the system from the
high level. Furthermore measurements have been executed
using the development board to investigate both communi-
cating and processing performances of the system. Results
show that the computation platform is able to communi-
cate at a UDP/IP data rate of around 400 Mbps per Eth-
ernet link, and the event selection engine could process an
event stream of 148.1 MBytes/s at an interesting event rate
of 25%.

1. Introduction

Modern nuclear and particle physics experiments, for ex-
ample HADES [1] and PANDA [2] at GSI, BESIII [3] at
IHEP, are expected to run at a very high reaction rate (e.g.
PANDA, 10-20 MHz) and able to deliver a data rate of up to
hundred GBytes/s (PANDA, from 40 up to 200 GBytes/s).
Among the huge amounts of data, only a rare proportion is

of interest due to its particular physics contents and should
be selected for in-depth physics analysis. In addition to the
heavy offline computation on the PC farm, in-field process-
ing and triggering are also desired to select candidates of
interesting events and discard some obviously uninterest-
ing ones. Feature extraction algorithms are relevant to the
online selection process such as Cherenkov ring recogni-
tion, shower recognition, Time-Of-Flight (TOF) processing,
tracking in Multiwire Drift Chambers (MDC), high level
correlation [4] and event selection. To implement those al-
gorithms in field and achieve the high processing require-
ment, an extremely powerful computation network which
consists of many nodes working in parallel is to be con-
structed and integrated into the experimental setup. [5] Our
aim is to provide such a platform which could be easily net-
worked and as well it is expected to be universal and highly
parameterized for different experimental conditions.

Due to the particularity of our application in particle
physics, the requirements on our design vary a lot from
other common embedded ones, such as consumer electron-
ics or industrial control computers. Firstly, the performance
requirement to process at least several tens GBytes/s in re-
altime is quite critical. Without a powerful interconnected
network, this cannot be turned into reality. At the same
time, since compute nodes are fundamental units which
constitute the entire network, the performance requirement
finally falls down on the node design. Obviously the more
communicating and computing capabilities each node pro-
vides, the smaller node numbers and simpler network topol-
ogy which both lead to a cost-efficient system could be
achieved. Secondly, our design is expected to be highly pa-
rameterized and easily reconfigurable and scalable to meet
the following cases: 1. The platform should be applicable
for many different experiments without much extra effort.
What we only need to do for various experimental subjects
is to adapt specifically designed processing engine modules



into the system, without changing the systematic architec-
ture and other peripherals; 2. Since most of the operators
in the experiments will be physicists who have little expe-
rience in hardware design, a parameterized and reconfig-
urable platform will be convenient for them to control the
experimental conditions; 3. Because of the spatial or phys-
ical limitations such as the harmful radiation during the ex-
periments, remote reconfiguration capability is also impor-
tant for our application.

According to the requirements listed above, our pro-
posed solution is a co-design based network platform. Us-
ing a defined set of criteria for hardware/software partition-
ing between FPGA fabric and embedded CPU, in conjunc-
tion with the respective implementations of both hardware
computing engines and software controls, the flexibility re-
quirements could be met with high performance guaranteed.
In Section 2 we will first address the network architecture
from a global perspective, considering the case that it is
impractical to solve such a heavy computing problem in a
single node. After that, we focus on a single FPGA node
design which is universal to accommodate different algo-
rithms. In Section 3, the partitioning criteria and strategy
are discussed which lead the system to both high perfor-
mance and cost efficiency. In Section 4 the FPGA-based
hardware design will be described, and the embedded Linux
Operating System (OS) based software design will be pre-
sented in Section 5. Performance measurements and results
are reported in Section 6. Finally we conclude the paper and
propose the future work in Section 7.

2. System Architecture

2.1. Computation Network Architecture

A network structure consisting of interconnected nodes
is proved to be and widely adopted as a good candidate to
deal with large amounts of data. In our application, feature
extraction algorithms will be partitioned and distributed in
many nodes. Without bonding of multiple communication
channels together with parallel and pipelined processing in
different units, the data rate of up to hundred GBytes/s can-
not be managed. Among all the Compute Nodes (CN), high
speed interconnections should also be provided for shar-
ing their results and correlating the selected sub-events (see
Section 3 for definition) from different algorithms for final
decisions. Thus the network architecture is shown in fig-
ure 1. For each node in the network, there are two types of
links: internal links and external ones. Internal connections
make it possible for all compute nodes to exchange and cor-
relate their processing results. Its topology structure is quite
dependent on the communication requirement of the corre-
lation algorithm, further the partitioning methods and work-
ing mechanisms of each specific feature extraction. Exter-

nal links adopt optical links and Gigabit Ethernet to commu-
nicate. Optical transceivers are Xilinx RocketIO based and
all their channels are bonded to accept data streams from
detectors. After being subject to corresponding algorithms,
selected sub-events belonging to the same physics process
will be encapsulated into a single event. All events could
be afterwards pre-filtered for rejecting uninteresting ones,
and Gigabit Ethernet is a good choice for conveying the fi-
nal selected results to the PC farm for higher level analysis
and storage. We are utilizing its ease to build the Ethernet
network with ordinary PCs, and moreover the reduced data
rate after online selection could be successfully managed
via multiple channels.

Figure 1. Computation network architecture
for online processing in experiments.

2.2. Compute Node Architecture

Figure 2 shows the schematic of a compute node for pro-
totype design. On each board there are five Xilinx Virtex-4
FX60 FPGAs in total. Four of them (No. 1 to 4) perform
as algorithm processors and work in a parallel or pipelined
fashion to increase processing capability. The fifth FPGA
(No. 0) acts as a switch which connects to other CN boards
in an ATCA shelf via a full mesh backplane. With these
high-speed RocketIO connections all boards in the shelf
could talk to each other, and the full mesh topology provides
much flexibility to implement the correlation algorithm. All
five FPGAs are equipped with local DDR2 memories for
buffering data and other purposes such as large lookup ta-
bles. In addition two optical links and two Gigabit Ethernet
ports are connected to each FPGA for communications with
external devices.

From now on we will focus on the compute node de-
sign, specifically those four identical FPGA nodes working



Figure 2. Compute node for prototype design.

as algorithm processors. With different hardware process-
ing modules fitted inside, different feature extractions could
be realized for online processing.

3. Partitioning Criteria and Strategy

System partitioning, also referred to as functional
partitioning is an essential problem since it affects overall
system cost and performance directly. In our design, we
adopt the criteria listed as following:

1. To achieve powerful processing capabilities, all of the
performance-intensive computation algorithms are to be
implemented in the FPGA fabric in hardware, working in a
parallel or pipelined fashion.

2. For easy operation and reconfiguration, the control
tasks should be realized preferably in software via high
level application programs. A universal operating system is
preferred to act as a manager of the hardware and software
resources, and Linux is a good candidate.

3. To speed up the development process and save
human resources or cost, we use existing and popular
communication techniques. For instance, Gigabit Ethernet
with the soft Linux TCP/IP stack1 are utilized in our design.

Thus we present our concrete partitioning strategy shown
in figure 3 as follows. The embedded Linux is the con-
trol center of the whole system. According to different
application programs or commands, operators could issue

1What we plan to use is UDP/IP actually, which is part of the TCP/IP
protocol suite.

Figure 3. Functional partitioning strategy.

many kinds of operations such as data processing, updat-
ing hardware or software design, and so on. On the data
processing path, there are several subtasks which cooper-
ate to select events on-line, including: a). receiving data
streams via optical links; b). sub-events from different de-
tectors processed by feature extraction algorithms; c). se-
lected sub-events further correlated with each other and d).
building events; e). filtering events and rejecting some un-
interesting ones to reduce the data storage requirement; f).
selected results constructed into packets by TCP/IP stack
and g). packets transmitted over Ethernet for later analy-
sis or storage. Throughout this procedure, data go along
the path in the format from sub-event to event. One sub-
event is the specific data from one type of all detectors [4]:
RICH, MDC, TOF and Shower detector, etc.. After their
correlation, sub-events are combined into events according
to their physics tags and with a header attached, as shown
in figure 4. Coming back to the criteria described before,
all the performance- and computing-intensive subtasks will
be implemented in hardware, except the TCP/IP stack. Al-
though it is quite important and a hardwired stack could im-
prove the communication bandwidth a lot [6], dedicating
the embedded CPU to protocol processing is a both human-
resource-efficient and time-efficient way in our application.
Other control subtasks and lightweight processing ones are
also expected in software, specifically the embedded Linux
OS and application programs.

Now that hardware computing engines and their inter-
face logics need to be customized, FPGA is definitely a suit-
able platform for development. In addition, as the embed-
ded Linux is expected, we need also a comparatively power-
ful and well-supported CPU which runs the OS and applica-
tions. Thus we choose Xilinx Virtex-4 FX platform FPGA
which provides us a good combination of both resources.



Figure 4. Combining sub-events from various
detectors into events.

Inside the FPGA chip, an embedded PowerPC 405 proces-
sor core is integrated altogether with many other peripherals
such as Gigabit Ethernet MAC and RocketIO multi-gigabit
serial transceivers. Linux could run on top of the embedded
PowerPC which is easily connected and communicate with
other modules inside the FPGA fabric.

4. Hardware Design

Since most peripheral controllers could be integrated in
Xilinx Virtex-4 FX FPGA in the format of either hard or
soft cores, plus the embedded CPU and bus architecture our
design could be treated as a System-on-an-FPGA-chip in
some sense. Figure 5 illustrates the block diagram of our
development platform.

Figure 5. System architecture.

In this design, PowerPC 405 CPU core runs the operat-
ing system and applications to manage all other peripheral

components. In addition to the Gigabit Ethernet MAC and
DDR memory controller, a fraction of partitioned feature
extraction engines which might be ring recognizers, track
finder, event builder, or even event selector is connected
with the CPU via a fast-speed PLB bus. Data streams will
be guided to corresponding algorithms for processing ac-
cording to their physics signatures. After the stages of fea-
ture extraction, correlation, event building and event selec-
tion in the internal network, final results will be induced out
of Ethernet ports for next level analysis and storage.

We have already designed and implemented a general
event selector whose use is to filter uninteresting events by
event structure checking. Whether a particular event is good
or not is decided by looking into sub-events and judging the
comprehensive information for all detectors. Currently the
design is something like a “toy model”, and later more deli-
cate regulations will be added for more careful event selec-
tion. As shown in figure 6, this processing module contains
a PLB IP interface (IPIF) which communicate with other
components via PLB. To release the CPU from the work
of moving data back and forth between the memory and
the IP, DMA and interrupt are included in the IPIF. DMA
takes care of feeding event data to the Write FIFO (Wr-
FIFO) and collecting results from Read FIFO (RdFIFO).
After each DMA transfer, the CPU will be noticed by inter-
rupt. In the selector IP core, an event buffer is dedicated to
temporarily store an entire event which is under inspection
and a complicate FSM controls to analyze the event struc-
ture consisting of sub-events from different detectors (refer
to figure 4). It is necessary to buffer the whole event since
the decision whether this event is interesting or not cannot
be made before all its sub-events have already arrived at the
buffer and been inspected.

Figure 6. Structure of the event selector.

Also there are some slow peripherals connected to the
OPB bus which is bridged with PLB. For instance RS232



provides the console interface to communicate with the
embedded OS. Moreover, an External Memory Controller
(EMC) enables the PowerPC to address the flash memory
space. Details on how to update the flash content with the
running Linux will be described in the next section.

5. Software Design

5.1. Embedded Operating System

We have selected an open-source Linux kennel from the
mainline kernel tree [7] [8] rather than any commercial dis-
tribution for saving cost. In order to get a better support
from the Linux community, the latest 2.6 version deserves
a higher priority than the old 2.4 one for our choice. How
to set up the cross-compilation environment, configure and
install Linux on Xilinx boards was described in [9] [10] and
[11] in detail. In our case, we have the kernel configuration
including device drivers for peripherals, loadable module
support, network file system (NFS) [12] support, and many
networking options, etc.. In cooperation with the hardware
bitstream and the bootloader, the embedded Linux could be
booted and operated via a console interface much like its
relatives on PCs except that there is no GUI supported yet.

5.2. Device Drivers

Some of the device drivers especially those popular ones
such as Ethernet, RS232 and MTD devices, have already
been included in the kernel’s package. They could be easily
enabled by selecting the relevant options during the kernel’s
configuration. For our customized hardware modules in the
system, drivers are also necessary to access them in Linux.
Let’s consider the event selector example, which is a typical
character device [13] since it is fed with a stream of event
data and outputs interesting candidates. In its driver, com-
mon file operations were implemented, for instance “open”,
“close”, “read”, “write”. As well DMA transfer initiation
and interrupt handlers were included to support full hard-
ware features and run the device efficiently. Using the de-
vice driver programmers could address the hardware with
application programs via the entry in “/dev” directory.

5.3. Application Programs

With the operating system’s support, application pro-
grams are quite flexible. They might be programmed ei-
ther in C/C++ or in high level scripts. As an example, the
application program set was written in C, which has mul-
tiple processes respectively to buffer and feed the incom-
ing sub-events to the processing engines, collect results and
send to the next level. On the other hand, it is possible to
upgrade the hardware design and the Linux kernel using a

bash script, where “dd” commands copy the new bitstream
or kernel image and overwrite the old ones in flash memo-
ries. After that a system reset is scheduled and then the new
hardware and OS will be loaded and run in cooperation.
With the network support, the upgrading procedure may be
initiated in a remotely telneted shell or by a network com-
mand packet. This feature protects operators away from the
radiative area and upgrading the system manually.

6. Implementation and Performance Measure-
ments

6.1. Implementation Results

Till now the development and design are being executed
on Xilinx Dev. board ML403 [14], whose heart is a Xilinx
Virtex-4 FX12 platform FPGA with a PowerPC 405 inte-
grated. Figure 7 shows the interconnections of all useful
components on-board for our platform. As we said before,
most components including the CPU, buses and peripheral
controllers are embedded in the FPGA chip. Thus we have
put emphasis on the system implementation in FPGA. XPS
8.2 was being used to describe our system and ISE 8.2 to
implement it. We also used ModelSim 6.1e and Xilinx
Bus Functional Models (BFM) [15] to simulate the bus be-
haviors of our PLB customized IPs. Table 1 shows both
statistics on the resource utilization and percentages out of
Virtex-4 FX12. From the listed numbers we can see that
Ethernet and the computing engine consume 48% and 43%
respectively of the LUT resource in FX12. Then if both
fully functional components are desired in the platform, we
have to turn to a larger chip, like FX60 that we plan to adopt
in the real product.

Figure 7. Development system on ML403.



Resources System with-
out computing
engine

Tri-mode
Ethernet

Event Selec-
tor module
(4kBytes WrFIFO
RdFIFO and Event
Buffer)

4-input LUTs 8531 out of
10944 (77%)

5346 out of
10944 (48%)

4674 out of
10944 (43%)

Slice Flip-
Flops

5724 out of
10944 (52%)

4093 out of
10944 (37%)

2830 out of
10944 (25%)

FIFO16/
RAMB16s

18 out of 36
(50%)

18 out of 36
(50%)

6 out of 36
(17%)

DSP48s 8 out of 32
(25%)

8 out of 32
(25%)

0

DCMs 3 out of 4
(75%)

0 0

Table 1. Resource consumption.

The timing summary shows that the PLB bus could run
at above 100MHz and the PowerPC CPU at 300MHz.

6.2. Performance Measurements

The performance of our platform could be represented
by two respects: communication bandwidth and computing
capability; Latency is not a big problem in our application.
Since Gigabit Ethernet links are external channels to con-
vey processing decisions to high level analysis and storage,
they stand for half of the external communication perfor-
mance of the proposed computation network directly. We
measured the maximum network throughput with a Point-
to-Point connection between a development board and a
powerful enough PC with a Gigabit Ethernet card. On both
PC and board runs a benchmark software “Netperf” [16]
to measure the end-to-end bulk data transfer capacity. With
all hardware/software supported features enabled which im-
prove performance, explicitly Scatter/Gatter DMA, check-
sum offloading, data realignment engines, interrupt coalesc-
ing, jumbo frame of 8982, etc., we could achieve a maxi-
mum throughput of around 400 Mbps for UDP transmitting
and receiving. Details are shown in table 2, as well TCP
transfers. Although not so elegant as what a desktop PC
could provide, these results are quite reasonable for an em-
bedded application taking into account the weak embedded
CPU which runs only at 300MHz and the overhead added
by the soft TCP/IP stack. In the procedure of searching for
the bottleneck which restricts the performance lower than
the physical gigabit limitation, we found that the CPU uti-
lization was almost one hundred percent during transmitting
and receiving. Actually the results match the famous thumb
rule of network communication quite well: driving a line
at 1 bps requires a 1 Hz processor. So we conclude that it
is the CPU processing capability that decides the Ethernet
throughput in our application. In [17] [18] [19] [20] there
are details to analyze the problem and provide methods to

improve the performance.

Protocol Type Direction Max. Throughput (Mbps)
UDP/IP Board → PC 394.5 (TX)
UDP/IP PC → Board ≥ 394.51 (RX)
TCP/IP Board → PC 297.8
TCP/IP PC → Board 316.6

Table 2. Ethernet maximum throughput.

Figure 8. Computing throughput measure-
ments of the event selector.

The other important factor for performance is the pro-
cessing capability of the hardware computing engine. We
still discuss the event selector, and the measurement could
be done in the following method. As shown in figure 8, we
reserve two large blocks in the DDR memory to buffer the
incoming event stream and the selected interesting results
respectively. Through DMA0 events to be processed could
be fed from Mem0 into WrFIFO of the selector, and results
will be collected from RdFIFO to Mem1 by DMA1 opera-
tions. With continuous event stream buffered in Mem0, the
computing throughput of the selector module could be cal-
culated by the division of data size and spent time. After all
measurements and calculations at different event selection
rates (100% and 25% interesting event rates respectively),
processing capabilities are shown in figure 9 as functions
of DMA transfer sizes which are equal to both WrFIFO
and RdFIFO sizes to maximize the transfer at each time.
We draw the conclusion from the results that a lower event
selection rate could increase the processing capabilities of
the computing engine. It is due to the fact that lower se-
lection rate decreases DMA1 transfer times for collecting

1We didn’t get an exact number for the maximum receiving speed.
However the board could successfully receive all packets sent at the speed
of 394.5 Mbps. So its receiving capability should be no less than 394.5
Mbps.



interesting events. From the figure we can see that with a
WrFIFO and RdFIFO size of 32kBytes, the top processing
power of 148.1 and 97.3 MBytes/s could be achieved at the
interesting event rates of 25% and 100% respectively. In the
real experimental conditions where the selection rate will be
quite low, the computing throughput might be even higher.

Figure 9. Computing throughput vs. DMA
transfer and FIFO size @ different event se-
lection rates.

7. Conclusion and Future Work

We have presented a hardware/software co-design case
study of the computation network in experimental parti-
cle physics. With a reasonable partitioning strategy, we
put the performance- and computing-intensive subtasks in
hardware designs while TCP/IP stack and other lightweight
ones in Software. In the hardware design section, a com-
puter architecture was demonstrated which includes cus-
tomized hardware computing engines connected to the PLB
bus. Specifically an event selector design was described
from the aspects of its structure and working mechanism
as an example of various algorithms. The software design
is based on the Linux OS with matching device drivers for
hardware modules. With the support from the OS and de-
vice drivers, the platform could be run flexibly by applica-
tion programs in C/C++ or high level scripts. Finally the
implementation results show the resource utilization, and
performance measurements indicate the system’s commu-
nication capacity of 400 Mbps UDP/IP transfers per Ether-
net link and up to 148.1 MBytes/s for event selection at an
interesting event rate of 25%.

In the future, various feature extraction algorithms will
be implemented and optimized in FPGA. Much work is also

to be devoted in the research of the high-speed internal net-
work, which connects all the nodes and correlates the results
from different algorithms.
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