
Globally Governed Session Semantics

Dimitrios Kouzapas and Nobuko Yoshida

Imperial College London

Abstract. This paper proposes a new bisimulation theory based on multiparty session
types where a choreography specification governs the behaviour of session typed pro-
cesses and their observer. The bisimulation is defined with the observer cooperating with
the observed process in order to form complete global session scenarios and usable for
proving correctness of optimisations for globally coordinating threads and processes.
The induced bisimulation is strictly more fine-grained than the standard session bisim-
ulation. The difference between the governed and standard bisimulations only appears
when more than two interleaved multiparty sessions exist. The framework is systemat-
ically applied to four kinds of synchronous and asynchronous semantics, and for each
semantics, the soundness and completeness of the governed bisimilarity with respect to
the governed reduction-based congruence is proved. Finally its usage is demonstrated
by a thread transformation governed under multiple sessions which is applicable to real
choreographic usecase scenarios.

1 Introduction
Modern society increasingly depends on distributed software infrastructures such as
the backend of popular Web portals, global E-science cyberinfrastructure, e-healthcare
and e-governments. An application in these environments is typically organised into
many components which communicate through message passing. Thus an application is
naturally designed as a collection of interaction scenarios, or multiparty sessions, each
following an interaction pattern, or choreographic protocol. The theories of multiparty
session types [10] capture these two natural abstraction units, representing the situation
where two or more multiparty sessions (choreographies) can interleave for a single point
application, with each message clearly identifiable as belonging to a specific session.

This paper introduces a new behavioural theory which can reason about distributed
processes globally controlled by multiple choreographic sessions. Typed behavioural
theory has been one of the central topics of the study of the π-calculus throughout its
history, for example, in order to reason about various encodings into the typed π-calculi
[16, 18]. Our behavioural theory treats the mutual effects of multiple choreographic
sessions and differs from any type-based bisimulations in the literature. Since our be-
havioural theory is based on the regulation of conversational behaviours of distributed
components by global specifications, we call our bisimulation globally governed bisim-
ulation.

To illustrate the key idea, we first explain the mechanisms of multiparty session
types [10]. Let us consider a simple protocol where participant 1 sends a message of
type bool to participant 2. To develop the code for this protocol, we start by specifying
the global type [10] as G1 = 1→ 2: 〈bool〉;end where→ signifies the flow of commu-
nication and end denotes protocol termination. With agreement on G1 as a specification
for participant 1 and participant 2, each program can be implemented separately. Then

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Fig. 1. Resource Managment Example: (a) before optimisation; (b) after optimisation

for type-checking, G1 is projected into local session types: one local session type from
1’s point of view, [2]!〈bool〉 (output to 2 with bool-type), and another from 2’s point
of view, [1]?〈bool〉 (input from 1 with bool-type), against which both processes are
checked to be correct.

Now we explain how our new theory can reason about an optimisation of choreog-
raphy interactions (a simplified usecase (UC.R2.13 “Acquire Data From Instrument”)
from [14]). Consider the two global types between three participants (1,2,3):

Ga = 1→ 3 : 〈ser〉.2→ 3 : 〈ser〉.end, Gb = 1→ 2 : 〈sig〉.end

and a scenario in Figure 1(a) where Client3 (participant 3) uses two services, the first
from Server1 (participant 1) and Server2 (participant 2), and Server1 sends an internal
signal to Server2. The three parties belonging to these protocols are implemented as:

P1 = a[1](x).b[1](y).x[3]!〈v〉;y[2]!〈w〉;0 P2 = a[2](x).b[2](y).(y[1]?(z);0 | x[3]!〈v〉;0)
P3 = a[3](x).x[1]?(z);x[2]?(y);0

where session name a establishes the session corresponding to Ga. Client3 (P3) initiates
a session involving three processes as the third participant by a[3](x): Service1 (P1) and
Service2 (P2) participate to the session a[1](x) and a[2](x), respectively. Similarly the
session corresponding to Gb is established between Service1 and Service2.

Since from Client3, the internal signal is invisible, we optimise Server2 to a single
thread to avoid an unnecessary thread creation as R2 = a[2](x).b[2](y).y[1]?(z);x[3]!〈v〉;0
in Figure 1(b). Note that both P2 and R2 are typable under Ga and Gb. Obviously, in the
untyped setting, P1 | P2 and P1 | R2 are not bisimilar (by either synchronous or asyn-
chronous semantics) since in P2, the output action x[3]!〈v〉 can be observed before the
input action y[1]?(z) happens. However, with the global constraints given by Ga and
Gb, a service provided by Server2 is only available to Client3 after Server1 sends a
signal to Server2, i.e. action x[3]!〈v〉 can only happen after action y[1]?(z) in P2. Hence
P1 | P2 and P1 | R2 are not distinguishable by Client3 and the thread optimisation of R2
is correct.

On the other hand, if we change the global type Ga as:

G′a = 2→ 3 : 〈ser〉.1→ 3 : 〈ser〉.end

then R2 can perform both the output to Client3 and the input from Server1 concurrently
since G′a states that Client3 can receive the message from Server2 first. Hence P1 | P2
and P1 | R2 are no longer equivalent.

The key point to make this difference possible is to observe the behaviour of pro-
cesses together with the information provided by the global types. The global types can

2

P ::= u[p](x).P Request

| u[p](x).P Accept

| c[p]!〈e〉;P Sending

| c[p]?(x);P Receiving

| c[p]⊕ l;P Selection

| c[p]&{li : Pi}i∈I Branching

u ::= x | a Identifier

n ::= s | a Name

e ::= v | x | e and e′ | e = e′ | . . .

| if e then P else Q Conditional

| P | Q Parallel

| 0 Inaction

| (ν n)P Hiding

| µX .P Recursion

| X Variable

c ::= s[p] | x Session

v ::= a | tt | ff | s[p] Value

Expression

Fig. 2. Syntax for synchronous multiparty session calculus

define additional knowledge about how the observer (the client in the above example)
will collaborate with the observed processes so that different global types (i.e. global
witnesses) can induce the different equivalences.

Contributions This paper introduces two kinds of typed bisimulations based on mul-
tiparty session types and systematically applies them to synchronous and three kinds
of asynchronous session semantics. The first bisimulation is solely based on local (end-
point) types defined without global information, hence it resembles the standard linearity-
based bisimulation. The second one is a globally governed session bisimilarity which
uses multiparty session types as information for a global witness. We prove that each
coincides with a corresponding standard contextual equivalence [9] (Theorems 4.1, 5.1,
6.1, 6.2). The governed bisimulation gives more fine-grained equivalences than the lo-
cally typed bisimulation. We identify the condition when the two semantics exactly
coincide (Theorem 5.2). Interestingly our theorem (Theorem 5.3) shows this differ-
ence appears only when processes are running under more than two interleaved global
types. We show how the synchronous and the three kinds of asynchronous semantics
are related with each other (Theorems 6.1, 6.2). We demonstrate the use of governed
bisimulation through the running example, which is applicable to a thread optimisation
of a real usecase from a large scale distributed system [14].

Due to space limitations, this paper introduces the theories for the synchronous
semantics and later summarises the key elements of asynchronous semantics. The Ap-
pendix includes the full definitions for asynchronous semantics as well as the detailed
proofs of the theorems, lemmas and propositions listed in the main sections. The Ap-
pendix also lists a full derivation of a usecase example from [14].

2 Synchronous Multiparty Session Calculus
This section defines a synchronous version of the multiparty session calculus. The syn-
tax follows [3] except we eliminate queues for asynchronous communication. We chose
synchrony since it allows the simplest formulations and definitions for demonstrating
the key concepts of globally governed bisimulations. The summary of the asynchronous
semantics is given in § 6.

Syntax Figure 2 defines the syntax for synchronous multiparty session calculus. u
ranges over shared names a,b, . . . or variables x,y, c ranges over session roles s[p]

3

a[1](x).P1 | . . . | a[n](x).Pn −→ (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x}) [Link]

s[p][q]!〈e〉;P | s[q][p]?(x);Q −→ P | Q{v/x} (e ↓ v) [Comm]

s[p][q]⊕ lk;P | s[q][p]&{li : Pi}i∈I −→ P | Pk k ∈ I [Label]

if e then P else Q−→ P (e ↓ tt) if e then P else Q−→ Q (e ↓ ff) [If]

P−→ P′

(ν n)P−→ (ν n)P′
[Res]

P−→ P′

P | Q−→ P′ | Q
[Par]

P≡ P′ −→ Q′ ≡ Q
P−→ Q

[Str]

Fig. 3. Operational semantics for synchronous multiparty session calculus

or variables. Values v,v′, . . . range over shared names, constants tt,ff, . . . or a channel
with role s[p]. Expressions e,e′, . . . are either values, logical operations on expressions
or name matching operations. We call p,p′,q, . . . (range over the natural numbers) the
participants.

For the primitives for session initiation, u[p](x).P initiates a new session through an
identifier u (which represents a shared interaction point) with the other multiple par-
ticipants, each of shape u[p](x)..Qq where 1 ≤ q ≤ p− 1. The (bound) variable x is
the channel used to do the communications. Session communications (communications
that take place inside an established session) are performed using the next two pairs:
the sending and receiving of a value and the selection and branching (where the former
chooses one of the branches offered by the latter). The input/output operations specify
the sender and the receiver, respectively. Hence c[p]!〈e〉;P sends a value to p; accord-
ingly, c[p]?(x);P denotes the intention of receiving a value from the participant p. The
same holds for selection/branching. We call s[p] a channel with role: it represents the
channel of the participant p in the session s. Process 0 is the inactive process. Other pro-
cesses are standard. We say that a process is closed it does not contain free variables.
We denote fn(P)/bn(P) and fv(P)/bv(P) for a set of free/bound names and free/bound
variables, respectively. We use the standard structure rules (denoted by ≡) including
µX .P≡ P{µX .P/X}.

Operational semantics Operational semantics of the calculus are defined in Figure 3.
Rule [Link] defines synchronous session initiation. All session roles must be present to
synchronously reduce each role p on a fresh session name s[p]. Rules [Comm] is for
sending a value to the corresponding receiving process where e ↓ v means expression
e evaluates to value v. The interaction between selection and branching is defined via
rule [Label]. Other rules are standard. We write→→ for (−→∪≡)∗.

3 Typing for Synchronous Multiparty Sessions
This section first defines types and then summarises a typing system for the synchronous
multiparty session calculus.

3.1 Global and local types
Global types, ranged over by G,G′, . . . describe the whole conversation scenario of a
multiparty session as a type signature. Its grammar is given in Figure 4. The global type
p→ q : 〈U〉.G′ says that participant p sends a message of type U to the participant q and
then interactions described in G′ take place. Exchange types U,U ′, ... consist of sorts

4

Global G ::= p→ q : 〈U〉.G′ exchange
| p→ q : {li : Gi}i∈I branching
| µt.G recursion
| t variable
| end end

Exchange U ::= S | T
Sort S ::= bool | 〈G〉

Local T ::= [p]!〈U〉;T send
| [p]?(U);T receive
| [p]⊕{li : Ti}i∈I selection
| [p]&{li : Ti}i∈I branching
| µt.T recursion
| t variable
| end end

Fig. 4. Global and local types

types S,S′, . . . for values (either base types or global types), and local session types
T,T ′, . . . for channels (defined in the next paragraph). Type p→ q : {li : Gi}i∈I says
participant p sends one of the labels li to q. If l j is sent, interactions described in G j
take place. In both cases we assume p 6= q. Type µt.G is a recursive type, assuming
type variables (t, t′, . . .) are guarded in the standard way, i.e., type variables only appear
under some prefix. We take an equi-recursive view of recursive types, not distinguishing
between µ.G and its unfolding G{µt.G/t}.We assume that G in the grammar of sorts
is closed, i.e., without free type variables. Type end represents the termination of the
session.

Local types are defined in Figure 4 and correspond to the communication actions, rep-
resenting sessions from the view-points of single participants. The send type [p]!〈U〉;T
expresses the sending to p of a value of type U , followed by the communications of T .
The selection type [p]⊕{li : Ti}i∈I represents the transmission to p of a label li chosen
in the set {li | i ∈ I} followed by the communications described by Ti. The receive and
branching are dual. Other types are the same as global types.

3.2 Two projections
The relation between global and local types is formalised by the standard projection
function [10].

Definition 3.1 (Global projection and projection set). The projection of a global type
G onto a participant p is defined by induction on G:

p′→ q : 〈U〉.Gdp

=

[q]!〈U〉;Gdp p= p′

[p′]?(U);Gdp p= q

Gdp otherwise

p′→ q : {li : Gi}i∈Idp

=

[q]⊕{li : Gidp}i∈I p= p′

[p′]&{li : Gidp}i∈I p= q

G1dp if ∀ j ∈ I. G1dp= G jdp

(µt.G)dp=
{

µt.(Gdp) p ∈ G
end otherwise

tdp= t enddp= end

Then the projection set of s : G is defined as proj(s : G) = {s[p] : Gdp | p∈ roles(G)}
where roles(G) denotes the set of the roles appearing in G.

We also need the following projection from a local type T to produce binary session
types for defining the equivalence relations later.

Definition 3.2 (Local projection). The projection of a local type T onto a participant
p is defined by induction on T :

[p]!〈U〉;Tdq =

{
!〈U〉;Tdq q= p

Tdq otherwise
[p]?(U);Tdq =

{
?(U);Tdq q= p

Tdq otherwise

5

[p]⊕{li : Ti}i∈Idq =

{
⊕{li : Tidq}i∈I q= p

T1dq if ∀i ∈ I.Tidq= T1dq

[p]&{li : Ti}i∈Idq =

{
&{li : Tidq}i∈I q= p

T1dq if ∀i ∈ I.Tidq= T1dq
The rest is similar as Definition 3.1.

The duality over the projected types are defined as: end = end, t = t, µt.T = µt.T ,
!〈U〉;T =?(U);T , ?(U);T =!〈U〉;T , ⊕{li : Ti}i∈I = &{li : Ti}i∈I and &{li : Ti}i∈I =
⊕{li : Ti}i∈I . We note that if p,q ∈ roles(G) then (Gdp)dq= (Gdq)dp.

3.3 Typing system and its properties
The typing judgements for expressions and processes are of the shapes:

Γ ` e : S and Γ ` P.∆

where Γ is the standard environment which associates variables to sort types, shared
names to global types and process variables to session environments; and ∆ is the ses-
sion environment which associates channels to session types. Formally we define:

Γ ::= /0 | Γ ·u : S | Γ ·X : ∆ and ∆ ::= /0 | ∆ · s[p] : T

assuming we can write Γ · u : S if u 6∈ dom(Γ). We extend this to a concatenation for
typing environments as ∆ ·∆ ′ = ∆ ∪∆ ′. We define coherency of session environments
as follows:

Definition 3.3 (Coherency). Typing ∆ is coherent with respect to session s (notation
co(∆(s))) if ∀s[p] : Tp,s[q] : Tq ∈ ∆ with p 6= q then Tpdq= Tqdp. A typing ∆ is coherent
(notation co(∆)) if it is coherent with respect to all s in its domain. We say that the
typing judgement Γ ` P.∆ is coherent if co(∆).

The typing rules are essentially identical to the communication typing system for
programs in [3] (since we do not require queues). We leave the rules in Figure 10 in
Appendix A. The rest of the paper can be read without knowing the typing system.

3.4 Type soundness
Next we define the reduction semantics for local types. Since session environments rep-
resent the forthcoming communications, by reducing processes session environments
can change. This can be formalised as in [3, 10] by introducing the notion of reduction
of session environments, whose rules are:

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} −→ {s[p] : T · s[q] : T ′}.
2. {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J} −→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.
3. ∆ ∪∆ ′ −→ ∆ ∪∆ ′′ if ∆ ′ −→ ∆ ′′.

We write→→=−→∗. Note that ∆ →→ ∆ ′ is non-deterministic (i.e. not always confluent)
by the second rule. The following theorem is proved in [3].

Theorem 3.1 (Subject reduction). Let Γ ` P.∆ be coherent and P→→ P′ then
Γ ` P′ .∆ ′ is coherent with ∆ →→ ∆ ′.

6

4 Synchronous Multiparty Session Semantics
This section presents a typed behavioural theory for the synchronous multiparty ses-
sions. The typed bisimulation is defined with the labelled transition system (LTS) be-
tween a tuple of the environments (Γ ,∆), which controls behaviours of untyped pro-
cesses. The constraint given by the environment LTSs, which accurately captures inter-
actions in the presence of multiparty sessions, is at the heart of our typed semantics. In
the next section, this relation is extended to more fine-grained LTSs with the additional
information of a global witness. We first define a typed bisimulation theory, and then
show that the typed bisimulation coincides with typed reduction-based congruency. The
definitions of this section will be used for the next section.

4.1 Labelled transition system
Labels We use the following labels (`,`′, ...):

` ::= a[A](s) | a[A](s) | s[p][q]!〈v〉 | s[p][q]!(a)
| s[p][q]!(s′[p′]) | s[p][q]?〈v〉 | s[p][q]⊕ l | s[p][q]&l | τ

A role set A is a set of multiparty session types roles. Labels a[A](s) and a[A](s) define
the accept and request of a fresh session s by roles in set A respectively. Actions on
session channels are denoted with labels s[p][q]!〈v〉 and s[p][q]?〈v〉 for output and input
of value v from p to q on session s. Bound output values can be shared channels or
session roles (delegation). s[p][q]⊕ l and s[p][q]&l define the selection and branching
respectively. Label τ is the standard hidden transition.

Dual label definition is used to define the parallel rule in the label transition system:

s[p][q]!〈v〉 � s[q][p]?〈v〉 s[p][q]!(v) � s[q][p]?〈v〉 s[p][q]⊕ l � s[q][p]&l

Dual labels are input and output (resp. selection and branching) on the same session
channel and on complementary roles. For example, in s[p][q]!〈v〉 and s[q][p]?〈v〉, role
p sends to q and role q receives from p. Another important definition for the session
initiation is the notion of the complete role set. We say the role set A is complete with
respect to n if n = max(A) and A = {1,2, . . . ,n}. The complete role set means that all
global protocol participants are present in the set. For example, {1,3,4} is not complete,
but {1,2,3,4} is. We use fn(`) and bn(`) to denote a set of free and bound names in `
and set n(`) = bn(`)∪fn(`).
Labelled transition system for processes Figure 5 gives the untyped labelled tran-
sition system. Rules 〈Req〉 and 〈Acc〉 define the accept and request actions for a fresh
session s on role {p}. Rules 〈Send〉 and 〈Rcv〉 give the send and receive respectively for
value v from role p to role q in session s. Similarly rules 〈Sel〉 and 〈Bra〉 define selecting
and branching labels.

The last three rules are for collecting and synchronising the multiparty participants
together. Rule 〈AccPar〉 accumulates the accept participants and records them into role
set A. Rule 〈ReqPar〉 accumulates the accept participants and the request participant into
role set A. Note that the request action role set always includes the maximum role
number among the participants. Finally, rule 〈TauS〉 checks that a role set is complete,
thus a new session can be created under the τ-action (synchronisation). Other rules are
standard. See Example 4.1. We write =⇒ for the reflexive and transitive closure of−→,
`

=⇒ for the transitions =⇒ `−→=⇒ and
ˆ̀

=⇒ for `
=⇒ if ` 6= τ otherwise =⇒.

7

〈Req〉 a[p](x).P
a[{p}](s)−→ P{s[p]/x} 〈Acc〉 a[p](x).P

a[{p}](s)−→ P{s[p]/x}

〈Send〉 s[p][q]!〈e〉;P
s[p][q]!〈v〉−→ P (e ↓ v) 〈Rcv〉 s[p][q]?(x);P

s[p][q]?〈v〉−→ P{v/x}

〈Sel〉 s[p][q]⊕ l;P
s[p][q]⊕l−→ P 〈Bra〉 s[p][q]&{li : Pi}i∈I

s[p][q]&lk−→ Pk

〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`)∩bn(`′))(P′ | Q′)
〈Par〉P

`−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

〈Res〉P
`−→ P′ n /∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenS〉 P

s[p][q]!〈s′[p′]〉−→ P′

(ν s′)P
s[p][q]!(s′[p′])−→ P′

〈OpenN〉 P
s[p][q]!〈a〉−→ P′

(ν a)P
s[p][q]!(a)−→ P′

〈Alpha〉P≡α P′ P′ `−→ Q′

P `−→ Q
〈AcPar〉

P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈ReqPar〉
P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ not complete w.r.t max(A′)

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈TauS〉
P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ complete w.r.t max(A′)

P1 | P2
τ−→ (ν s)(P′1 | P′2)

We omit the synmetric case of 〈Par〉 and conditonals.

Fig. 5. Labelled transition system for processes

Typed labelled transition relation We define the typed LTS on the basis of the untyped
one. This is realised by introducing the definition of an environment labelled transition
system, defined in Figure 6. (Γ ,∆)

`−→ (Γ ′,∆ ′) means that an environment (Γ ,∆)
allows an action to take place, and the resulting environment is (Γ ′,∆ ′).

The basic intuition for this graph definition is that observables on session channels
occur when the corresponding endpoint is not present in the linear typing environment
∆ , and the type of an action’s object respects the environment (Γ ,∆). In the case when
new names are created or received the environment (Γ ,∆) is extended.

The first rule says that reception of a message via a is possible when a’s type 〈G〉 is
recorded into Γ and the resulting session environment records projected types from G
({s[i] : Gdi}i∈A). The second rule is for the send of a message via a and it is dual to the
first rule. The next four rules are free value output, bound name output, free value input
and name input. Rest of rules are free session output, bound session output, and session
input as well as selection and branching rules. The bound session output records a set
of session types s′[pi] at opened session s′. The final rule (` = τ) follows the reduction
rules for linear session environment defined in § 3.4 (∆ =∆ ′ is the case for the reduction
at hidden sessions). Note that if ∆ already contains destination (s[q]), the environment
cannot perform the visible action, but only the final τ-action.

The typed LTS requires that a process can perform an untyped action ` and that its
typing environment (Γ ,∆) can match the action `.

Definition 4.1 (Typed transition). Typed transition relation is defined as Γ1 ` P1 .

∆1
`−→ Γ2 ` P2 .∆2 if (1) P1

`−→ P2 and (2) (Γ1,∆1)
`−→ (Γ2,∆2) with Γi ` Pi .∆i.

8

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→ (Γ ,∆ · {s[i] : Gdi}i∈A)

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→ (Γ ,∆ · {s[i] : Gdi}i∈A)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!〈v〉−→ (Γ ,∆ · s[p] : T)

s[q] /∈ dom(∆),a 6∈ dom(Γ) implies (Γ ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!(a)−→ (Γ ·a : U,∆ · s[p] : T)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈v〉−→ (Γ ,∆ · s[p] : T)

a 6∈ dom(Γ),s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈a〉−→ (Γ ·a : U,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · s′[p′] : T ′ · s[p] : [q]!〈T ′〉;T)
s[p][q]!〈s′[p′]〉−→ (Γ ,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈T ′〉;T)
s[p][q]!(s′[p′])−→ (Γ ,∆ · s[p] : T · {s′[pi] : Ti})

s[q],s′[p′] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(T ′);T)
s[p][q]?〈s′[p′]〉−→ (Γ ,∆ · s′[p′] : T ′ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]⊕{li : Ti}i∈I)
s[p][q]⊕lk−→ (Γ ,∆ · s[p] : Tk)

s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]&{li : Ti}i∈I)
s[p][q]&lk−→ (Γ ,∆ · s[p] : Tk)

∆ −→ ∆ ′ or ∆ = ∆ ′ implies (Γ ,∆)
τ−→ (Γ ,∆ ′)

Fig. 6. Labelled Transition Relation for Environments

4.2 Synchronous multiparty behavioural theory
We define the typed relation as the binary relation over typed processes.

Definition 4.2 (Typed relation). We define a relation R as typed relation if it relates
two closed, coherent typed terms Γ ` P1 .∆1 R Γ ` P2 .∆2. We often write Γ ` P1 .
∆1 R P2 .∆2.

Next we define the barb [1]: we write Γ `P.∆ ↓s[p][q] if P≡ (ν ãs̃)(s[p][q]!〈v〉;R |Q)
with s /∈ s̃ and s[q] /∈ dom(∆); and Γ ` P.∆ ↓a if P≡ (ν ãs̃)(a[n](s).R | Q) with a /∈ ã.
Then we write m for either a or s[p][q]. We define Γ ` P .∆ ⇓m if there exists Q such
that P→→ Q and Γ ` Q.∆ ′ ↓m.

The context is defined as:

C ::= − | C | P | P |C | (ν n)C | if e then C else C′ | µX .C |
s!〈v〉;C | s?(x);C | s⊕ l;C | s&{li : Ci}i∈I | a(x).C | a(x).C

C[P] substitutes process P for each hole (−) in context C.

Definition 4.3 (Linear Environment Convergence). We write ∆1
 ∆2 if there exists
∆ such that ∆1→→ ∆ and ∆2→→ ∆ .

We now define the contextual congruence based on the barb and [9].

Definition 4.4 (Reduction congruence). A typed relation R is reduction congruence
if it satisfies the following conditions for each Γ ` P1 .∆1 R P2 .∆2 with ∆1
 ∆2.

1. Γ ` P1 .∆1 ⇓m iff Γ ` P2 .∆2 ⇓m
2. Whenever Γ ` P1 .∆1 R P2 .∆2 holds, P1→→ P′1 implies P2→→ P′2 such that Γ `

P′1 .∆ ′1 R P′2 .∆ ′2 holds with ∆ ′1
 ∆ ′2.
3. For all closed context C, such that Γ `C[P′1].∆ ′1 and Γ `C[P′2].∆ ′2 where ∆ ′1
∆ ′2,

Γ `C[P1].∆ ′1 R Γ `C[P2].∆ ′2.

The union of all reduction congruence relations is denoted as ∼=s.

9

Definition 4.5 (Synchronous multiparty session bisimulation). A typed relation R
over closed processes is a (weak) synchronous multiparty session bisimulation or often
a synchronous bisimulation if, whenever Γ ` P1 .∆1 R P2 .∆2, it holds:

1. Γ ` P1 .∆1
`−→ Γ ′ ` P′1 .∆ ′1 implies Γ ` P2 .∆2

ˆ̀
=⇒ Γ ′ ` P′2 .∆ ′2 such that Γ ′ `

P′1 .∆ ′1 R P′2 .∆ ′2.
2. The symmetric case.

The maximum bisimulation exists which we call synchronous bisimilarity, denoted
by ≈s. We sometimes leave environments implicit, writing e.g. P ≈s Q. We also write
≈ for untyped synchronous bisimilarity which is defined by the untyped LTS in Figure
5 but without the environment LTS in Figure 6.

Lemma 4.1. If Γ ` P1 .∆1 ≈s P2 .∆2 then ∆1
 ∆2.

Proof. The proof uses the co-induction method and can be found in Appendix C.2. ut

Theorem 4.1 (Soundness and completeness). ∼=s = ≈s.

Proof. The proof is a simplification of the proof of Theorem 5.1 in Appendix C.6. ut

Example 4.1 (Synchronous multiparty bisimulation). We use the running example from
§ 1. First we explain the LTS for session initialisation from Figure 5. First by 〈Acc〉 and
〈Req〉, we have:

P1
a[{1}](s1)−→ P′1 = b[1](y).s1[1][3]!〈v〉;y[2]!〈w〉;0

P2
a[{2}](s1)−→ P′2 = b[2](y).(y[1]?(z);0 | s1[2][3]!〈v〉;0) P3

a[{3}](s1)−→ P′3 = s1[3][1]?(z);s1[3][2]?(y);0

with
Γ · v : U ` P′1 . s1[1] : [3]!〈U〉;end
Γ · v : U ` P′2 . s1[2] : [3]!〈U〉;end

Γ ` P′3 . s1[3] : [1]?(U); [2]?(U);end

By 〈AccPar〉, we have P1 | P2
a[{1,2}](s1)−→ P′1 | P′2. We have another possible initialisation:

P1 | P3
a[{1,3}](s1)−→ P′1 | P′3. From both of them, if we compose another process, the set

{1,2,3} becomes complete so that by synchronisation 〈TauS〉,

Γ ` P1 | P2 | P3 . /0 τ−→ (ν s1)(P′1 | P′2 | P′3). /0

Further we have:

Γ ` P′1 | P′2 . /0 τ−→
(ν s2)(s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(z);0 | s1[2][3]!〈v〉;0) = Q1 .∆

with ∆0 = s1[1] : [3]!〈U〉;end · s1[2] : [3]!〈U〉;end. Then

Γ ` Q1 | P′3 .∆0 · s1[3] : [1]?(U); [2]?(U);end≈s 0. /0

since (Γ ,∆) 6 `−→ for any ` 6= τ . However by the untyped synchronous bisimulation,

Q1 | P′3 6≈ 0 since, e.g. Q1 | P′3
s1[1][3]!〈v〉−→ .

10

5 Globally Governed Behavioural Theory

We introduce the semantics for globally governed behavioural theory. In the previous
section, the local typing (∆) constrains the untyped LTS to give rise to a local typed
LTS. In a multiparty distributed environment, communications follow the global proto-
col, which controls both an observed process and its observer. The local typing is not
sufficient to maintain the consistency of transitions of a process with respect to a global
protocol. In this section we refine the environment LTS with a global environment E to
give a more fine-grained control over the LTS of the processes.

5.1 Global environments and configurations

We define a global environment (E,E ′, ...) as a mapping from session name s to global
types G.

E ::= E · s : G | /0

The projection definition is extended to include E as proj(E) =
⋃

s:G∈E proj(s : G).
We define a labelled reduction relation over global environments which corresponds

to ∆ −→ ∆ ′ defined in § 3.4. We use the labels λ ∈ {s : p→ q : U,s : p→ q : l} to
annotate reductions over global environments. We define out(λ) and inp(λ) as out(s :
p→ q : U) = out(s : p→ q : l) = p and as inp(s : p→ q : U) = inp(s : p→ q : l) = q

and p ∈ ` if p ∈ out(`)∪inp(`). We often omit the label λ by writing −→ for λ−→ and

−→∗ for (λ−→)∗. The first rule is the axiom for the input and output interaction between
two parties; the second rule is for the choice; the third and forth rules formulate the
case that the action λ can be performed under p→ q if p and q are not related to the
participants in λ ; and the fifth rule is a congruent rule.

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G} {s : p→ q : {li : Gi}i∈I}
s:p→q:lk−→ {s : Gk}

{s : G} λ−→ {s : G′} p,q /∈ λ

{s : p→ q : 〈U〉.G} λ−→ {s : p→ q : 〈U〉.G′}

{s : Gi}
λ−→ {s : G′i} i ∈ I, p,q /∈ λ

{s : p→ q : {li : Gi}i∈I}
λ−→ {s : p→ q : {li : G′i}i∈I}

E λ−→ E ′

E ·E0
λ−→ E ′ ·E0

As a simple example of the above LTS, consider s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 :
p′→ q′ : 〈U2〉.end}. Since p,q,p′,q′ are pairwise distinct, we can apply the second and
third rules to obtain:

s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 : p′→ q′ : 〈U2〉.end}
s:p′→q′:l1−→ s : p→ q : 〈U1〉.end

Next we introduce the governance judgement which controls the behaviour of pro-
cesses by the global environment.

Definition 5.1 (Governance judgement). Let Γ ` P.∆ be coherent. We write E,Γ `
P.∆ if ∃E ′ ·E −→∗ E ′ and ∆ ⊆ proj(E ′).

11

[Acc]
Γ ` a : 〈G〉 (Γ ,∆1)

a[A](s)−→ (Γ ,∆2)

(E,Γ ,∆1)
a[A](s)−→ (E · s : G,Γ ,∆2)

[Req]
Γ ` a : 〈G〉 (Γ ,∆1)

a[A](s)−→ (Γ ,∆2)

(E,Γ ,∆1)
a[A](s)−→ (E · s : G,Γ ,∆2)

[Out]
Γ ` v : U (Γ ,∆1)

s[p][q]!〈v〉−→ (Γ ,∆2) E1
s:p→q:U−→ E2

(E1,Γ ,∆1)
s[p][q]!〈v〉−→ (E2,Γ ,∆2)

[In]
(Γ ,∆1)

s[p][q]?〈v〉−→ (Γ · v : U,∆2) E1
s:q→p:U−→ E2

(E1,Γ ,∆1)
s[p][q]?〈v〉−→ (E2,Γ · v : U,∆2)

[ResN]

(Γ ,∆1)
s[p][q]!(a)−→ (Γ ·a : 〈G〉,∆2)

E1
s:q→p:〈G〉−→ E2

(E1,Γ ,∆1)
s[p][q]!(a)−→ (E2,Γ ·a : 〈G〉,∆2)

[ResS]

(Γ ,∆1)
s[p][q]!(s′[p′])−→ (Γ ,∆2 · {s′[pi] : Ti})

E1
s:q→p:T−→ E2 · ∀i.Gdpi = Ti

(E1,Γ ,∆1)
s[p][q]!(s′[p′])−→ (E2 · s′ : G,Γ ,∆2 · {s′[pi] : Ti})

[Sel]
(Γ ,∆1)

s[p][q]⊕l−→ (Γ ,∆2) E1
s:p→q:l−→ E2

(E1,Γ ,∆1)
s[p][q]⊕l−→ (E2,Γ ,∆2)

[Bra]
(Γ ,∆1)

s[p][q]&l−→ (Γ ,∆2) E1
s:q→p:l−→ E2

(E1,Γ ,∆1)
s[p][q]&l−→ (E2,Γ ,∆2)

[Tau]
(∆1 = ∆2, E1 = E2)∨ (∆1

λ−→ ∆2, E1
λ−→ E2)

(E1,Γ ,∆1)
τ−→ (E2,Γ ,∆2)

[Inv]
E1 −→∗ E ′1 (E ′1,Γ1,∆1)

`−→ (E2,Γ2,∆2)

(E1,Γ1,∆1)
`−→ (E2,Γ2,∆2)

Fig. 7. The LTS for the environment configuations

The global environment E records the knowledge of both the environment (∆) of the
observed process P and the environment of its observer. The side conditions ensure that
E is coherent with ∆ : there exist E ′ reduced from E whose projection should cover the
environment of P (since E should include the observer’s information together with the
observed process information recorded into ∆).

Next we define the LTS for well-formed environment configurations.

Definition 5.2 (Environment configuration). We write (E,Γ ,∆) if ∃E ′ · E −→∗ E ′

and ∆ ⊆ proj(E ′).

Figure 7 defines a LTS over environment configurations that refines the LTS over envi-
ronments (i.e (Γ ,∆)

`−→ (Γ ′,∆ ′)) in § 4.1.
Each rule requires a corresponding environment transition (Figure 6 in § 4.1) and

a corresponding labelled global environment transition in order to control a transition
following the global protocol. [Acc] is the rule for accepting a session initialisation so
that it creates a new mapping s : G which matches Γ in a governed environment E. [Req]
is the rule for requesting a new session and it is dual to [Acc].

The next seven rules are the transition relations on session channels and we assume
the condition proj(E1)⊇ ∆ to ensure the base action of the environment matches one
in a global environment. [Out] is a rule for the output where the type of the value and the
action of (Γ ,∆) meets those in E. [In] is a rule for the input and dual to [Out]. [ResN] is a
scope opening rule for a name so that the environment can perform the corresponding
type 〈G〉 of a. [ResS] is a scope opening rule for a session channel which creates a
set of mappings for the opened session channel s′ corresponding to the LTS of the
environment. [Sel] and [Bra] are the rules for selection and branching, which is similar to
[Out] and [In]. In [Tau] rule, we refined the reduction relation on ∆ in § 3.4 as follows:

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} s:p→q:U−→ {s[p] : T · s[q] : T ′}.
2. {s[p] : [q]⊕{li : Ti}i∈I ·s[q] : [p]&{l j : T ′j} j∈J}

s:p→q:lk−→ {s[p] : Tk ·s[q] : T ′k} I⊆ J,k∈ I.

3. ∆ ∪∆ ′
λ−→ ∆ ∪∆ ′′ if ∆ ′

λ−→ ∆ ′′.

12

[Inv] is the key rule: the global environment E1 reduces to E ′1 to perform the observer’s
actions, hence the observed process can perform the action w.r.t. E ′1. Hereafter we write
−→ for τ−→.

Example 5.1 (LTS for environment configuration). Let E = s : p → q : 〈U〉.p → q :
〈U〉.G, Γ = v : U and ∆ = s[p] : [q]!〈U〉;Tp with Gdp= Tp, Gdq= Tq and roles(G) =
{p,q}. Then (E,Γ ,∆) is an environment configuration since if E −→E ′ then proj(E ′)⊃
∆ because E

s:p→q:U−→ s : p→ q : 〈U〉.G, proj(s : p→ q : 〈U〉.G) = s[p] : [q]!〈U〉;Tp ·s[q] :
[p]?(U);Tq and proj(s : p→ q : 〈U〉.G) ⊃ ∆ . Then we can apply [Out] to s : p→ q :

〈U〉.G s:p→q:U−→ s : G and (Γ ,s[p] : [q]!〈U〉;Tp)
s[p][q]!〈v〉−→ (Γ ,s[p] : Tp) to obtain (s : p→

q : 〈U〉.G,Γ ,∆)
s[p][q]!〈v〉−→ (s : G,Γ ,s[p] : Tp). By this and E −→ s : p→ q : 〈U〉.G, using

[Inv], we can obtain (E,Γ ,∆)
s[p][q]!〈v〉−→ (s : G,Γ ,s[p] : Tp), as required.

5.2 Governed reduction-closed congruency
To define the reduction-closed congruency, we first refine the barb, which is controlled
by the global witness where observables of a configuration are defined with the global
environment of the observer.

(E,Γ ,∆ · s[p] : [q]!〈U〉;T) ↓s[p][q] if s[q] /∈ dom(∆),∃E ′ ·E −→∗ E ′
s:p→q:U−→ ,∆ ⊆ proj(E ′)

(E,Γ ,∆ · s[p] : [q]⊕{li : Ti}i∈I) ↓s[p][q] if s[q] /∈ dom(∆),∃E ′ ·E −→∗ E ′
s:p→q:lk−→ ,k ∈ I,∆ ⊆ proj(E ′),

(E,Γ ,∆) ↓a if a ∈ dom(Γ)

We write (Γ ,∆ ,E) ⇓m if (Γ ,∆ ,E)−→∗ (Γ ,∆ ′,E ′) and (Γ ,∆ ′,E ′) ↓m.
Let us write T1 v T2 if the syntax tree of T2 includes T1. For example, [q]?(U ′);T v

[p]!〈U〉; [q]?(U ′);T . Then we define: E1tE2 = {Ei(s) | E j(s)v Ei(s), i, j ∈ {1,2}, i 6=
j}∪E1 \dom(E2)∪E2 \dom(E1). As an example of E1tE2, let us define:

E1 = s1 : p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p→ q : 〈W2〉.end
E2 = s1 : p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→ q : 〈W2〉.end

Then E1tE2 = p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→
q : 〈W2〉.end.

The behavioural relation with respects to a global whiteness is defined below.

Definition 5.3 (Configuration relation). The relation R is a configuration relation
between two configurations E1,Γ ` P1 .∆1 and E2,Γ ` P2 .∆2, written E1 tE2,Γ `
P.∆1 R P2 .∆2 if E1tE2 is defined.

We note:

Proposition 5.1 (Decidability). (1) Given E1 and E2, a problem whether E1 tE2 is
defined or not is decidable and if it is defined, the calculation of E1 tE2 terminates;
and (2) Given E, a set {E ′ | E −→∗ E ′} is finite.

Proof. (1) since T1v T2 is a syntactic tree inclusion, it is reducible to a problem to check
the isomorphism between two types. This problem is decidable [19]. (2) the global LTS
has one-to-one correspondence with the LTS of global automata in [5] whose reacha-
bility set is finite. ut

13

Now we define the governed typed transition relation for processes.

Definition 5.4 (Global configuration transition). We write E1,Γ `P1.∆1
`−→E2,Γ

′ `
P2 .∆2 if E1,Γ ` P1 .∆1, P1

`−→ P2 and (E1,Γ ,∆1)
`−→ (E2,Γ

′,∆2).

Below states that the configuration LTS preserves the well-formedness.

Proposition 5.2 (Invariants).

1. (E1,Γ ,∆1)
`−→ (E2,Γ2,∆2) implies that (E2,Γ2,∆2) is an environment configura-

tion.
2. If Γ ` P .∆ and P −→ P′ with co(∆), then E,Γ ` P .∆ −→ E,Γ ` P′ .∆ ′ and

co(∆ ′).

Proof. The proof for Part 1 can be found in Appendix C.4. Part 2 is verified by simple
transitions using [Tau] in Figure 7. The co(∆ ′) part follows the subject reduction Theo-
rem 3.1. ut

The definition of the reduction congruence for governance follows. Below we define
E,Γ ` P.∆ ⇓n if P ⇓m and (E,Γ ,∆) ⇓m.

Definition 5.5 (Governed reduction congruence). A configuration relation R is gov-
erned reduction congruence if E,Γ ` P1 .∆1 R P2 .∆2 then

1. E,Γ ` P1 .∆1 ⇓n if and only if E,Γ ` P2 .∆2 ⇓n
2. P1→→ P′1 if and only if P2→→ P′2 and E,Γ ` P′1 .∆ ′1 R P′2 .∆ ′2
3. For all closed context C, such that E,Γ ` C[P1] . ∆ ′1 and E,Γ ` C[P2] . ∆ ′2 then

E,Γ `C[P1].∆ ′1 R C[P2].∆ ′2.

The union of all governed reduction congruence relations is denoted as ∼=s
g.

5.3 Globally governed bisimulation and its properties
This subsection introduces the globally governed bisimulation relation definition and
studies its main properties.

Definition 5.6 (Globally governed bisimulation). A configuration relation R is a glob-
ally governed weak bisimulation (or governed bisimulation) if whenever E,Γ ` P1 .
∆1 R P2 .∆2, it holds:

1. E,Γ ` P1 .∆1
`−→ E ′1,Γ

′ ` P′1 .∆ ′1 implies E,Γ ` P2 .∆2
ˆ̀

=⇒ E ′2,Γ
′ ` P′2 .∆ ′2 such

that E ′1tE ′2,Γ
′ ` P′1 .∆ ′1 R P′2 .∆ ′2.

2. The symmetric case.

The maximum bisimulation exists which we call governed bisimilarity, denoted by ≈s
g.

We sometimes leave environments implicit, writing e.g. P≈s
g Q.

Lemma 5.1. ≈s
g is congruent.

Proof. The proof is by a case analysis on the context structure. The interesting case is
the parallel composition, which uses Proposition 5.2. See Appendix C.5. ut

14

Lemma 5.2. ∼=s
g ⊆ ≈s

g

Proof. The proof follows the facts that bisimulation has a stratifying definition (the
proof method uses the technique from [1]) and that the external actions can always be
tested (the technique from [6]). The proof can be found in Appendix C.6. ut

By Lemmas 5.1 and 5.2, we have:

Theorem 5.1 (Sound and completeness). ≈s
g =
∼=s

g.

Further the relationship between ≈s and ≈s
g is given as follows.

Theorem 5.2. If for all E, E,Γ ` P1 .∆1 ≈s
g P2 .∆2 then Γ ` P1 .∆1 ≈s Γ ` P2 .∆2.

Also if Γ ` P1 .∆1 ≈s Γ ` P2 .∆2, then for all E, E,Γ ` P1 .∆1 ≈s
g P2 .∆2.

Proof. See Appendix C.7. ut

To justify the above theorem, consider the following processes:

P1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0
P2 = s1[3][v]!〈0〉; | s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0

then we have P1 ≈s P2. By the above theorem, we expect that for all E, we have E,Γ `
P1 .∆1 and E,Γ ` P2 .∆2 then E ` P1 ≈s

g P2. This is in fact true because the possible E
that can type P1 and P2 are:

E1 = s1 : 1→ 3 : 〈U〉.2→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end
E2 = s1 : 2→ 3 : 〈U〉.1→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end

Note that all E that are instances up-to weakening (see Lemma C.2) are E1 and E2.
To clarify the difference between ≈s and ≈s

g, we introduce the notion of a simple
multiparty process defined in [10]. A simple process contains only a single session so
that it satisfies the progress property as proved in [10]. Formally a process P is simple
when it is typable with a type derivation where the session typing in the premise and the
conclusion of each prefix rule is restricted to at most a single session (i.e. any Γ ` P.∆

which appears in a derivation, ∆ contains at most one session channel in its domain, see
[10]). Thus each prefixed sub-term in a simple process has only a unique session. Since
there is no interleaving of sessions in simple processes, the difference between ≈s and
≈s

g disappears.

Theorem 5.3 (Coincidence). Assume P1 and P2 are simple. If ∃E ·E,Γ ` P1 .∆1 ≈s
g

P2 .∆2 then Γ ` P1 .∆1 ≈s P2 .∆2.

Proof. The proof follows the fact that if P is simple and Γ ` P .∆
`−→ P′ .∆ ′ then

∃E ·E,Γ ` P .∆
`−→ P′ .∆ ′ to continue that if P1,P2 are simple and ∃E ·E,Γ ` P1 .

∆1 ≈s
g P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈s

g P2 .∆2. The result then comes by applying
Lemma 5.2. The details of the proof are in the Appendix C.8. ut

15

To justify the above theorem, consider simple processes:

P1 = s[1][2]?(x);s[1][3]!〈x〉;0 | s[2][1]!〈v〉;0
P2 = s[1][3]!〈v〉;0

It holds that for E = s : 2→ 1 : 〈U〉.1→ 3 : 〈U〉.end then E ` P1 ≈s
g P2. We can easily

reason P1 ≈s P2.

Example 5.2 (Governed bisimulation). Recall the example from § 1 and Example 4.1.
Q1 is the process corresponding to Example 4.1, while Q2 has a parallel thread instead
of the sequential composition (this corresponds to P1 | R2 in § 1).

Q1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);0 | s1[2][3]!〈v〉;0
Q2 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);s1[2][3]!〈v〉;0

Assume:

Γ = v : S ·w : S
∆ = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

Then we have Γ ` Q1 .∆ and Γ ` Q2 .∆ . Now assume the two global witnesses as:

E1 = s1 : 1→ 3 : 〈S〉.2→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end
E2 = s1 : 2→ 3 : 〈S〉.1→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end

Then the projection of E1 and E2 are given as:

proj(E1) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [1]?(S); [2]?(S);end
s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end·

proj(E2) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [2]?(S); [1]?(S);end·
s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

with ∆ ⊂ proj(E1) and ∆ ⊂ proj(E2). The reader should note that the difference be-
tween E1 and E2 is the type of the participant 3 at s1.

By definition, we can write: Ei,Γ ` Q1 .∆ and Ei,Γ ` Q2 .∆ for i = 1,2. Both
processes are well-formed global configurations under both witnesses. Now we can

observe Γ ` Q1 .∆
s[2][3]!〈v〉−→ Γ ` Q′1 .∆ ′ but Γ ` Q2 .∆

s[2][3]!〈v〉
6−→ . Hence Γ ` Q1 .∆ 6≈s

Q2 .∆ . By the same argument, we have: E2,Γ ` Q1 .∆ 6≈s
g Q2 .∆ . On the other hand,

since E1 forces to wait the action s[2][3]!〈v〉, E1,Γ ` Q1 .∆

s[2][3]!〈v〉
6−→ . Hence Q1 and Q2

are bisimilar under E1, i.e. E1,Γ ` Q1 .∆ ≈s
g Q2 .∆ . This concludes the optimisation

is correct.

The above example for the thread transformation is the minimum to demonstrate
a difference between ≈s

g and ≈s. This discipline can be applied to general situations
where multiple agents need to interact following a global specification. We tested the
real world usecase UC.R2.13 “Acquire Data From Instrument” from the Ocean Obser-
vatories Initiative (OOI) [14] Use Case library (Release 2). In this usecase, a user pro-
gram (U) is connected to the Integrated Observatory Network (ION), which provides
the infrastructure between users and remote sensing instruments. The user requests, via

16

o:s[p][q]!〈v〉;P1

s[p][q]!〈v〉 so[p][q]?〈v〉
s[p]

s[q][p]?(x);P2

so[p][q]!〈w〉 s[q][p]?〈w〉

(a) output queue

i:s[p][q]?(x);P1

s[p][q]?〈v〉 si[p][q]!〈v〉
s[p]

s[q][p]!〈w〉;P2

si[p][q]?〈w〉 s[q][p]!〈w〉

(b) input queue

o

i

s[p][q]!〈v〉;P1

s[p][q]?(x);P1

s[p][q]!〈v〉 so[p][q]?〈v〉

s[p][q]?〈w〉 si[p][q]!〈w〉

s[p]

i

o

s[p][q]?(x);P1

s[p][q]!〈w〉;P1

s[q][p]?〈v〉si[q][p]!〈v〉

s[q][p]!〈w〉so[q][p]?〈w〉

s[q]so[p][q]!〈v〉 si[q][p]?〈v〉

si[p][q]?〈w〉 so[q][p]!〈w〉

(c) input/output queue

Fig. 8. Three asynchronous semantics

an ION agent service (A), the acquisition of data from an instrument (I). In the im-
plementation, the ION agent (A) is realised by two sub ION agents (A1 and A2) which
internally interact and synchronise together. We are able to reason that the behaviour of
A1 and A2 is equated by A by ≈s

g applying the thread transformation in Example 5.2.
See Appendix I.

6 Asynchronous Globally Governed Behavioural Theory
This section summarises the three kinds of asynchronous semantics and demonstrates
that the governed theory can be extended smoothly to these semantics. The formal rela-
tionship between governed synchronous and asynchronous bisimulations is also proved.
Due to the space limitation, all definitions and proofs are left to Appendix.

6.1 Three asynchronous semantics

Our asynchronous formalism given below aims to model asynchronous order-preserving
communication over session as asynchronous session communication, by extending the
synchronous calculus in § 2 with message queues. The asynchronous session seman-
tics has been used in most of the literature on multiparty session types [3, 10] since it
models mechanisms of distributed systems more accurately. We consider the following
three kinds of asynchronous semantics with respect to the places where the queues are
located: at each session endpoint s[p], there is either (a) an output queue s[p][o :~h] (with
elements ~h) (b) an input queue s[p][i :~h]; and (c) input and output message queues
s[p][i :~h]|s[p][o :~h′] (with elements~h and~h′). Formally, the syntax of processes P in
Figure 2 is extended with corresponding queues with element h ::= [p](v) | [p]l.

These three models are illustrated in Figure 8. (a) depicts the output queue is located
in the process side. A message v is first enqueued by sender process s[p][q]!〈v〉;P in the
local output queue at endpoint s[p], which intuitively represents a communication pipe
extending from the sender’s locality to the receiver’s. Hence the external observer can
observe the output from the queue and input to the receiver, noting that enqueuing ac-
tions within a location are local to each process and are therefore invisible (τ-actions) to
external observers. We use the color blue to denote the observable actions in Figure 8.

17

(b) is its dual. (c) depicts the two endpoints of one session connection. The communica-
tion medium (i.e. the connection) is responsible for transporting the message from the
sender’s locality to the receiver’s, formalised as a message transfer from the sender’s
output queue (at s[p]) to the receiver’s input queue. For the receiver process, the mes-
sage can only be received after this transfer takes place. In (c), both dequeuing and
enqueuing actions within a location are local to each process and invisible to external
observers.

6.2 Three asynchronous bisimulations
We extend the label ` in § 4.1 to include those to output (annotated by o)/input (anno-
tated by i) queues:

` = · · · | so[p][q]!〈v〉 | so[p][q]!(v) | so[p][q]?〈v〉 | so[p][q]⊕ l | so[p][q]&l
| si[p][q]!〈v〉 | si[p][q]!(v) | si[p][q]?〈v〉 | si[p][q]⊕ l | si[p][q]&l

The duality relations which is the key to define τ-actions via the rule 〈Tau〉 in Figure 5
are extended to (a) �o and (c) �io from � in § 4.1 as follows:

s[p][q]!〈v〉 �o so[p][q]?〈v〉
so[p][q]!〈v〉 �o s[q][p]?〈v〉

s[p][q]⊕ l �o so[p][q]&l
so[p][q]⊕ l �o s[q][p]&l

s[p][q]!〈v〉 �io so[p][q]?〈v〉
si[p][q]!〈v〉 �io s[q][p]?〈v〉
s[p][q]⊕ l �io so[p][q]&l

si[p][q]⊕ l �io s[q][p]&l

so[p][q]!〈v〉 �io si[p][q]?〈v〉
so[p][q]⊕ l �io si[q][p]&l

We omit bound labels and initialisation which are defined similarly and (b)�i is defined
by exchanging o by i and exchanging p and q in the queue actions in�o. Then the LTSs
are defined by adding the following dequeue and enqueue rules in Figure 5.

〈QSendO〉 s[p][o : h · [q](v)] so[p][q]!〈v〉−→ s[p][o : h] 〈QRcvO〉 s[p][o : h]
so[p][q]?〈v〉−→ s[p][o : [q](v) ·h]

〈QSendI〉 s[p][i : h · [q](v)] si[p][q]!〈v〉−→ s[p][i : h] 〈QRcvI〉 s[p][i : h]
si[p][q]?〈v〉−→ s[p][i : [q](v) ·h]

The rules for selection/branching are similarly defined. 〈QSendO,QRcvO〉 are dequeue
and enqueue rules for (a); 〈QSendI,QRcvI〉 are for (b); and (c) uses all rules. Using the
LTSs, the standard typed reduction-closed congruence and bisimulations are defined
by the same clauses as in Definitions 4.4 and 4.5 by replacing (Γ ,∆)

`−→ (Γ ′,∆ ′) in
Figure 6 by one based on each semantics. We write ∼=o, ∼=i, ∼=io, ≈o, ≈i and ≈io for
the counterparts of ∼=s and ≈s in Definitions 4.4 and 4.5. Define the mode m as m ::=
s | o | i | io with the partial order given as s < o, s < i, o < io and i < io. Then we have:

Theorem 6.1. (1) ∼=m = ≈m for each m and (2) ∼=m1(∼=m2 if m1 < m2; (3) ≈m1(≈m2

if m1 < m2; and (4) ≈i and ≈o are incompatible.

6.3 Three asynchronous governed bisimulations
One of the key point of our formulations for governed bisimulations is modularity: we
can define various governed semantics based on the LTS semantics of global types.

Recall the following key rules of G λ−→ G′ in § 5.1:

{s : G} λ−→ {s : G′} (?)

{s : p→ q : 〈U〉.G} λ−→ {s : p→ q : 〈U〉.G′}

{s : Gi}
λ−→ {s : G′i} i ∈ I (?)

{s : p→ q : {li : Gi}i∈I}
λ−→ {s : p→ q : {li : G′i}i∈I}

18

Synchronous Output Input Input/Output
Condition (?) p,q /∈ λ q /∈ λ p,q /∈ out(λ) q /∈ λ ∨p,q /∈ out(λ)
p→ q;r→ s

√ √ √ √

p→ q;p→ r ×
√

×
√

p→ q;r→ q × ×
√ √

p→ q;p→ q × × × ×
p→ q;q→ p × × × ×

Fig. 9. Synchronous/asynchronous semantics for global types and examples of orderings

where (?) is the side condition which controls the ordering of interactions. Just by
changing (?), we can define the three semantics for global types by the same rules. In
the second row in Figure 6.3, we state the condition for (?) for each semantics. Then
we state the examples to show whether each global type in the first column satisfies
the side condition in each semantics. The first example says that if the global type is

G= p→ q;r→ s;end, then we can permute the order of two actions as G
λ0−→ λ−→G′ to

G λ−→ λ0−→G′ with λ0 = p→ q and λ = r→ s in any four semantics. Since in (a) and (c),
we cannot observe the output actions, if the receivers are distinct (q,r), we can permute
the two interactions, λ0 = p→ q and λ = p→ r. Dually, since in (b) and (c), we cannot
observe the input actions, if the outputs are distinct (p,r), we can permute the two
interactions. Note that, because of the FIFO ordering by queues, the last two examples
are not permutable in any semantics. Just by replacing (?) by an appropriate condition,
we can use exactly the same rules in Figure 7 to define (E,Γ ,∆)

`−→ (E ′,Γ ′,∆) for
each semantics. Then we can reuse all definitions such as Definitions 5.3, 5.4, 5.5 and
5.6 to define governed reduction closed congruence and bisimulation. We denote ∼=o

g,
∼=i

g, ∼=io
g , ≈o

g, ≈i
g and ≈io

g for the counterparts of ∼=s
g and ≈s

g. The main theorem follows:

Theorem 6.2. (1) ∼=m
g = ≈m

g for each m and (2) ∼=m1
g (∼=m2

g if m1 < m2; (3) ≈m1
g (≈m2

g

if m1 < m2; and (4) ≈i
g and ≈o

g are incompatible.

Example 6.1 (asynchronous governed bisimulations). We give the examples of gov-
erned bisimulations which separate four semantics. Let:

P1 = s1[2][1]!〈v1〉;s2[3][1]!〈v2〉;(s2[1][3]!〈v3〉;0 | s2[2][3]?(x);0)
P2 = s2[3][1]!〈v2〉;s1[2][1]!〈v1〉;(s2[1][3]!〈v3〉;s3[1][2]!〈v4〉;0 | s3[2][1]?(y);s2[2][3]?(x);0)

P3 = s1[2][1]?(z1);s2[3][1]?(z2);(s2[1][3]!〈v3〉;0 | s2[2][3]?(x);0)
P4 = s2[3][1]?(z2);s1[2][1]?(z1);(s2[1][3]!〈v3〉;s3[1][2]!〈v4〉;0 | s3[2][1]?(y);s2[2][3]?(x);0)

and

E1 = s1 : 2→ 1 : 〈U1〉.end · s2 : 3→ 1 : 〈U2〉.1→ 3 : 〈U3〉.3→ 2 : 〈U4〉.end · s3 : 1→ 2 : 〈U5〉.end
E2 = s1 : 2→ 1 : 〈U1〉.end · s2 : 3→ 1 : 〈U2〉.3→ 2 : 〈U4〉.1→ 3 : 〈U3〉.end · s3 : 1→ 2 : 〈U5〉.end
E3 = s1 : 1→ 2 : 〈U1〉.end · s2 : 1→ 3 : 〈U2〉.1→ 3 : 〈U3〉.3→ 2 : 〈U4〉.end · s3 : 1→ 2 : 〈U5〉.end
E4 = s1 : 1→ 2 : 〈U1〉.end · s2 : 1→ 3 : 〈U2〉.3→ 2 : 〈U4〉.1→ 3 : 〈U3〉.end · s3 : 1→ 2 : 〈U5〉.end

Then we have:

19

E1 ` P1 6≈s
g P2 E1 ` P1 ≈o

g P2 E1 ` P1 6≈i
g P2 E1 ` P1 ≈io

g P2
E2 ` P1 6≈s

g P2 E2 ` P1 6≈o
g P2 E2 ` P1 6≈i

g P2 E2 ` P1 6≈io
g P2

E3 ` P3 6≈s
g P4 E3 ` P3 6≈o

g P4 E3 ` P3 ≈i
g P4 E3 ` P3 ≈io

g P4
E4 ` P3 6≈s

g P4 E4 ` P3 6≈o
g P4 E4 ` P3 6≈i

g P4 E4 ` P3 6≈io
g P4

Since ≈o
g cannot observe the order of output actions to the queues, we have:

s1[2][1]!〈v1〉;s2[3][1]!〈v2〉;Q≈o
g s1[2][1]!〈v1〉;s2[3][1]!〈v2〉;Q but

s1[2][1]!〈v1〉;s2[3][1]!〈v2〉;Q 6≈i
g s1[2][1]!〈v1〉;s2[3][1]!〈v2〉;Q.

Then, under E1,
(s2[1][3]!〈v3〉;0 | s2[2][3]?(x);0)≈o

g s2[1][3]!〈v3〉;s3[1][2]!〈v4〉;0 | s3[2][1]?(y);s2[2][3]?(x);0
since 1 → 3 : 〈U3〉.3 → 2 : 〈U4〉.G in E1 guarantees s2[2][3]?(x);0 will not be ex-
ecuted before s2[1][3]!〈v3〉 happens. Obviously they are not equated under E2. The
(in)equations between P3 and P4 can be reasoned similarly.

7 Related and Future Work
As a typed foundation for structured communications programming, session types [8,
17] have been studied over the last decade for a wide range of process calculi and pro-
gramming languages. Recently several works developed multiparty session types and
their extensions. While typed behavioural equivalences are one of the central topics
of the π-calculus, surprisingly the typed behavioural semantics based on session types
have been less explored, and the existing ones only focus on binary (two-party) sessions.
Our work [12] develops an asynchronous binary session typed behavioural theory with
event operations. An LTS is defined on session type process judgements and ensures
session typed properties, such as linearity in the presence of asynchronous queues. The
work [15] proves the proof conversions induced by Linear Logic interpretation coin-
cide with an observational equivalence over a strict subset of the binary synchronous
session processes. The main focus of our paper is multiparty session types and gov-
erned bisimulation, whose definitions and properties crucially depend on information of
global types. We have shown governed bisimulations can be systematically developed
under various semantics including three kinds of asynchronous semantics by modularly
changing the LTS for processes, environments and global types. For governed bisim-
ulations, we can reuse all of the definitions among four semantics by only changing
the conditions of the LTS of global types to suit each semantics. Another recent work
[4] gives an a fully abstract encoding of a binary synchronous session typed calculus
into a linearly typed π-calculus [2]. We believe the same encoding method is smoothly
applicable to ≈s since it is defined solely based on the projected types (i.e. local types).
However a governed bisimulation requires a global witness, hence the additional global
information would be required for full abstraction.

The constructions of our work are hinted by [7] which studies typed behavioural
semantics for the π-calculus with IO-subtyping where a labelled transition system for
pairs of typing environments and processes is used for defining typed testing equiv-
alences and barbed congruence. Several papers have developed bisimulations for the
higher-order π-calculus or its variants using the information of the environments. Among
them, a recent paper [11] uses a pair of a process and an observer knowledge set for the
LTS. The knowledge set contains a mapping from first order values to the higher-order
processes, which allows a tractable higher-order behavioural theory using the first-order

20

LTS. We record a choreographic type as the witness in the environment to obtain fine-
grained bisimulations of multiparty processes.

The highlight of our bisimulation construction is an effective use of the semantics
of global types for LTSs of processes (cf. [Inv] in Figure 7 and Definition 5.4). Global
types can give a guidance how to coordinate parallel threads giving explicit protocols,
hence it is applicable to a semantic-preserving optimisation (cf. Example 5.2). While it
is known that it is undecidable to check P≈Q in the full π-calculus, it is an interesting
future topic to investigate automated bisimulation-checking techniques for the governed
bisimulations for some subset of multiparty session processes.

References
1. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous pi-

calculus. TCS, 195(2):291–324, 1998.
2. M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In Proc. TLCA’01,

volume 2044 of LNCS, pages 29–45, 2001.
3. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,

volume 5201 of LNCS, pages 418–433. Springer, 2008.
4. R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with linear types.

In CONCUR, volume 6901 of LNCS, pages 280–296. Springer, 2011.
5. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In

ESOP, volume 7211 of LNCS, pages 194–213. Springer, 2012.
6. M. Hennessy. A Distributed Pi-Calculus. CUP, 2007.
7. M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence

of subtyping. Mathematical Structures in Computer Science, 14(5):651–684, 2004.
8. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for

structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

9. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 151(2):437–486,
1995.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

11. V. Koutavas and M. Hennessy. A testing theory for a higher-order cryptographic language.
In ESOP, volume 6602 of LNCS, pages 358–377, 2011.

12. D. Kouzapas, N. Yoshida, and K. Honda. On asynchronous session semantics. In FMOOD-
S/FORTE, volume 6722 of Lecture Notes in Computer Science, pages 228–243, 2011.

13. D. Kouzapas, N. Yoshida, and K. Honda. On asynchronous session semantics. In FMOOD-
S/FORTE, volume 6722 of LNCS, pages 228–243, 2011.

14. Ocean Observatories Initiative (OOI). http://www.oceanobservatories.org/.
15. J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations for session-based

concurrency. In ESOP, volume 7211 of LNCS, pages 539–558. Springer, 2012.
16. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. MSCS, 6(5):409–

454, 1996.
17. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-

tem. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.
18. N. Yoshida. Graph types for monadic mobile processes. In FSTTCS, volume 1180 of LNCS,

pages 371–386. Springer, 1996.
19. N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for structured

communication-based programming revisited: Two systems for higher-order session com-
munication. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

21

A Appendix for Typing Rules
We say a typing ∆ is fully coherent (notation fco(∆)) if it is coherent and if s[p] : Tp ∈∆

then for all q ∈ roles(Tp), s[q] : Tq ∈ ∆ .

Γ ·u : S ` u : S [Name] Γ ` tt,ff : bool [Bool]
Γ ` ei : bool

Γ ` e1 and e2 : bool
[And]

Γ ` a : 〈G〉 Γ ` P.∆ · x[p] : Gdp
max(roles(G)) = p

Γ ` a[p](x).P.∆
[MReq]

Γ ` a : 〈G〉 Γ ` P.∆ · x[p] : Gdp
Γ ` a[p](x).P.∆

[MAcc]

Γ ` e : S Γ ` P.∆ · c : T
Γ ` c[q]!〈e〉;P.∆ · c : [q]!〈S〉;T

[Send]
Γ · x : S ` P.∆ · c : T

Γ ` c[q]?(x);P.∆ · c : [q]?(S);T
[Recv]

Γ ` P.∆ · c : T
Γ ` c[q]!〈c′〉;P.∆ · c : [q]!〈T ′〉;T · c′ : T ′

[Deleg]
Γ ` P.∆ · c : T · x : T ′

Γ ` c[q]?(x);P.∆ · c : [q]?(T ′);T
[SRecv]

Γ ` P.∆ · c : T
Γ ` c[q]⊕ li;P.∆ · c : [q]⊕{li : Ti}i∈I

[Sel]
Γ ` Pi .∆ · c : Ti ∀ i ∈ I

Γ ` c[q]&{li : Pi}i∈I .∆ · c : [q]&{li : Ti}i∈I
[Bra]

Γ ` P1 .∆1 Γ ` P2 .∆2 ∆1∩∆2 = /0
Γ ` P1 | P2 .∆1 ·∆2

[Conc]
Γ ` e : bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
[If]

∆end only
Γ ` 0.∆

[Inact]
Γ ·a : 〈G〉 ` P.∆

Γ ` (ν a)P.∆
[NRes]

fco({s[1] : T1 . . .s[n] : Tn})
Γ ` P.∆ · s[1] : T1 . . .s[n] : Tn

Γ ` (ν s)P.∆
[SRes] Γ ·X : ∆ ` X .∆ [Var]

Γ ·X : ∆ ` P.∆

Γ ` µX .P.∆
[Rec]

Fig. 10. Typing System for Synchronous Multiparty Session Calculus

Figure 10 defines the typing system. Rule [Name] types a shared name or shared
variable to type S. Boolean tt,ff are typed with the bool type via rule [Bool]. Log-
ical expressions are also typed with the bool type via rule [And], etc. Rules [MReq]
and [MAcc] check that the local type of a session role agrees with the global type of
the initiating shared name. Rules [Send] and [Recv] prefix the local type with send and
receive local types respectively, after checking the type environment for the sending
value type (receiving variable type resp.). Delegation is typed under rules [Deleg] and
[Srecv] where we check type consistency of the delegating/receiving session role. Rules
[Sel] and [Bra] type select and branch processes respectively. A select process uses the
select local type. A branching process checks that all continuing process have a consis-
tent typing environments. [Conc] types a parallel composition of processes by checking
the disjointness of their typing environments. Conditional is typed with [If], where we
check the expression e to be of bool type and the branching processes to have the same
typing environment. Rule [Nres] defines the typing for shared name restriction. Rule
[Sres] uses the full coherency property to restrict a session name. Recursive rules [Var]
and [Rec] are standard. Finally the inactive process 0 is typed with the complete typing
environment, where every session role is mapped to the inactive local type end.

22

B Appendix for Sections 2 and 3
We list the omitted definitions from Section 2 and

P ≡ P | 0 P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P ≡α P µX .P≡ P{µX .P/X}
(ν n)(ν n′)P ≡ (ν n′)(ν n)P (ν n)(ν n′)P≡ (ν nn′)P (ν n)0 ≡ 0

(ν n)(P) | Q ≡ (ν n)(P | Q) n /∈ fn(Q)

Fig. 11. Structural Congruence for Synchronous Multiparty Session Calculus

The structural congruence rules are defined in figure 11.
We define the roles occurring in a global type and the roles occurring in a local type.

Definition B.1 (Roles).

– We define roles(G) as the set of roles in protocol G. Note that for all u : G ∈ Γ ,
roles(G) = {1,2, ...,n} for some n.

– We define roles(T) on local types as:

roles(end) = /0 roles(t) = /0 roles(µt.T) = roles(T)

roles([p]!〈U〉;T) = {p}∪roles(T) roles([p]?(U);T) = {p}∪roles(T)
roles([p]⊕{li : Ti}i∈I) = {p}∪roles(T) roles([p]&{li : Ti}i∈I) = {p}∪roles(T)

C Proofs for Bisimulation Properties
C.1 Parallel Observer Property
Lemma C.1. If Γ ` P1 .∆1,Γ ` P2 .∆2 and E,Γ ` P1 | P2 .∆ then

1. ∆ = ∆1∪∆2, ∆1∩∆2 = /0
2. E,Γ ` P1 .∆1 and E,Γ ` P2 .∆2

Proof. Part 1 is obtain from typing rule [Conc]. Part 2 is immediate from part 1, since
∆ ⊆ ∆1 (resp. ∆ ⊆ ∆2). ut

C.2 Proof for Lemma 4.1
Proof. We use the coinduction method which is implied by the bisimilarity definition.

Assume that for Γ ` P1 .∆1 ≈s P2 .∆2, we have ∆1
 ∆2. Then by the definition of

, there exists ∆ such that

∆1 −→∗ ∆ and ∆2 −→∗ ∆ (1)

Now assume that Γ ` P1 .∆1
`−→ P′1 .∆ ′1 then, Γ ` P2 .∆2

`
=⇒ P′2 .∆ ′2 and by the typed

transition definition we get (Γ ,∆1)
`−→ (Γ ,∆ ′1), (Γ ,∆2)

`
=⇒ (Γ ,∆ ′2). We need to show

that ∆ ′1
 ∆ ′2.

We prove by a case analysis on the transition `−→ on (Γ ,∆1) and (Γ ,∆2).

23

– Case ` = τ: We use the fact that τ−→ with ≡ coincides with −→. Then by Theo-
rem 3.1, we obtain if Γ ` P1 .∆1 and P1 −→ P′1 then Γ ` P′1 .∆ ′1 and ∆1 −→ ∆ ′1 or
∆1 = ∆ ′1.
For the reversed direction, if Γ ` P2 . ∆2 and P2 →→ P′2 then Γ ` P′2 . ∆ ′2 and
∆2 −→∗ ∆ ′2. From the hypothesis on Γ ` P′1 .∆ ′1 and Γ ` P′2 .∆ ′2, we obtain there
exists ∆ such that ∆ ′1 −→∗ ∆ and ∆ ′2 −→∗ ∆ , as required.

Case `= a[p](s) or `= a[p](s): Then

(Γ ,∆1)
`−→ (Γ ,∆1 · s[p] : Tp · . . . · s[q] : Tq)

and
(Γ ,∆2) =⇒

`−→=⇒ (Γ ,∆ ′′2 · s[p] : Tp · . . . · s[q] : Tq)

We set
∆
′ = ∆ · s[p] : Tp · . . . · s[q] : Tq

to obtain ∆ ′1 −→∗ ∆ ′ and ∆ ′2 −→∗ ∆ ′, by the coinduction hypothesis (1).

– Case `= s[p][q]!〈v〉:
For synchronous and input asynchronous multiparty session π calculus, we know
from the definition of environment transition, that s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2),
thus s[q] /∈ dom(∆) for the synchronous case and si[q] /∈ dom(∆1) and si[q] /∈ dom(∆2),
thus si[q] /∈ dom(∆) for the input asynchronous case. We set

∆1 = s[p] : [q]!〈v〉;T ·∆ ′′1

and
∆2 = s[p] : [q]!〈v〉;T ·∆ ′′2

so
∆ = s[p] : [q]!〈v〉;T ·∆ ′′

by (1). We set ∆ ′ = s[p] : T ·∆ ′′ to obtain ∆ ′1 −→∗ ∆ ′ and ∆ ′2 −→∗ ∆ ′.
For output and input/output asynchronous multiparty session π calculus, we know
from the definition of environment transition, that s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2),
thus s[q] /∈ dom(∆) for the output asynchrony case and si[q] /∈ dom(∆1) and si[q] /∈
dom(∆2), thus si[q] /∈ dom(∆) for the input/output asynchronous case. Then

∆1 = so[p] : M; [q]!〈v〉 ·∆ ′′1

and
∆2 = so[p] : M; [q]!〈v〉 ·∆ ′′2

so
∆ = so[p] : M; [q]!〈v〉 ·∆ ′′

by (1). We set ∆ ′ = so[p] : M ·∆ ′′ to obtain ∆ ′1 −→∗ ∆ ′ and ∆ ′2 −→∗ ∆ ′.

24

– Case `= s[p][q]!(s′[p′]):
For synchronous and input asynchronous multiparty session π calculus, we know
from the definition of environment transition, that for the synchronous case, s[q] /∈
dom(∆1) and s[q] /∈ dom(∆2), thus s[q] /∈ dom(∆). And for the input asynchronous
case si[q] /∈ dom(∆1) and si[q] /∈ dom(∆2), thus si[q] /∈ dom(∆). We set

∆1 = s[p] : [q]!〈T ′〉;T ·∆ ′′1

and
∆2 = s[p] : [q]!〈T ′〉;T ·∆ ′′2

so
∆ = s[p] : [q]!〈v〉;T ·∆ ′′

by (1). We set ∆ ′ = s[p] : T ·∆ ′′ · {s[pi] : Ti} to obtain ∆ ′1 −→∗ ∆ ′ and ∆ ′2 −→∗ ∆ ′.
For output and input/output asynchronous multiparty session π calculus, we know
from the definition of environment transition, that s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2),
thus s[q] /∈ dom(∆) for the output asynchrony case and si[q] /∈ dom(∆1) and si[q] /∈
dom(∆2), thus si[q] /∈ dom(∆) for the input/output asynchronous case. Then s[q] /∈
dom(∆1) and s[q] /∈ dom(∆2), thus s[q] /∈ dom(∆) and

∆1 = so[p] : M; [q]!〈T ′〉 ·∆ ′′1

and
∆2 = so[p] : M; [q]!〈T ′〉 ·∆ ′′2

so
∆ = so[p] : M; [q]!〈v〉 ·∆ ′′

by (1). We set ∆ ′ = so[p] : M ·∆ ′′ · {s[pi] : Ti} to obtain ∆ ′1 −→∗ ∆ ′ and ∆ ′2 −→∗ ∆ ′.
– The remaining cases on session channel actions are similar.

ut

C.3 Weakening - Strengthening
The following lemmas are essential for invariant properties.

Lemma C.2 (Weakening).

1. If E,Γ ` P.∆ then
– E · s : G,Γ ` P.∆ .
– E = E ′ · s : G and ∃G′ · {s : G′}→→ {s : G} then E ′ · s : G′,Γ ` P.∆ .

2. If (E,Γ ,∆)
`−→ (E,Γ ′,∆ ′) then

– (E · s : G,Γ ,∆)
`−→ (E · s : G,Γ ′,∆ ′)

– If E = E ′ · s : G and {s : G′} →→ {s : G} then (E ′ · s : G′,Γ ,∆)
`−→ (E ′ · s :

G′,Γ ′,∆ ′)
3. If E,Γ ` P1 .∆2 ≈g P2 .∆2

– E · s : G,Γ ` P1 .∆2 ≈g P2 .∆2
– If E = E ′ · s : G and {s : G′}→→⊆ {s : G} then E ′ · s : G′,Γ ` P1 .∆2 ≈g P2 .∆2

Proof. We only show Part 1. Other parts are similar.

25

– From the governance judgement definition we have that E −→∗ E1 and proj(E1)⊇
∗(∆).
Let E · s : G −→ E1 · s : G. Then proj(E1 · s : G) = proj(E1)∪ proj(s : G) ⊇
proj(E1)⊇ ∗(∆).

– From the governance judgement definition we have that E ·s : G−→∗ E1 ·s : G1 and
proj(E1 · s : G1)⊇ ∗(∆).
Let E · s : G′ −→∗ E1 · s : G′ −→∗ E1 ·S : G1. Then the result is immediate.

ut

Lemma C.3 (Strengthening).

1. If E · s : G,Γ ` P.∆ ,E1 · s : G1 and
– If s /∈ fn(P) then E,Γ ` P.∆

– If ∃G′,{s : G}→→ {s : G′}→→ {s : G1} then E ′ · s : G′,Γ ` P.∆

2. If (E · s : G,Γ ,∆)
`−→ (E ′ · s : G,Γ ′,∆ ′) then

– (E,Γ ,∆)
`−→ (E ′,Γ ′,∆ ′)

– If ∃G′,{s : G}→→{s : G′}→→{s : G1} S (E ·s : G′,Γ ,∆)
`−→ (E ′ ·s : G′,Γ ′,∆ ′)

3. If E · s : G,Γ ` P1 .∆2,E1 ≈g P2 .∆2,E2

– If s /∈ fn(P) then E,Γ ` P1 .∆2 ≈g P2 .∆2
– If ∃G′,{s : G}→→ {s : G′}→→ {s : G1} E · s : G′,Γ ` P1 .∆2 ≈g P2 .∆2

Proof. We prove for part 1. Other parts are similar.

– From the governance judgement definition we have that E · s : G −→∗ E1 · s : G1
and proj(E1 · s : G1) = proj(E1)∪ proj(s : G1) ⊇ ∗(∆). Since s /∈ fn(P) then
s /∈ dom(∆), then proj(s : G1)∩∗(∆) = /0. So proj(E1)⊇ ∗(∆) and E −→∗ E1.

– The result is immediate from the definition of governance judgement.
ut

C.4 Configuration Transition Properties

Lemma C.4.

– If E
s:p→q:U−→ E ′ then {s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(E) and {s[p] :

Tp,s[q] : Tq} ⊆ proj(E ′).

– If E
s:p→q:l−→ E ′ then {s[p] : [q]⊕{li : Tip},s[q] : [p]&{li : Tiq}} ⊆ proj(E) and {s[p] :

Tkp,s[q] : Tkq} ⊆ proj(E ′)

Proof. Part 1: We apply induction on the definition structure of s : p→ q : U . The base
case

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G}

is easy since

{s[p] : (p→ q : 〈U〉.G)dp,s[q] : (p→ q : 〈U〉.G)dq}=
{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : p→ q : 〈U〉.G)

26

and

{s[p] : Gdp,s[q] : Gdq}= {s[p] : Tp,s[q] : Tq} ⊆ proj(s : G)

The main induction rule concludes that:

{s : p′→ q′ : 〈U〉.G} s:p→q:U−→ {s : G′}

if p 6= p′ and q 6= q′ and {s : G} s:p→q:U−→ {s : G′}. From the induction hypothesis we know
that:

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : G)

{s[p] : Tp,s[q] : Tq} ⊆ proj(s : G′)

to conclude that:

{s[p] : (p′→ q′ : 〈U〉.G)dp,s[q] : (p′→ q′ : 〈U〉.G)dq}=
{s[p] : Gdp,s[q] : Gdq}=

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : G)

and

{s[p] : (p′→ q′ : 〈U〉.G′)dp,s[q] : (p′→ q′ : 〈U〉.G′)dq}=
{s[p] : G′dp,s[q] : G′dq}=

{s[p] : Tp,s[q] : Tq} ⊆ proj(s : G)

as required.
Part 2: Similar. ut

Proof for Proposition 5.2

Proof. (1) We apply induction on the definition structure of `−→.
Basic Step:

Case: `= a[s](A).
From rule [Acc] we get

(E1,Γ1,∆1)
`−→ (E1 · s : G,Γ1,∆1 · {s[pi] : sdpi}pi∈A)

From the environment configuration definition we get that

∃E ′1 ·E1 −→∗ E ′1,proj(E
′
1)⊇ ∗(∆1)

We also get that proj(s : G)⊇ {s[pi] : sdpi}i∈A. So we can safely conclude that

E1 · s : G−→∗ E ′1 · s : G,proj(E1 · s : G)⊇ ∆1 · {s[pi] : sdpi}pi∈A

Case: `= a[s](A). Similar as above.

27

Case: `= s[p][q]!〈v〉.
From rule [Out] we get

(E1,Γ ,∆ · s[p] : [q]!〈U〉;T) `−→ (E2,Γ ,∆ · s[p] : T) (2)
proj(E1) ⊇ ∆ · s[p] : [q]!〈U〉;T (3)

E1
s:p→q:U−→ E2 (4)

From 3, we obtain proj(E1)⊇ ∆ · {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} and from 4
and Lemma C.4, we obtain that proj(E2)⊇ ∆ · {s[p] : T · s[q] : T ′}.
Case: `= s[p][q]!(s′[p′]).

(E1,Γ ,∆ · s[p] : [q]!〈Tp′〉;T) `−→ (E2 · s : G,Γ ,∆ · s[p] : T · {s[pi] : sdpi}) (5)
proj(E1) ⊇ ∆ · s[p] : [q]!〈T ′p〉;T (6)

E1
s:p→q:T ′p−→ E2 (7)

proj(s : G) ⊇ {s[pi] : sdpi} (8)

From 6 we get proj(E1) ⊇ ∆ · {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} and from 7 and
lemma C.4 we get that proj(E2)⊇ ∆ · {s[p] : T · s[q] : T ′} ⊃ ∆ · s[p] : T . From 8 we get
that proj(E2 · s : G)⊇ ∆ · s[p] : T · {s[pi] : sdpi} as required.
The rest of the base cases are similar.
Inductive Step:
The inductive rule for environment configuration is [Inv]. Let (E1,Γ1,∆1)

`−→ (E2,Γ2,∆2).
From rule [Inv] we get:

E1 −→∗ E ′1 (9)

(E ′1,Γ1,∆1)
`−→ (E2,Γ2,∆2) (10)

From the inductive hypothesis we know that for 10 ∃E3 ·E2−→∗ E3 and ∆2⊆ proj(E3).
The result is then trivial from 9. ut

Lemma C.5.

1. If (E,Γ ,∆1)
`−→ (E ′,Γ ′,∆2) then (Γ ,∆1)

`−→ (Γ ′,∆2)

2. If (E,Γ ,∆1)
`−→ (E ′,Γ ′,∆ ′1) and ∆1
 ∆2 then (E,Γ ,∆2)

`
=⇒ (E ′,Γ ′,∆ ′2)

3. If (Γ ,∆1)
`−→ (Γ ′,∆2) then there exists E such that (E,Γ ,∆)

`−→ (E ′,Γ ′,∆2)

4. If (E,Γ ,∆ · s[p] : Tp)
`−→ (E ′,Γ ,∆ ′ · s[p] : Tp) then (E,Γ ,∆)

`−→ (E ′,Γ ,∆ ′)

5. If (E,Γ ,∆1)
`−→ (E ′,Γ ,∆2) then (E,Γ ,∆1 ·∆)

`−→s (E ′,Γ ,∆2 ·∆)

provided that if (E,Γ ,∆)
`′−→ (E,Γ ,∆ ′) then ` 6� `′

Proof. Part 1:
The proof for part 1 is easy to be implied by a case analysis on the configuration transi-
tion definition with respect to environment transition definition.

Part 2:

28

By the case analysis on `.
Case `= τ: The result is trivial.
Case `= a[p](s) or `= a[p](s): The result comes from a simple transition.
Case `= s[p][q]!〈v〉: ∆1
 ∆2 implies ∆1 −→∗ ∆ and ∆2 −→∗ ∆ for some ∆ and ∆ =
∆ ′ · s[p] : [q]!〈U〉;T for synchronous and input asynchronous MSP and ∆ = ∆ ′ · s[p] :
M; [q]!〈U〉. for output and input/output asynchronous MSP .

(E,Γ ,∆2) =⇒ (E,Γ ,∆)
`−→ as required.

Case ` = s[p][q]!(s′[p′]): ∆1
 ∆2 implies ∆1 −→∗ ∆ and ∆2 −→∗ ∆ for some ∆ and
∆ = ∆ ′ · s[p] : [q]!〈T ′〉;T for synchronous and input asynchronous MSP and ∆ = ∆ ′ ·
s[p] : M; [q]!〈T ′〉. for output and input/output asynchronous MSP .

(E,Γ ,∆2) =⇒ (E,Γ ,∆)
`−→ as required.

The remaining cases are similar.
Part 3:

We do a case analysis on `.
Cases `= τ, `= a[p](s), `= a[p](s): The result holds for any E.
Case ` = s[p][q]!〈v〉 : ∆1 = ∆ ′1 ·∆ ′′1 with ∆ ′′1 = s[p] : [q]!〈U〉;Tp · . . . · s[r] : Tr for syn-
chronous and input asynchronous MSP. Choose E = E ′ ·s : G with ∗(∆ ′′1)⊆ proj(s : G)
and s[q] : [p]?(U);Tq ∈ proj(s : G) and ∗(∆)1 ⊆ proj(E) By the definition of configu-

ration transition relation, we obtain (E,Γ ,∆)
`−→ (E,Γ ′,∆2), as required.

∆1 = ∆ ′1 · ∆ ′′1 with ∆ ′′1 = s[p] : Tp · so[p] : M; [q]!〈U〉 · . . . · s[r] : Tr for output and in-
put/output asynchronous MSP. Choose E = E ′ · s : G with ∗(De′′1) ⊆ proj(s : G) and
s[q] : [p]?(U);Tq ∈ proj(s : G) and ∗(∆)1 ⊆ proj(E) By the definition of configura-

tion transition relation, we obtain (E,Γ ,∆)
`−→ (E,Γ ′,∆2), as required.

Remaining cases are similar.
Part 4:

(E,Γ ,∆ · s[p] : Tp)
`−→ (E ′,Γ ,∆ ′ · s[p] : Tp) implies that s[p] /∈ subj(`). The result then

follows from the definition of configuration transition.
Part 5:

Case `= τ, `= a[p](s), `= a[p](s): The result holds by definition of the configuration
transition.
Case ` = s[p][q]!〈U〉: For synchronous and input asynchronous MSP we have that

∆1 = ∆ ′1 · s[p] : [q]!〈U〉;T and E
s:p→q:U−→ E ′. For synchronous MSP assume s[q] ∈ ∆ ,

then by definition of weak configuration pair we have ∆ = ∆ ′′ · s[q] : q[U][T]?() ;

and (E,Γ ,∆)
s[q][p]?〈U〉−→ . But this contradicts with the assumption ` 6� `′, so s[q] /∈ ∆ .

By the definition of configuration pair transition we get that (E,Γ ,∆1 · ∆)
s[p][q]!〈U〉−→

(E,Γ ,∆2 ·∆). For input asynchronous MSP assume that si[q] ∈ ∆ , then by definition

of weak configuration pair we have ∆ = ∆ ′′ · si[q] : M and (E,Γ ,∆)
si[q][p]?〈U〉−→ . But this

contradicts with the assumption ` 6� `′, so si[q] /∈ ∆ . By the definition of configuration
pair transition we get the result.
For output and input/output asynchronous MSP we have ∆1 = ∆ ′1 · so[p] : M; [q]!〈U〉;
and E

s:p→q:U−→ E ′. For output asynchronous MSP assume s[q] ∈ ∆ , then we would have

(E,Γ ,∆)
s[q][p]?〈U〉−→ which contradicts with ` 6� `′ and s[q] /∈∆ to get the required result by

29

the configuration pair definition. For input/output asynchronous MSP assume si[q] ∈ ∆ ,

then we would have (E,Γ ,∆)
si[q][p]?〈U〉−→ which contradicts with ` 6� `′ and si[q] /∈ ∆ to

get the required result by the configuration pair definition.
Remaining cases are similar.

ut

C.5 Proof for Lemma 5.1

Proof. Since we are dealing with closed processes, the interesting case is parallel com-
position. We need to show that if E,Γ ` P . ∆1 ≈g Q . ∆2 then for all R such that
E,Γ ` P | R.∆3,E,Γ ` Q | R.∆4 then E,Γ ` P | R.∆3 ≈g Q | R.∆4.

Let
S = {(E,Γ ` P | R.∆3, E,Γ ` Q | R.∆4) |

E,Γ ` P.∆1 ≈g Q.∆2,
∀R ·E,Γ ` P | R.∆3,E,Γ ` Q | R.∆4}

Before we proceed to a case analysis, we extract general results. Let Γ ` P.∆1,Γ `
Q.∆2,Γ ` R.∆5,Γ ` P | R.∆3,Γ ` Q | R.∆4 then from typing rule [Conc] we get

∆3 = ∆1∪∆5 (11)
∆4 = ∆2∪∆5 (12)

∆1∩∆5 = /0 (13)
∆2∩∆5 = /0 (14)

We prove that S is a bisimulation. There are three cases:

Case: E,Γ ` P | R.∆3
`−→ E ′,Γ ` P′ | R.∆ ′3

From typed transition definition we have that:

P | R `−→ P′ | R (15)

(E,Γ ,∆3)
`−→ (E ′,Γ ,∆ ′3) (16)

Transition (15) and rule 〈Par〉 (LTS in Figure 5) imply:

P `−→ P′ (17)

From (11), transition (16) can be written as (E,Γ ,∆1 ∪ ∆5)
`−→ (E ′,Γ ,∆ ′1 ∪ ∆5), to

conclude from Lemma C.5 part 4, that:

(E,Γ ,∆1)
`−→ (E ′,Γ ,∆ ′1) (18)

subj(`) /∈ dom(∆5) (19)

Transitions 17 and 18 imply E,Γ ` P .∆1
`−→ E ′,Γ ` P′ .∆ ′1. From the definition of

set S we get that E,Γ ` Q.∆2
`

=⇒ E ′,Γ ` Q′ .∆ ′2.

30

From the typed transition definition we have that:

Q `
=⇒ Q′ (20)

(E,Γ ,∆2)
`

=⇒ (E ′,Γ ,∆ ′2) (21)

From 19 and part 5 of Lemma C.5 we can write: (E,Γ ,∆2 ∪∆5)
`

=⇒ (E ′,Γ ,∆ ′2 ∪∆5),

to imply from 20 that E,Γ ` P | R.∆4
`

=⇒ E ′,Γ ` P′ | R.∆ ′4 as required.
Case: 2

E,Γ ` P | R.∆3
τ−→ E ′ ` P′ | R′ .∆

′
3

From the typed transition definition we have that:

P | R τ−→ P′ | R′ (22)

(E,Γ ,∆3)
τ−→ (E,Γ ,∆ ′3) (23)

From 22 and rule 〈Tau〉 we get

P `−→ P′ (24)

R `′−→ R′ (25)

From 11 transition 23 can be written (E,Γ ,∆1 ∪∆5)
τ−→ (E,Γ ,∆ ′1 ∪∆ ′5), to conclude

that

(E,Γ ,∆1)
`−→ (E,Γ ,∆ ′1) (26)

(E,Γ ,∆5)
`′−→ (E,Γ ,∆ ′5) (27)

From 24 and 26 we conclude that E,Γ ` P.∆1
`−→ E,Γ ` P′ .∆ ′1 and from 25 and 27

E,Γ ` R.∆5
`−→ E,Γ ` R′ .∆ ′5.

From the definition of set S we get that E,Γ ` Q.∆2
`

=⇒ E,Γ ` Q′ .∆ ′2, implies

Q `
=⇒ Q′ (28)

(E,Γ ,∆2)
`

=⇒ (E,Γ ,∆ ′2) (29)

From 25 we get that Q | R τ
=⇒ Q′ | R′ and (E,Γ ,∆2∪∆5)

τ
=⇒ (E,Γ ,∆ ′2∪∆ ′5), implies

E,Γ ` Q | R.∆4
τ

=⇒ E ′ ` Q′ | R′ .∆
′
4

Case: 3

E,Γ ` P | R.∆3
`−→ E ′ ` P | R′ .∆

′
3

ut

31

C.6 Proof for Lemma 5.2
Proof. We take into advantage the fact that bisimulation has a stratifying definition.

– ≈g0 is the union of all configuration relations, E,Γ ` P.∆1 R Q.∆2.
– E,Γ ` P.∆1≈gnQ.∆2 if

• E,Γ ` P .∆1
`−→ E ′,Γ ` P′ .∆ ′1 then E,Γ ` Q .∆2

`
=⇒ E ′,Γ ` Q .∆ ′2 and

E ′,Γ ` P′ .∆ ′1≈gn−1Q′ .∆ ′2
• The symmetric case.

– ≈g
ω

n =
⋂

0≤i≤n≈gi

From coinduction theory, we know that (
⋂
∀n≈gn) =≈g.

To this purpose we define a set of tests T 〈N, ~̀n〉 to inductively show that:

If E,Γ ` P1 .∆1 ∼=g P2 .∆2 implies
E,Γ ` P1 | T 〈N, ~̀n〉.∆1 ∼=g P2 | T 〈N, ~̀n〉.∆2 implies

∀n, E,Γ ` P1 .∆1≈gnP2 .∆2 implies
E,Γ ` P1 .∆1≈gP2 .∆2

We give the definition for T 〈N, ~̀n〉:
T 〈N,succ, ~̀n〉= Q〈N,n,~̀i〉 | . . . | Q〈N,n,~̀i〉

where

1. i ∈ I
2.
⋃

i∈I
~̀i = ~̀n

3. n ::= s[p] | a.
4. N ::= /0 | N · s[p] | N ·a is a set of names for testing the receiving objects.

and let

– Bs〈s[p]〉= 0
– Bi〈s[p]〉= s[p][i : /0]
– Bo〈s[p]〉= s[p][o : /0]
– Bio〈s[p]〉= s[p][i : /0] | s[p][o : /0]

to define

– Q〈N,a,a[A](s) · ~̀n〉= a[n](x).Q〈N,s[n],~̀i〉 | . . . | a[p](x).Q〈N,s[p],~̀i〉, i ∈ I.
– Q〈N,s[q],s[p][q]?〈v〉 · ~̀n〉= s[q][p]!〈v〉;Q〈N,s[q], ~̀n〉B〈s[q]〉.
– Q〈N,s[q],s[p][q]&l · ~̀n〉= s[q][p]⊕ l;Q〈N,s[q], ~̀n〉 | B〈s[q]〉.
– Q〈N,a,a[A](s) · ~̀n〉= a[q](x).Q〈N,s[q],~̀i〉 | . . . | a[p](x).Q〈N,s[p],~̀i〉, i ∈ I.
– Q〈N,s[q],s[p][q]!〈v〉 · ~̀n〉
= s[q][p]?(x);if x∈N thenQ〈N,s[q], ~̀n〉 else (ν b)(b[1](x).Q〈N,s[q], ~̀n〉) |B〈s[q]〉.

– Q〈N,s[q],s[p][q]!〈s′[p′]〉 · ~̀n〉
= s[q][p]?(x);if x∈N thenQ〈N,s[q], ~̀n〉 else (ν b)(b[1](x).Q〈N,s[q], ~̀n〉) |B〈s[q]〉.

– Q〈N,s[q],s[p][q]⊕ lk · ~̀n〉
= s[q][p]&{lk : Q〈N,s[q], ~̀n〉, li : (ν b)(b[1](x).Q〈N,s[q], ~̀n〉)} | B〈s[q]〉.

– Q〈N,n, /0〉= R.

32

where R = (ν b)(b[1](x).R′) or R = 0. R completes the session type on session channel
n and is used to keep processes typed.

From the definition of T 〈N, ~̀n〉 we can show that ∀T 〈N, ` · ~̀n〉,T 〈N, ` · ~̀n〉
`′

=⇒
T ′〈N, ~̀n〉, `� `′.

We prove the required result inductively:

E,Γ ` P1 .∆3 ∼=g P2 .∆4 implies
∀` · ~̀n choose T 〈N, ` · ~̀n〉,E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1 ∼=g P2 | T 〈N, ` · ~̀n〉.∆2 implies
E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1→→ P′1 | T 〈N, ~̀n〉.∆ ′1,

E,Γ ` P2 | T 〈N, ~̀n〉.∆2→→ P′2 | T 〈N, ~̀n〉.∆ ′2 then by induction hypothesis
P′1≈gnP′2 implies
∀n,E,Γ ` P1 .∆1≈gnP2 .∆2 implies
E,Γ ` P1 .∆1 ≈g P2 .∆2

We need to show that if

E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1 ∼=g P2 | T 〈N, ` · ~̀n〉.∆2

then

E,Γ `P1 |T 〈N, `·~̀n〉.∆1→→P′1 |T 〈N, ~̀n〉.∆
′
1,E,Γ `P2 |T 〈N, ~̀n〉.∆2→→P′2 |T 〈N, ~̀n〉.∆

′
2

We perform a case analysis on E,Γ ` P1 .∆3
`−→ P1 .∆ ′3:

– E,Γ `P1.∆3
s[p][q]?〈v〉−→ P1.∆ ′3 implies, E,Γ `P1 | T 〈N,s[p][q]?〈v〉· ~̀n〉.∆1 =E,Γ `

P1 |Q〈N,s[p],s[p][q]?〈v〉·~̀i〉 | . . . |Q〈N,n,~̀i〉.∆1−→P′1 |Q〈N,s[p],~̀i〉 | . . . |Q〈N,n,~̀i〉.
∆1.

E,Γ `P2 |T 〈N,s[p][q]?〈v〉·~̀n〉.∆2 needs to match the reduction, E,Γ `P2 |T 〈N,s[p][q]?〈v〉·
~̀n〉.∆2→→ E,Γ ` P′′′2 | T 〈N,s[p][q]?〈v〉 · ~̀n〉.∆ ′′′2 −→ E,Γ ` P′′2 | T ′〈N, ~̀n〉.∆ ′′2 →
→ E,Γ ` P′2 | T ′〈N, ~̀n〉.∆ ′2

– E,Γ ` P1 .∆3
a[A](s)−→ P1 ` ∆ ′3. implies, E,Γ ` P1 | T 〈N,a[A](s) · ~̀n〉 .∆1 = E,Γ `

P1 |Q〈N,a,a[A](s) ·~̀i〉 | . . . |Q〈N,n,~̀i〉.∆1 −→ P′1 |Q〈N,a,~̀i〉 | . . . |Q〈N,n,~̀i〉 `
∆1..

E,Γ `P2 |T 〈N,a[A](s)·~̀n〉.∆2 needs to match the reduction E,Γ `P2 |T 〈N,a[A](s)·
~̀n〉.∆2→→ E,Γ ` P′′′2 | T 〈N,a[A](s) · ~̀n〉.∆ ′′′2 −→ E,Γ ` P′′2 | T ′〈N, ~̀n〉.∆ ′′2 →→
E,Γ ` P′2 | T ′〈N, ~̀n〉.∆ ′2

– E,Γ ` P1 . ∆3
s[p][q]!〈v〉−→ P1 ` ∆ ′3. implies, E,Γ ` P1 | T 〈N,s[p][q]!〈v〉 · ~̀n〉 . ∆1 =

E,Γ `P1 |Q〈N,s[p],s[p][q]!〈v〉·~̀i〉 | . . . |Q〈N,n,~̀i〉.∆1→→P′1 |Q〈N,s[p],~̀i〉 | . . . |Q〈N,n,~̀i〉 `
∆1..

E,Γ `P2 |T 〈N,s[p][q]!〈v〉·~̀n〉.∆2 needs to match the reduction, E,Γ `P2 |T 〈N,s[p][q]!〈v〉·
~̀n〉.∆2→→ E,Γ ` P′′′2 | T 〈N,s[p][q]!〈v〉 · ~̀n〉.∆ ′′′2 →→ E,Γ ` P′′2 | T ′〈N, ~̀n〉.∆ ′′2 →
→ E,Γ ` P′2 | T ′〈N, ~̀n〉.∆ ′2

ut

33

C.7 Proof for Lemma 5.2

Proof. We prove direction if ∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2 then Γ ` P1 .∆1 ≈s Γ `
P2 .∆2.

If Γ ` P1 .∆1
`−→ P′1 .∆ ′1 then P1

`−→ P′1 and (Γ ,∆1)
`−→ (Γ ′,∆ ′1).

From part 3 of Lemma C.5 we choose E such that (E,Γ ,∆1)
`−→ (E ′,Γ ′,∆ ′1). Since

∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2 it can now be implied that, E,Γ ` P1 .∆1
`−→ E ′,Γ `

P′1 .∆ ′1 implies, E,Γ ` P2 .∆2
`

=⇒ E ′,Γ ` P′2 .∆ ′2 implies, P2
`

=⇒ P′2 and (E,Γ ,∆2)
`

=⇒
(E ′,Γ ′,∆ ′2).

From part 1 of Lemma C.5 we get (Γ ,∆2)
`

=⇒ (Γ ′,∆ ′2) implies Γ ` P2 .∆2
`

=⇒ P′2 .∆ ′2
as required.

We prove direction if Γ ` P1 .∆1 ≈s Γ ` P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2.

Let E,Γ ` P1 .∆1
`−→ P′1 .∆ ′1 then

P1
`−→ P′1 (30)

(E,Γ ,∆1)
`−→ (E ′,Γ ′,∆ ′1) (31)

If Γ ` P1 .∆1
`−→ P′1 .∆ ′1 then P1

`−→ P′1,(Γ ,∆1)
`−→ (Γ ′,∆ ′1),Γ ` P2 .∆2

`−→ P′2 .∆ ′2
From the last implication we get

P2
`

=⇒ P′2 (32)

(Γ ,∆2)
`

=⇒ (Γ ′,∆ ′2) (33)
∆1
 ∆2 (34)

We apply part 2 of Lemma C.5 to 31 and 34 to get (E,Γ ,∆2)
`

=⇒ (E ′,Γ ′,∆ ′2). From the

last result and 32 we get E,Γ ` P2 .∆2
`

=⇒ E ′,Γ ` P′2 .∆ ′2.

C.8 Proof for theorem 5.3

Proof. We follow the requirement of part 3 of lemma C.5 to show that if P is simple
and Γ ` P.∆

`−→ Γ ` P′ .∆ ′ then ∃E ·E,Γ ` P.∆
`−→ E ′,Γ ` P′ .∆ ′.

From that point on we apply part 2 of lemma C.5 to get that if P1,P2 are simple and
∃E ·E,Γ ` P1 .∆1 ≈g P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2. By applying lemma
5.2 we are done. ut

D Output Asynchronous MSP

We extend the synchronous MSP to define the semantics for output asynchronous Mul-
tiparty Session π calculus. Semantics are based in the system developed in [3].

34

D.1 Syntax

P ::=
...
s[p][o :~h] (ConfigurationO)

h ::= [p](v) | [p]l | [p](s[q]) (Message)

We extend the syntax of synchronous MSP in Figure 2 with rule (ConfigurationO) to
define the output configuration construct for session endpoints. Output configurations
store messages~h (defined in rule (Message)). Message h has the general form [p](v) that
describes the passed value (i.e. v, l,s[q]) and the receiver role p. A process with no ses-
sion names (i.e it does not include free session names, session endpoint configurations
and session restriction), present in its syntax is called program.
Structural Congruence

...
s[p][o :~h · [q](v) · [q′](v′) ·~h]≡ s[p][o :~h · [q′](v′) · [q](v) ·~h] q 6= q′

(ν s[p])(s[p][o : ε])≡ 0

We extend structural congruence in Figure 11 to include message permutations in-
side output configurations. Messages are permuted upto structural congruence if their
recipients are different. The structural rule for message permutation is at the core of the
asynchronous behaviour of output asynchronous MSP. The second structural congru-
ence rule is used for garbage collection of inactive output configurations.

D.2 Operational Semantics
a[1](x).P1 | . . . | a[n](x).Pn −→o (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x} | s[p][o : ε] | . . . | s[n][o : ε]) [Link]

s[p][q]!〈v〉;P | s[p][o :~h] −→o P | s[p][o : [q](v) ·~h] [Send]

s[p][q]?(x);P | s[q][o :~h · [p](v)] −→o P{v/x} | s[q][o :~h] [Rcv]

s[p][q]?(x);P | s[q][o :~h · [p](s′[p′])] −→o P{s′[p′]/x} | s[q][o :~h] [Rcv-S]

s[p][q]⊕ l;P | s[p][o :~h] −→o P | s[p][o : [q]l ·~h] [Sel]

s[p][q]&{li : Pi}i∈I | s[q][o : [p]lk ·~h] −→o Pk | s[q][o :~h] [Bra]

Rule [Link] describes session initiation. All session participants should be present
before each participant p synchronously reduces to create a fresh role s[p] and the cor-
responding output configurations s[p][o : ε]. Session communication is described as
session configuration interactions. Rule [Send] describes an enqueue operation from
role s[p] of a value v as a message [q](v) in session configuration s[p][o :~h]. Dually
rule [Rcv] describes the dequeue operation and reception of a value v from role s[q] out
of session configuration s[q][o :~h · [p](va)]. The reception happens on the substitution
of value v on variable x on the continuation process of the receive action. Rule [Sel]
and [Bra] send and receive labels l interacting with the session endpoints (in a similar
way with rules [Send] and [Rcv] respectively) to perform select and branch operations
respectively. A branch operation upon the reception of a label, decides the continuation
of the process with respect to the label received. Operational semantics are completed
with the standard π calculus rules (cf. §2).

35

D.3 Typing System for Programs
We use the syntax and definitions for global types and local types as defined for the
synchronous MSP in §3.

We use global types described in Figure 4 (§3.1). We use the global and local pro-
jection definitions and duality defined in §3.2.

As in §3.3 use the definition of the typing judgement:

Γ ` e : S and Γ ` P.∆

We use the notion of coherency in Definition 3.3.
The typing rules for programs is the set of rules found in Figure 10 with the exclu-

sion of rule [SRes]. The typing rules description is found in §A. Note that the typing
system for output asynchronous MSP programs is identical to the typing system for
synchronous MSP processes without session restriction, since session restriction is not
included in program syntax.

D.4 Typing System for Runtime Processes
A runtime process is a closed output asynchronous multiparty session π calculus term.
We extend the typing system for programs to type output session configurations We
start by extending the linear session environment ∆ with the message type M:

∆ ::= ∆ · c[p] : T | so[p] : M | /0

where
M ::= /0 | [q]!〈U〉;M | [q]⊕ l;M

∆ is extended to include configuration endpoints so[p] mapped to the message type M.
A message type is defined as a sequence of output message types [q]!〈U〉 and select
message types [q]⊕ l.

We define a permutation relation over message types.

Definition D.1 (Message Type Permutation). Let p 6= q. We then define:

M; [p]!〈U〉; [q]!〈U ′〉;M′ ∼ M; [q]!〈U ′〉; [p]!〈U〉;M′

M; [p]⊕ li; [q]⊕ l j;M′ ∼ M; [q]⊕ l j; [p]⊕ li;M′

M; [p]!〈U〉; [q]⊕ l;M′ ∼ M; [q]⊕ l; [p]!〈U〉;M′

with ≈=∼ ∗.

A message type sequence can be permuted on two message types if they have dif-
ferent recipients. Message permutation is defined following the structural congruence
rule for message permutation.

We define a concatenation operator ∗ between message types M and local types
T . The result of the concatenation operator is a local type T . We use the concatenation
operator to reconstruct a complete local type T = M ∗ T ′out of the local type s[p] : T ′

of a process and the message type so[p] : M.

Definition D.2 (Message Type Concatenation).

/0 ∗ T = T [q]!〈U〉;M ∗ T = [q]!〈U〉;(M ∗ T) [q]⊕ l;M ∗ T = [q]⊕{li : M ∗ T}i∈I

36

The ∗ operates as follows: The message type prefix is used as a prefix for the resulting
local type. The operation proceeds inductively on the sequence of the message type to
reconstruct the session role local type.

We proceed with the definition of the runtime typing system:

Γ ` s[p][o : ε]. so[p] : /0 (QEmpty)

Γ ` P.∆ · so[p] : M M ≈M′

Γ ` P.∆ · so[p] : M′
(Equiv)

Γ ` s[p][o :~h].∆ · so[p] : M

Γ ` s[p][o : [q](v) ·~h].∆ · so[p] : [q]!〈S〉;M
(QVal)

Γ ` s[p][o :~h].∆ · so[p] : M

Γ ` s[p][o : [q]l ·~h].∆ · so[p] : [q]⊕ l;M
(QSel)

Γ ` s[p][o :~h].∆ · so[p] : M

Γ ` s[p][o : [q](s′[q′]) ·~h].∆ · so[p] : [q]!〈T 〉;M
(QDel)

Γ ` P1 .∆1 Γ ` P2 .∆2 dom(∆1)∪dom(∆2) = /0
Γ ` P1 | P1 .∆1 ·∆2

(QConc)

Γ ` P.∆ · s[1] : T1 · so[1] : M1 . . .s[n] : Tn · so[n] : Mn
co({s[1] : M1 ∗ T1 . . .s[n] : Mn ∗ Tn})

Γ ` (ν s)P.∆
(SRes)

In rule (QEmpty) we map empty session configurations to the empty message type
/0. Rule (QVal) (and rules (QSel),(QDel)) requires an inductive typing of the session
configuration so[p] without its message prefix [q](v) ([q]l, [q](s′[p′]) respectively) to get
the type mapping so[p] : M. The resulting message type for so[p] is prefixed with the
message type of value v together with the receiver q to get so[p] : [q]!〈U〉;M. For rule
(QSel) we prefix with the select message type [q]⊕ l and for rule (QDel) we prefix with
[q]!〈s′[p′]〉. The parallel operator in rule (Conc) is identical to the parallel operator for
programs and requires for disjoint linear session environments of the two operands. The
result typing is the union of the two linear session environments. Rule (Equiv) requires
that a runtime process can be typed upto message permutation. We use rule (SRes)
for restricting a session name. We first require to construct the local types for all the
session roles s[p] using the ∗ operator to concatenate the message type so[p]M and
s[p]T . Finally before we restrict we check the resulting local types to be coherent.

D.5 Type Soundness

We define the reduction semantics for local types. Since session environments repre-
sent the forthcoming communications, by reducing processes session environments can
change. This can be formalised as in [3, 10] by introducing the notion of reduction of
session environments, whose rules are:

37

Definition D.3 (Session Environment Reduction).

{s[p] : [q]!〈U〉;T · so[p] : M} −→o {s[p] : T · so[p] : [q]!〈U〉;M}
{s[q] : [p]?(U);T · so[p] : M; [p]!〈U〉} −→o {s[q] : T · so[p] : M}
{s[p] : [q]⊕{li : Ti}i∈I · so[p] : M} −→o {s[p] : Tk · so[p] : [q]⊕ lk;M}

{s[q] : [p]&{li : Ti}i∈I · so[p] : M; [p]⊕ lk} −→o {s[q] : Tk · so[p] : M}

We write→→=−→∗.

Definition D.4. Let session typing environment ∆ . We define

∗(∆) = {s[p] : T | s[p] : T ∈ ∆ ,so[p] /∈ dom(∆)}
∪ {so[p] : M | so[p] : M ∈ ∆ ,s[p] /∈ dom(∆)}
∪ {s[p] : Mo ∗ T | s[p] : T,so[p] : Mo ∈ ∆ ,si[p] /∈ dom(∆)}

The ∗(∆) operator reconstructs the local types for the session roles inside a linear
session environment. It uses the ∗ operator to concatenate roles so[p]M with s[p]T .
The resulting linear session environment is used for coherency checking in the subject
reduction theorem.

Lemma D.1. If co(∆ · s[p] : [q]!〈U〉;T) and s[q] /∈ dom(∆) then co(∆ · s[p] : T).

Proof. Let q′ 6= q and s[q′] : Tq′ ∈ ∆ . Then [q]!〈U〉;Tdq′ = Tdq′. Since s[q] /∈ dom(∆)
then for all s[q′] ∈ dom(∆) [q]!〈U〉;Tdq′ = Tdq′, so co(∆ · s[p] : T).

Theorem D.1 (Subject Reduction). Let Γ ` P.∆ with co(∗(∆)) and if P→→ P′ then
Γ ` P′ .∆ ′ with ∆ →→ ∆ ′ and co(∗(∆ ′)).

Proof. We apply induction on the length of the reduction →→. Induction is done by a
case analysis on the reduction rules.
Case: [Link]

P = a[p](x1).P1 | . . . | a[n](x).Pn. We apply typing rules [Accept], [Request], [Conc] to
get Γ ` P.∆ with co(∗(∆)).

P −→ P′ = (ν s)(P1{s[1]/x1} | . . . | Pn{s[n]/xn}) | s[1][o : ε] | . . . | s[n][o : ε]. We
apply typing rules [Accept], [Request],(Qemp), [Conc] to get Γ ` P .∆ · s[1] : T1 . . .s[n] :
Tn · so[1] : /0 · . . . · so[n] : /0. We apply (SRes) to get Γ ` P.∆ as required.
Case: [Send]

P= s[p][q]!〈v〉;P1 | s[p][o : h]. We type to get Γ `P.∆ with ∆ =∆1 ·s[p] : [q]!〈U〉;T ·
so[p] : M. ∗(∆) = ∗(∆1)∪{s[p] : M ∗ [q]!〈U〉;T}.

P −→ P′ = P1 | s[p][o : [q](v)h] with Γ ` P′ . ∆ ′ with ∆ ′ = ∆1 · s[p] : T · so[p] :
[q]!〈U〉;M. ∗(∆ ′) = ∗(∆1)∪{s[p] : M ∗ [q]!〈U〉;T}= ∗(∆) as required.

D.6 Behavioural Semantics for Output Asynchronous MSP
We extend the label definition ` in §4.1 to include action labels on output configurations:

` =
...

| so[p][q]!〈v〉 | so[p][q]!(v) | so[p][q]?〈v〉 | so[p][q]⊕ l | so[p][q]&l

38

Labels so[p][q]!〈v〉 and so[p][q]!(v) denote the output of value v (output of bound
value v) from session configuration so[p] to participant q. Dually action so[p][q]?〈v〉
denotes the reception of value v by session configuration so[p] send by participant q.
Actions so[p][q]⊕ l and so[p][q]&l respectively describe the send (select) and receive
(branch) of label l from participant p to participant q.

We use the definitions for role set A and max(A) from §4.1.
We define the duality relation � between labels:

a[A](s) � a[A′](s)
s[p][q]!〈v〉 �o so[p][q]?〈v〉 so[p][q]!〈v〉 �o s[q][p]?〈v〉
s[p][q]!(v) �o so[p][q]?〈v〉 so[p][q]!(v) �o s[q][p]?〈v〉
s[p][q]⊕ l �o so[p][q]&l so[p][q]⊕ l �o s[q][p]&l

Accept a[A](s) and request a[A′](s) labels are defined as dual. Process output ac-
tions s[p][q]!〈v〉 interact with the corresponding session configuration input actions
so[p][q]?〈v〉. Similarly for process bound output. Process input actions s[q][p]?〈v〉 in-
teract with the corresponding session configuration output action (so[p][q]!〈v〉) of the
receiver participant q. Similarly when the session configuration output action is bound.
Select and branching label duality follows the value send and receive semantics.

The labelled transition system is extended from the synchronous MSP LTS in Figure
5 (description in §4.1) to define actions on output session configurations.

〈QSendO〉 s[p][o : h · [q](v)] so[p][q]!〈v〉−→ s[p][o : h] 〈QRcvO〉 s[p][o : h]
so[p][q]?〈v〉−→ s[p][o : [q](v) ·h]

〈QSelO〉 s[p][o : h · [q]l] so[p][q]⊕l−→ s[p][o : h] 〈QBraO〉 s[p][o : h]
so[p][q]&l−→ s[p][o : [q]l ·h]

〈QOpenS〉 P
so[p][q]!〈s′[p′]〉−→ P′

(ν s[p])P
so[p][q]!(s′[p′])−→ P′

〈QOpenN〉 P
so[p][q]!〈a〉−→ P′

(ν a)P
so[p][q]!(a)−→ P′

Rule 〈QSendO〉 defines that a non-empty output configuration queue so[p] can per-
form an output action so[p][q]!〈v〉 and send (dequeue) a value v towards an observer
role q. Dually, using rule 〈QRcvO〉, it can perform an input action so[p][q]?〈v〉 to receive
(enqueue) a value v from role p. Similarly rules 〈QSelO〉 and 〈QBraA〉, describe the se-
lect and branch interactions on labels. Rules 〈QOpenS〉 and 〈QOpenN〉 respectively extend
scope opening using bound actions so[p][q]!(s′[p′]) and so[p][q]!(a) for output actions
so[p][q]!〈s′[p′]〉 and so[p][q]!〈a〉 on session configurations respectively.

Localisation - Environment Transition Relation A localised process is a typed pro-
cess that includes the corresponding output configurations for each free session role in
the process.

Definition D.5 (Localisation).

1. An environment ∆ is localised if ∀s[p] ∈ dom(∆),so[p] ∈ dom(∆).
2. P is localised if Γ ` P.∆ and ∆ is localised.

We define a labelled transition system over localised environments (Γ ,∆) which we
use for the definition of a typed transition system over typed processes.

39

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→o (Γ ,∆ · {s[p] : Gdp · so[p] : /0}p∈A)

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→o (Γ ,∆ · {s[p] : Gdp · so[p] : /0}p∈A)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ ,∆ · so[p] : M; [q]!〈U〉) so [p][q]!〈v〉−→o (Γ ,∆ · so[p] : M)

so[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈v〉−→o (Γ · v : U,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · so[p] : M; [q]⊕ lk)
so [p][q]⊕lk−→o (Γ ,∆ · so[p] : M)

so[q] :/∈ dom(∆) implies (Γ ,∆ · s[p] : [q]&{li : Ti})
s[p][q]&lk−→o (Γ ,∆ · s[p] : Tk)

a /∈ dom(Γ),s[q] /∈ dom(∆) implies (Γ ,∆ · so[p] : M; [q]!〈〈G〉〉) so [p][q]!(a)−→o (Γ ·a : 〈G〉,∆ · so[p] : M)

∆ −→ ∆ ′ ∨∆ = ∆ ′ implies (Γ ,∆)
τ−→ (Γ ,∆ ′)

Actions a[A](s) and a[A](s) extend a session environment to include type mapping
of the session roles included in A. Types for each role derive from the typing of a in
the shared environment Γ . Action so[p][q]!〈v〉 happens on a message type. The rule
checks for the type of v in the shared environment Γ to agree with the message type
for so[p]. Input action is s[p][q]?〈v〉 observed on local types. After the action, the shared
environment Γ is extended to include the received value. Similar with the send and re-
ceive actions are the select and branch actions respectively. Output actions on bounded
shared names so[p][q]!(a) check that a the shared name is not included in the shared en-
vironment Γ . Hidden actions τ follow the session environment reduction in Definition
D.3. Finally we can always observe a τ action on any environment without changing its
state. Environment LTS does not allow observable delegation actions. This is because a
delegation action may result in a non-localised linear session environment ∆ . However
internal delegation can happen using the τ action. Internal delegation always results
in a localised session environment. Finally we can always observe a τ action on any
environment without changing its state.

D.7 Governed Behavioural Semantics for Output Asynchronous MSP

We use the global environment E definition from §5.1.
Recall that out(λ) and inp(λ) as out(s : p→ q : U) = out(s : p→ q : l) = p and

as inp(s : p→ q : U) = inp(s : p→ q : l) = q and p ∈ ` if p ∈ out(`)∪inp(`).
We define the labelled reduction for global environments with respect to the defini-

tion of labelled reduction for global environments in §5.1

{s : G} `−→o {s : G′} q /∈ `

{s : p→ q : 〈U〉.G} `−→o {s : p→ q : 〈U〉.G′}

{s : Gi}
`−→o {s : G′i} i ∈ I q /∈ `

{s : p→ q : {li : Gi}i∈I}
`−→o {s : p→ q : {li : G′}i∈I}

We change the rules for permutation to subsume both output asynchrony and role
permutation with the two rules requiring that two sequenced actions can be permuted if
the receiver of the fist action is not the sender or the receiver of the second action.

We use Definition 5.2 for global configurations, the global environment LTS in Fig-
ure 7 (description in § 5.1) and Definition 5.4 for configuration transition as defined
using the global reduction for the output asynchronous MSP. We also prove that propo-
sition 5.2 holds for the output asynchronous MSP.

40

We define global configuration barbs:

(Γ ,∆ · so[p] : M; [q]!〈U〉,E) ↓s[p][q] if s[q] /∈ dom(∆),E
s:p→q:U−→

(Γ ,∆ · so[p] : [q]⊕ lk;M,E) ↓s[p][q] if s[q] /∈ dom(∆),E
s:p→q:lk−→ ,k ∈ I

(Γ ,∆ ,E) ↓a always

E Input Asynchronous MSP
We extend the synchronous MSP to define the semantics for input asynchronous Mul-
tiparty Session π calculus. Semantics are based in the system developed in [3].

E.1 Syntax

P ::=
...
s[p][i :~h] (ConfigurationI)

h ::= [p](v) | [p]l | [p](s[q]) (Message)

We extend the syntax of synchronous MSP in Figure 2 with rule (ConfigurationI)
to define the input configuration construct for session endpoints. Input configurations
store messages~h (defined in rule (Message)). Message h has the general form [p](v) that
describe the passed value (i.e. v, l,s[q]) and the sender role p. A process with no session
names (i.e it does not include free session names, session endpoint configurations and
session restriction), present in its syntax is called program.
Structural Congruence

...
s[p][i :~h · [q](v) · [q′](v′) ·~h]≡ s[p][i :~h · [q′](v′) · [q](v) ·~h] q 6= q′

(ν s[p])(s[p][i : ε])≡ 0

We extend structural congruence in Figure 11 to include message permutations in-
side input configurations. Messages are permuted upto structural congruence if their
senders are different. The structural rule for message permutation is at the core of the
asynchronous behaviour of output asynchronous MSP. The second structural congru-
ence rule is used for garbage collection of inactive output configurations.

E.2 Operational Semantics
a[1](x).P1 | . . . | a[n](x).Pn −→i (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x} | s[p][i : ε] | . . . | s[n][i : ε]) [Link]

s[p][q]!〈v〉;P | s[q][i :~h] −→i P | s[q][i : [p](v) ·~h] [Send]

s[p][q]?(x);P | s[p][i :~h · [q](v)] −→i P{v/x} | s[p][i :~h] [Rcv]

s[p][q]?(x);P | s[p][i :~h · [q](s′[p′])] −→i P{s′[p′]/x} | s[p][i :~h] [Rcv-S]

s[p][q]⊕ l;P | s[q][i :~h] −→i P | s[q][i : [p]l ·~h] [Sel]

s[p][q]&{li : Pi}i∈I | s[p][i : [q]lk ·~h] −→i Pk | s[p][i :~h] [Bra]

The key difference from the operational semantics definition in Appendix D.2 is
the use of input session configurations. Rule [Link] apart from session initiation it cre-
ates the corresponding input configurations s[p][i : ε]. Session communication is done

41

on the input session configuration basis. A participant p receives values from the corre-
sponding configuration si[p] (in contrast with output asynchronous MSP), while it sends
a value to the corresponding receiving si[q] configurations. Rule [Send] describes an en-
queue operation from role s[p] of a value v as a message [p](v) in session configuration
s[q][i :~h]. Dually rule [Rcv] describes the dequeue operation and reception of a value
v from role s[q] out of session configuration s[p][i :~h · [q](va)]. The reception happens
on the substitution of value v on variable x on the continuation process of the receive
action. There is a similar use for labels for rules [Sel] and [Bra]. The rest of the rules are
standard π-calculus rules (similar to the synchronous MSP in §2).

E.3 Typing System for Programs

The typing System for Programs is identical to the typing system for programs defined
for output asynchronous MSP in Appendix D.3

E.4 Typing System for Runtime Processes

A runtime process is a closed input asynchronous multiparty session π calculus term.
We extend the typing system for programs to type output session configurations (cf.
[13]). We start by extending the linear session environment ∆ with the message type M:

∆ ::= ∆ · c[p] : T | si[p] : M | /0

where

M ::= /0 | [q]?(U);M | [q]&l;M

∆ is extended to include configuration endpoints si[p] mapped to the message type M.
A message type is defined as a sequence of input message types [q]?(U) and branch
message types [q]&l.

We define a permutation relation over message types.

Definition E.1 (Message Type Permutation). Let p 6= q. We then define:

M; [p]?(U); [q]?(U ′);M′ ∼ M; [q]?(U ′); [p]?(U);M′

M; [p]&li; [q]&l j;M′ ∼ M; [q]&l j; [p]&li;M′ if
M; [p]?(U); [q]&l;M′ ∼ M; [q]&l; [p]?(U);M′

with ≈=∼ ∗.

A message type sequence can be permuted on two message types if they have dif-
ferent senders. Message permutation is defined following the structural congruence rule
for message permutation.

We define a concatenation operator ∗ between message types M and local types
T . The result of the concatenation operator is a local type T . We use the concatenation
operator to reconstruct a complete local type T = M ∗ T ′out of the local type s[p] : T ′

of a process and the message type si[p] : M of an input session configuration.

42

Definition E.2 (Message Type Concatenation). Let p 6= q. We define message con-
catenation rules:

/0 ∗ T = T
[q]?(U);M ∗ [q]?(U);T = M ∗ T

[q]&lk;M ∗ [q]&{li : Ti}i∈M = M ∗ Tk
[p]?(U ′);M ∗ [q]!〈U〉;T = [q]!〈U〉;([p]?(U ′);M ∗ T)

[p]&l;M ∗ [q]!〈U〉;T = [q]!〈U〉;([p]&l;M ∗ T)
[p]?(U);M ∗ [q]⊕{li : Ti}i∈I = [q]⊕{li : [p]?(U);M ∗ Ti}i∈I
[p]&l;M ∗ [q]⊕{li : Ti}i∈I = [q]&{li : [p]⊕ l;M ∗ Ti}i∈I
[p]?(U ′);M ∗ [q]?(U);T = [q]?(U);([p]?(U ′);M ∗ T)

[p]&l;M ∗ [q]?(U);T = [q]?(U);([p]&l;M ∗ T)
[p]?(U);M ∗ [q]&{li : Ti}i∈M = [q]&{li : [p]?(U);M ∗ Ti}i∈M
[p]&l;M ∗ [q]&{li : Ti}i∈M = [q]&{li : [p]&l;M ∗ Ti}i∈M

The message type prefix is used as a prefix for the resulting local type. The operation
proceeds inductively on the sequence of the message type to reconstruct the session role
local type.

We proceed with the definition of the runtime typing system:

Γ ` s[p][i : ε]. si[p] : /0 (QEmpty)

Γ ` s[p][i :~h].∆ · si[p] : M

Γ ` s[p][i : [q](v) ·~h].∆ · si[p] : [q]?(S);M
(QRcv)

Γ ` s[p][i :~h].∆ · si[p] : M

Γ ` s[p][i : [q]l ·~h].∆ · si[p] : [q]&l;M
(QBra)

Γ ` s[p][i :~h].∆ · si[p] : M

Γ ` s[p][i : [q](s′[q′]) ·~h].∆ · si[p] : [q]?(T);M
(QRcvS)

Γ ` P.∆ · si[p] : M M ≈M′

Γ ` P.∆ · si[p] : M′
(Equiv)

Γ ` P.∆ · s[1] : T1 · si[1] : M1 . . .s[n] : Tn · si[n] : Mn
co({s[1] : M1 ∗ T1 . . .s[n] : Mn ∗ Tn})

Γ ` (ν s)P.∆
(SRes)

We ignore the (QCong) which is identical to the rule (QCong) for the output asyn-
chronous message type system in Appendix E.4. Overall the message typing system
for input asynchronous MSP is very similar the message typing system for output asyn-
chronous MSP. The key difference is the sequence of input (resp. branch) message types
rather than the use of output (resp. select) message types.

E.5 Type Soundness

We define the reduction semantics for local types. Since session environments repre-
sent the forthcoming communications, by reducing processes session environments can
change. This can be formalised as in [3, 10] by introducing the notion of reduction of
session environments, whose rules are:

43

Definition E.3 (Session Environment Reduction).

{s[p] : [q]!〈U〉;T · si[q] : M} −→i {s[p] : T · si[q] : [p]?(U);M}
{s[q] : [p]?(U);T · si[q] : M; [p]?(U)} −→i {s[q] : T · si[q] : M}
{s[p] : [q]⊕{li : Ti}i∈I · si[q] : M} −→i {s[p] : Tk · si[q] : [p]⊕ lk;M}

{s[q] : [p]&{li : Ti}i∈I · si[q] : M; [p]⊕ lk} −→i {s[q] : Tk · si[q] : M}

We write→→=−→∗.

Definition E.4. Let session typing environment ∆ . We define

∗(∆) = {s[p] : T | s[p] : T ∈ ∆ ,si[p] /∈ dom(∆)}
∪ {si[p] : M | si[p] : M ∈ ∆ ,s[p] /∈ dom(∆)}
∪ {s[p] : Mi ∗ T | s[p] : T,si[p] : Mi ∈ ∆ ,si[p] /∈ dom(∆)}

The ∗(∆) operator reconstructs the local types for the session roles inside a linear
session environment. It uses the ∗ operator to concatenate roles si[p]M with s[p]T .
The resulting linear session environment is used for coherency checking in the subject
reduction theorem.

Lemma E.1. If co(∆ · s[p] : [q]!〈U〉;T) and s[q] /∈ dom(∆) then co(∆ · s[p] : T).

Proof. Let q′ 6= q and s[q′] : Tq′ ∈ ∆ . Then [q]!〈U〉;Tdq′ = Tdq′. Since s[q] /∈ dom(∆)
then for all s[q′] ∈ dom(∆) [q]!〈U〉;Tdq′ = Tdq′, so co(∆ · s[p] : T).

Theorem E.1 (Subject Reduction). Let Γ ` P.∆ with co(∗(∆)) and if P→→ P′ then
Γ ` P′ .∆ ′ with ∆ →→ ∆ ′ and co(∗(∆ ′)).

E.6 Behavioural Semantics for Input Asynchronous MSP
We extend the label definition ` in §4.1 to include action labels on input configurations:

` =
...

| si[p][q]!〈v〉 | si[p][q]!(v) | si[p][q]?〈v〉 | si[p][q]⊕ l | si[p][q]&l

Labels si[p][q]!〈v〉 and si[p][q]!(v) denote the output of value v (output of bound
value v) from session configuration si[p] to participant q. Dually action si[p][q]?〈v〉
denotes the reception of value v by session configurations si[p] sent by participant q.
Actions si[p][q]⊕ l and si[p][q]&l respectively describe the send (select) and receive
(branch) of label l from participant p to participant q.

We use the definitions for role set A and max(A) from §4.1.
We define the duality relation � between labels:

a[A](s) � a[A′](s)
s[p][q]!〈v〉 �i si[q][p]?〈v〉 si[p][q]!〈v〉 �i s[p][q]?〈v〉
s[p][q]!(v) �i si[q][p]?〈v〉 si[p][q]!(v) �i s[p][q]?〈v〉
s[p][q]⊕ l �i si[q][p]&l si[p][q]⊕ l �i s[p][q]&l

Accept a[A](s) and request a[A′](s) labels are defined as dual. Process output ac-
tions s[p][q]!〈v〉 interact with the corresponding session configuration input actions

44

si[q][p]?〈v〉. Similarly for process bound output. Process input actions s[q][p]?〈v〉 in-
teract with the corresponding session configuration output action (si[q][p]!〈v〉) of the
receiver participant q. Similarly when the session configuration output action is bound.
Select and branching label duality follows the value send and receive semantics.

The labelled transition system is extended from the synchronous MSP LTS in Figure
5 (description in §4.1) to define actions on output session configurations.

〈QSendI〉 s[p][i : h · [q](v)] si[p][q]!〈v〉−→ s[p][i : h] 〈QRcvI〉 s[p][i : h]
si[p][q]?〈v〉−→ s[p][i : [q](v) ·h]

〈QSelI〉 s[p][i : h · [q]l] si[p][q]⊕l−→ s[p][i : h] 〈QBraI〉 s[p][i : h]
si[p][q]&l−→ s[p][i : [q]l ·h]

〈QOpenS〉 P
si[p][q]!〈s′[p′]〉−→ P′

(ν s[p])P
si[p][q]!(s′[p′])−→ P′

〈QOpenN〉 P
si[p][q]!〈a〉−→ P′

(ν a)P
si[p][q]!(a)−→ P′

Rule 〈QSendO〉 defines that a non-empty input configuration queue si[p] can perform
an output action si[p][q]!〈v〉 and send (dequeue) a value v towards an observer role
q. Dually, using rule 〈QRcvO〉, it can perform an input action si[p][q]?〈v〉 to receive
(enqueue) a value v from role p. Similarly rules 〈QSelO〉 and 〈QBraA〉, describe the select
and branch interactions on labels. Rules 〈QOpenS〉 and 〈QOpenN〉 respectively extend
scope opening using bound actions si[p][q]!(s′[p′]) and so[p][q]!(a) for output actions
si[p][q]!〈s′[p′]〉 and si[p][q]!〈a〉 on session configurations respectively.

We define a context for global types:

Definition E.5 (Global Type Context).

T ::= − | [p]!〈U〉;T | [p]?(U);T |
[p]⊕{li : Ti}i∈I | [p]&{li : Ti}i∈I |
µX.T

Localisation - Environment Transition Relation A localised process is a typed pro-
cess that includes the corresponding output configurations for each free session role in
the process.

Definition E.6 (Localisation).

1. An environment ∆ is localised if ∀s[p] ∈ dom(∆),si[p] ∈ dom(∆).

2. P is localised if Γ ` P.∆ and ∆ is localised.

We define a labelled transition system over localised environments (Γ ,∆) which we
use for the definition of a typed transition system over typed processes.

45

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→i (Γ ,∆ · {s[p] : Gdp · si[p] : /0}p∈A)

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→i (Γ ,∆ · {s[p] : Gdp · si[p] : /0}p∈A)

Γ ` v : U,si[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!〈v〉−→i (Γ ,∆ · s[p] : T)

a /∈ dom(Γ),si[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!(a)−→i (Γ ·a : U,∆ · s[p] : T)

T ∗ M = T [[q]?(S);T ′] T not contain prefix on role q s[q] /∈ dom(∆)

(Γ ,∆ · s[p] : T · si[p] : M)
si[p][q]?〈v〉−→i (Γ · v : U,∆ · s[p] : T · si[p] : [q]?(S);M)

si[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈li : Ti〉;)
s[p][q]⊕lk−→i (Γ · v : U,∆ · s[p] : Tk)

T ∗ M = T [[q]&{li : Ti}] T not contain prefix on role q s[q] /∈ dom(∆)

(Γ ,∆ · s[p] : T · si[p] : M)
si[p][q]&lk−→i (Γ ,∆ · s[p] : T · si[p] : [q]⊕ lk;M)

∆ −→ ∆ ′ ∨∆ = ∆ ′ implies (Γ ,∆)
τ−→ (Γ ,∆ ′)

Actions a[A](s) and a[A](s) extend a session environment to include type mapping of
the session roles included in A. Types for each role derive from the typing of a in
the shared environment Γ . Action s[p][q]!〈v〉 happens on a local type. The rule checks
for the type of v in the shared environment Γ to agree with the local type for s[p].
Input action si[p][q]?〈v〉 is observed on message types. We expect the sending local
type not to be present in the session typing. After the action, the shared environment
Γ is extended to include the received value. Similar with the send and receive actions
are the select and branch actions respectively. Output actions on bounded shared names
s[p][q]!(a) check that a the shared name is not included in the shared environment Γ .
Hidden actions τ are defined with respect to to the session environment reduction in
Definition E.3. Environment LTS does not allow observable delegation actions. This
is because delegation a delegation action may result in a non-localised linear session
environment ∆ . However internal delegation can happen using the τ action. Internal
delegation always results in a localised session environment. Finally we can always
observe a τ action on any environment without changing its state.

E.7 Governed Behavioural Semantics for Input Asynchronous MSP

We use the global environment E definition from §5.1.
Recall that out(λ) and inp(λ) as out(s : p→ q : U) = out(s : p→ q : l) = p and

as inp(s : p→ q : U) = inp(s : p→ q : l) = q and p ∈ ` if p ∈ out(`)∪inp(`).
We define the labelled reduction for global environments with respect to the defini-

tion of labelled reduction for global environments in §5.1

{s : G} `−→i {s : G′} p,q /∈ out(`)

{s : p→ q : 〈U〉.G} `−→o {s : p→ q : 〈U〉.G′}

{s : Gi}
`−→i {s : G′i} i ∈ I p,q /∈ out(`)

{s : p→ q : {li : Gi}i∈I}
`−→o {s : p→ q : {li : G′i}i∈I}

We change the rules for permutation to subsume both input asynchrony and role
permutation with the two rules requiring that two sequenced actions can be permuted
if the sender or the receiver of the first action is different than the sender of the second
action.

46

We use Definition 5.2 for global configurations, the global environment LTS in Fig-
ure 7 (description in § 5.1) and Definition 5.4 for configuration transition as defined
using the global reduction for the input asynchronous MSP. We also prove that propo-
sition 5.2 holds for the input asynchronous MSP.

We define global configuration barbs:

(Γ ,∆ · s[p] : [q]!〈U〉;T,E) ↓s[p][q] if si[q] /∈ dom(∆),E
s:p→q:U−→

(Γ ,∆ · s[p] : [q]⊕{li : Ti}i∈I ,E) ↓s[p][q] if si[q] /∈ dom(∆),E
s:p→q:lk−→ ,k ∈ I

(Γ ,∆ ,E) ↓a always

F Input/Output Asynchronous MSP

Input/Output Asynchronous Multiparty Session π-calculus is defined as a mixture of
the semantics for output asynchronous MSP (§D) and input asynchronous MSP (§E).
Semantics are based in the system developed in [3].

F.1 Syntax

P ::=
...
s[p][o :~h] (ConfigurationO)
s[p][i :~h] (ConfigurationI)

The syntax is extended with both the output session configuration s[p][o :~h] (de-
scription in §D.1) and the input session configuration s[p][i :~h] (description §E.1). We
usually write s[p][i :~h,o : ~h′] for the concatenation of the process s[p][i :~h] | s[p][o : ~h′].
A process with no session names (i.e it does not include free session names, session
endpoint configurations and session restriction), present in its syntax is called program.

Structural Congruence

...
s[p][o :~h · [q](v) · [q′](v′) ·~h]≡ s[p][o :~h · [q′](v′) · [q](v) ·~h] q 6= q′

s[p][i :~h · [q](v) · [q′](v′) ·~h]≡ s[p][i :~h · [q′](v′) · [q](v) ·~h] q 6= q′

(ν s[p])(s[p][o : ε])≡ 0
(ν s[p])(s[p][i : ε])≡ 0

Structural congruence extends the structural congruence in figure 11 to include the
union of the rules for output asynchronous MSP (description in §D.1) and input asyn-
chronous MSP (description in §E.1).

47

F.2 Operational Semantics
a[1](x).P1 | . . . | a[n](x).Pn −→io

(ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x} | s[p][i : ε,o : ε] | . . . | s[n][i : ε,o : ε]) [Link]

s[p][q]!〈v〉;P | s[p][o :~h] −→io P | s[p][o : [q](v) ·~h] [Send]

s[p][q]?(x);P | s[p][i :~h · [q](v)] −→io P{v/x} | s[p][i :~h] [Rcv]

s[p][q]?(x);P | s[p][i :~h · [q](s′[p′])] −→io P{s′[p′]/x} | s[p][i :~h] [Rcv-S]

s[p][q]⊕ l;P | s[p][o :~h] −→io P | s[p][o : [q]l ·~h] [Sel]

s[p][q]&{li : Pi}i∈I | s[p][i :~h · [q]lk] −→io Pk | s[p][i :~h] [Bra]

s[p][o : [q](v) ·~h] | s[q][i : ~h′] −→io s[p][o :~h] | s[q][i : [p](v) ·~h′] [Comm]

F.3 Typing System for Programs

The session type system programs is identical with the session type system for output
asynchronous MSP (§D.3) and input asynchronous MSP (§E.3).

F.4 Typing System For Runtime processes

A runtime process is a closed input/output asynchronous multiparty session π calculus
term. We extend the typing system for programs to type output session configurations
(cf. [13]). The extension is a combination of the runtime typing definitions for output
asynchronous MSP (§D.4) and input asynchronous MSP (§E.4).

We start by extending the linear session environment ∆ with the message type M:

∆ ::= ∆ · c[p] : T | so[p] : M | si[p] : M | /0

where

M ::= O | I

O ::= /0 | [q]!〈U〉;O | [q]⊕ l;O

I ::= /0 | [q]?(U); I | [q]&l; I

∆ is extended to include configuration endpoints so[p],si[q] types, which is notation
so[p] mapped to the message type M. A message type is defined as a sequence of output
message types [q]!〈U〉 and select message types [q]⊕ l (§D.4). Or a sequence of input
message type [q]?(U) and branch message types [q]&l (§E.4).

We define a permutation relation over message types.

Definition F.1 (Message Type Permutation). Let∼o for the Definition D.1 and∼i for
the Definition E.1. We then define ∼=∼o ∪ ∼i. We write ≈=∼∗

An input/output message permutation is the union of output message permutation
and input message permutation. Message permutation is defined following the structural
congruence rule for message permutation.

We define a concatenation operator ∗ between message types M and local types
T . The result of the concatenation operator is a local type T . We use the concatenation
operator to reconstruct a complete local type T = M ∗ T ′out of the local type s[p] : T ′

of a process and the message type so[p] : M of an output session configuration.

48

Definition F.2 (Message Type Concatanation).

/0 ∗ T = T
[q]!〈U〉;O ∗ T = [q]!〈U〉;(O ∗ T) [q]⊕ l;O ∗ T = [q]⊕{li : O ∗ T}i∈I

[q]?(U); I ∗ [q]?(U);T = I ∗ T [q]&lk; I ∗ [q]&{li : Ti}i∈I = I ∗ T

I ∗ [q]!〈U〉;T = [q]!〈U〉;(I ∗ T) I 6= [q]?(U); I′, I 6= [q]&l; I′

I ∗ [q]⊕{li : Ti}i∈I = [q]⊕{li : I ∗ Ti}i∈I I 6= [q]?(U); I′, I 6= [q]&l; I′

I ∗ [q]?(U);T = [q]?(U);(I ∗ T) I 6= [q]?(U ′); I′

I ∗ [q]&{li : Ti}i∈I = [q]&{li : I ∗ Ti}i∈I I 6= [q]&l; I′

We proceed with the definition of the runtime typing system. The definition is the
union of the runtime typing rules for the output asynchronous MSP (§D.4) and input
asynchronous MSP (§E.4) , with the exception of the (SRes) which is redefined as:

Γ ` P.∆ · s[1] : T1 · so[1] : Mo
1 · si[1] : Mi

1 . . .s[n] : Tn · si[n] : Mo
n · si[1] : Mi

n
co({s[1] : Mo

1 ∗ (Mi
1 ∗ T1) . . .s[n] : Mo

n ∗ (Mi
n ∗ Tn)})

Γ ` (ν s)P.∆
[SRes]

We define the reduction semantics for local types. Since session environments rep-
resent the forthcoming communications, by reducing processes session environments
can change. This can be formalised as in [3, 10] by introducing the notion of reduction
of session environments, whose rules are:

Definition F.3 (Session Environment Reduction).

{s[p] : [q]!〈U〉;T · so[p] : M} −→io {s[p] : T · so[p] : [q]!〈U〉;M}
{s[p] : [q]?(U);T · si[p] : M; [q]?(U)} −→io {s[p] : T · si[p] : M}
{s[p] : [q]⊕{li : Ti}i∈I · so[p] : M} −→io {s[p] : Tk · si[p] : [q]⊕ l;M}

{s[p] : [q]&{li : Ti}i∈I · si[p] : M; [q]&lk} −→io {s[p] : Tk · si[p] : M}
∆ ∪∆ ′ −→ ∆ ∪∆ ′′ if ∆ ′ −→ ∆ ′′

We write→→=−→∗.

Definition F.4. Let session typing environment ∆ . We define

∗(∆) = {s[p] : T | s[p] : T ∈ ∆ ,si[p],so[p] /∈ dom(∆)}
∪ {sm[p] : M ∈ ∆ ,s[p] /∈ dom(∆)}
∪ {s[p] : Mo ∗ T | s[p] : T,so[p] : Mo ∈ ∆ ,si[p] /∈ dom(∆)}
∪ {s[p] : Mi ∗ T | s[p] : T,si[p] : Mi ∈ ∆ ,so[p] /∈ dom(∆)}
∪ {s[p] : Mo ∗ Mi ∗ T | s[p] : T,si[p] : Mi,so[p] : Mo ∈ ∆}

The ∗(∆) operator reconstructs the local types for the session roles inside a linear
session environment. It uses the ∗ operator to concatenate roles so[p]Mo,si[p]Mi with
s[p]T . The resulting linear session environment is used for coherency checking in the
subject reduction theorem.

Theorem F.1 (Subject Reduction). Let Γ ` P.∆ with co(∗(∆)) and if P→→ P′ then
Γ ` P′ .∆ ′ with ∆ →→ ∆ ′ and co(∗(∆ ′)).

49

F.5 Behavioural Semantics for Input/Output Asynchronous MSP
We use the union of the semantic theories for output asynchronous MSP (in Appendix
D.6) and input asynchronous MSP (in Appendix E.6) to define the behavioural theory
for input/output asynchronous MSP.

We extend the label definition ` in §4.1 with the union of the labels on input and
output configurations. to include action labels on input configurations.

We use the definitions for role set A and max(A) from §4.1.
We define the duality relation � between labels:

a[A](s) � a[A′](s)
s[p][q]!〈v〉 �io so[p][q]?〈v〉 si[p][q]!〈v〉 �io s[p][q]?〈v〉
s[p][q]!(v) �o so[p][q]?〈v〉 si[p][q]!(v) �io s[p][q]?〈v〉
s[p][q]⊕ l �o so[p][q]&l si[p][q]⊕ l �io s[p][q]&l

so[p][q]!〈v〉 �io si[q][p]?〈v〉 so[p][q]⊕ l �io si[q][p]&l

The duality relation on labels is a combination of the duality between process output
labels and output configuration input labels from the output asynchronous MSP defini-
tion and the duality between process input labels and input configuration output labels
from the input asynchronous MSP definition. We extend with the duality between input
and output configuration labels.

The labelled transition system is extended from the synchronous MSP LTS in Figure
5 (description in §4.1) with the union of the labelled transition semantics from the input
and output asynchronous MSP LTSs (Appendix D.6, E.6).

We use the Definition E.5 for global type context.
Localisation - Environment Transition Relation A localised process is a typed pro-
cess that includes the corresponding output configurations for each free session role in
the process.

Definition F.5 (Localisation).
1. An environment ∆ is localised if ∀s[p] ∈ dom(∆),si[p],so[p] ∈ dom(∆).
2. P is localised if Γ ` P.∆ and ∆ is localised.

We define a labelled transition system over localised environments (Γ ,∆) which we
use for the definition of a typed transition system over typed processes.

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→io (Γ ,∆ · {s[p] : Gdp · so[p] : /0 · si[p] : /0}p∈A)

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→io (Γ ,∆ · {s[p] : Gdp · so[p] : /0 · si[p] : /0}p∈A)

Γ ` v : U,si[q] /∈ dom(∆) implies (Γ ,∆ · so[p] : M; [q]!〈U〉) so [p][q]!〈v〉−→io (Γ ,∆ · so[p] : M)

a /∈ dom(Γ),si[q] /∈ dom(∆) implies (Γ ,∆ · so[p] : M; [q]!〈U〉) so[p][q]!(a)−→io (Γ ·a : U,∆ · so[p] : M)

T ∗ M = T [[q]?(S);T ′] T not contain prefix on role q so[q] /∈ dom(∆)

(Γ ,∆ · s[p] : T · si[p] : M)
si [p][q]?〈v〉−→io (Γ · v : U,∆ · s[p] : T · si[p] : [q]?(U);M)

si[q] /∈ dom(∆) implies (Γ ,∆ · so[p] : M; [q]⊕ lk)
so [p][q]⊕lk−→io (Γ ,∆ · so[p] : M)

T ∗ M = T [[q]&{li : Ti}] T not contain prefix on role q so[q] /∈ dom(∆)

(Γ ,∆ · s[p] : T · si[p] : M)
si [p][q]⊕lk−→io (Γ ,∆ · s[p] : T · si[p] : [q]⊕ lk;M)

∆ −→ ∆ ′ ∨∆ = ∆ ′ implies (Γ ,∆)
τ−→ (Γ ,∆ ′)

50

F.6 Governed Behavioural Semantics for Output Asynchronous MSP
We use the global environment E definition from section 5.1.

We define out(λ) and inp(λ) as out(s : p→ q : U) = out(s : p→ q : l) = p and
as inp(s : p→ q : U) = inp(s : p→ q : l) = q and p ∈ ` if p ∈ out(`)∪inp(`).

We define the labelled reduction for global environments with respect to the defini-
tion of labelled reduction for global environments in §5.1

{s : G} `−→io {s : G′} q /∈ `∨p,q /∈ out(`)

{s : p→ q : 〈U〉.G} `−→io {s : p→ q : 〈U〉.G′}

∀i ∈ I,{s : Gi}
`−→io {s : G′i} q /∈ `∨p,q /∈ out(`)

{s : p→ q : {li : Gi}}
`−→o {s : p→ q : {li : G′i}i∈I}

We change the rules for permutation to subsume both Input/output asynchrony and
role permutation with the two rules requiring that two sequenced actions can be per-
muted if either the condition from output asynchronous semantics holds, or the condi-
tion from input asynchronous semantics holds.

We use Definition 5.2 for global configurations, the global environment LTS in fig-
ure 7 (description in § 5.1) and Definition 5.4 for configuration transition as defined
using the global reduction for the input/output asynchronous MSP. We also prove that
proposition 5.2 holds for the input/output asynchronous MSP.

We define global configuration barbs:

(Γ ,∆ · so[p] : M; [q]!〈U〉,E) ↓s[p][q] if si[q] /∈ dom(∆),E
s:p→q:U−→

(Γ ,∆ · so[p] : [q]⊕ lk;M,E) ↓s[p][q] if si[q] /∈ dom(∆),E
s:p→q:lk−→ ,k ∈ I

(Γ ,∆ ,E) ↓a always

G Properties of MSP Behavioural Theory
Definition G.1 (α Multiparty Session π-calculus).

– We define Ps,P i,Po and P io as the set of processes for synchronous MSP, in-
put asynchronous MSP, output asynchronous MSP, and input/output asynchronous
MSP.

– Define α = s | i | o | io.
– Define a partial order v as: s < i,s < o, i < io,o < io.

We can map processes following the < ordering by allowing the uniform syntax
for input/output asyncronous MSP to be defined for all four calculi. Furhtermore we
need to use the uniform [Link] from the input/output asynchronous MSP definition. This
definition allows for the presence of both input and output session endpoints in all four
calculi. This is done without loss of generality since the rest of the semantic theory for
each calculus restricts the use of configuration endpoints accordingly.

Definition G.2. We define the reduction between a session name and a session endpoint
as −→b.

P−→b P′

if −→b derives from the reduction rules [Send], [Rcv], [Rcv-S], [Sel], [Bra], [Comm]. We
call −→b the session endpoint reduction.

51

Lemma G.1 (Session endpoint linearity). If Γ ` P1 .∆1 =⇒b Γ ` P2 .∆2 then Γ `
P1 .∆1 ≈ Γ ` P2 .∆2.

Proof. We are based on the fact that −→b is a linear transition. We define the relation
S = {(Γ ` P1 .∆1,Γ ` P2 .∆2)}∪R where R is the reflexive relation on the derivatives
of Γ ` P2 .∆2.

Because =⇒b is linear we can easily show that S is a bisimulation. ut

Lemma G.2. Let Γ ` P1 .∆1
`−→ Γ ` P′2 .∆ ′2 and Γ ` P1 .∆1 =⇒b Γ ` P′1 .∆ ′1. Then

Γ ` P′2 .∆ ′2 =⇒b Γ ` P2 .∆2 and Γ ` P′1 .∆ ′1
`−→ Γ ` P2 .∆2.

Proof. ut

Theorem G.1. Let P1,P2 ∈Pα and α v α ′

– If Γ `α P1 .∆ then Γ `α ′ P1 .∆ ′ and ∗(∆) = ∗(∆ ′)
– If Γ `α P1 .∆1 ≈α P2 .∆2 then Γ `α ′ P1 .∆ ′1 ≈α ′ P2 .∆ ′2.

Proof (Sketch). We use lemma G.1 to achieve the required result.
Case: α = s,α ′ = i
Let

S = {(P1,P2), | P1 ≈s P2}

We can show that if P1 S P2

1. Γ ` P1 .∆1
`−→Γ ` P′′1 .∆ ′′1 then Γ ` P2 .∆2

`
=⇒Γ ` P′2 .∆ ′2 and Γ ` P′′1 .∆ ′′1 =⇒b

Γ ` P′1 .∆ ′1 S Γ ` P′2 .∆ ′2.
2. The symmetric case.

From lemma G.1 we get that relation S is a bisimulation up-to =⇒b.
Case: α = s,α ′ = o
Let

S = {(P′1,P2),(P1,P′2) | P1 ≈s P2,P1 =⇒b P′1,P2 =⇒b P′2}

We can show that if P1 S P2

Case: `=−→b

Γ ` P1 .∆1
`−→ Γ ` P′1 .∆ ′1 then Γ ` P′1 .∆ ′1 S Γ ` P2 .∆2.

Case: otherwise

From lemma G.1 we can get that if Γ ` P1 .∆1
`−→Γ ` P′1 .∆ ′1 then Γ ` P2 .∆1

`−→
Γ ` P′2 .∆ ′2 and Γ ` P′1 .∆ ′1 S Γ ` P2 .∆2

Case: α ′ = io
We rely on similar arguments to prove that Γ ` P1 .∆1 =⇒b

`−→=⇒b Γ ` P′1 .∆ ′1 results
in a closed up-to =⇒b bisimulation relation.

ut

52

H Comparing Behaviour
We discuss asynchrony inside a global session protocol. Consider the global protocols:

E1 = s1 : 1→ 3 : 〈U〉.2→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈〉.end
E2 = s1 : 2→ 3 : 〈U〉.1→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈〉.end

E3 = s1 : 3→ 1 : 〈U〉.3→ 2 : 〈U〉.end · s2 : 1→ 2 : 〈〉.end
E4 = s1 : 3→ 1 : 〈U〉.3→ 2 : 〈U〉.end · s2 : 1→ 2 : 〈〉.end

E5 = s1 : 1→ 3 : 〈U〉.3→ 2 : 〈U〉.end · s2 : 1→ 2 : 〈〉.end
E6 = s1 : 3→ 2 : 〈U〉.1→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈〉.end

Protocols E1,3,E5 implement a sequential behaviour on role 3 from roles 1 and 2
and respectively protocols E2,E4,E6 implement the permutation of protocols E1,3,E5.
As a result roles 1 and 2 project to the same local type (i.e can have the same imple-
mentation) for a protocol and its permutation. We say that protocols E1,E2 implement
an input permutation E3,E4 implement an output permutation and E5,E6 implement an
input/output permutation. We can consider the following partial implementations:

P1 = s1[1][3]!〈v〉;0 | s1[2][3]!〈v〉;0
P3 = s1[1][3]?(v);0 | s1[2][3]?(v);0
P5 = s1[1][3]!〈v〉;0 | s1[2][3]?(v);0

Considering, respectively, minimal localisation on processes P1,P2,P3, we can ob-
serve either of the two actions on the parallel composition with respect to non-govern
typed transition semantics for all calculi defined, since their is no sequence on the
parallel composition. Intuitively we would like to impose a sequence on the two ac-
tions of each of the processes. We use a global sequencing protocol with the type
E = 1→ 2 : 〈〉.end to perform sequencing.

P2 = s1[1][3]!〈v〉;s2[1][2]!〈〉;0 | s2[2][1]?();s1[2][3]!〈v〉;0
P4 = s1[1][3]?(v);s2[1][2]!〈〉;0 | s2[2][1]?();s1[2][3]?(v);0
P6 = s1[1][3]!〈v〉;s2[1][2]!〈〉;0 | s2[2][1]?();s1[2][3]?(v);0

Note that processes P2,P4,P6 are consistent with the protocols E1 and E2, E3 and E4,
E5 and E6 respectively. We want to study the behaviour of sequenced and not sequenced
process with respect to synchronous and asynchronous semantics.

P1 6≈s P2 P3 6≈s P4 P5 6≈s P6
P1 ≈o P2 P3 ≈o P4 P5 6≈o P6
P1 ≈i P2 P3 ≈i P4 P5 6≈i P6
P1 ≈io P2 P3 ≈io P4 P5 6≈io P6

As expected in the synchronous multiparty session π-calculus, their is a behavioural
distinction between the pairs of processes in the synchronous case. In the asynchronous
case we observe the same results for input and output permutations for all three asyn-
chronous calculi. There is though behavioural distinction for pairs P5 and P6 (i.e. for
input/output permutation). Note that P6 can simulate the behaviour of P5.

53

Results for asynchronous input and output permutations inside a global protocol
affect the governed asynchronous theory, following theorem 5.2. Surprisingly protocol
permutations in either of the governed asynchronous calculi makes no difference in the
equivalence.

In the case of behavioural distinction we can govern the behaviour of processes to
achieve behavioural equivalence:

E2 ` P1 6≈s
g P2 E4 ` P3 6≈s

g P4 E6 ` P5 6≈s
g P6

E1 ` P1 ≈s
g P2 E3 ` P3 ≈s

g P4 E4 ` P5 ≈s
g P6

E5 ` P5 ≈o
g P6 E5 ` P5 ≈i

g P6 E5 ` P5 ≈io
g P6

E6 ` P5 6≈o
g P6 E6 ` P5 6≈i

g P6 E6 ` P5 6≈io
g P6

So far we have seen the asynchronous multiparty π-calculi to exhibit the same be-
haviour on permutation patterns inside a global protocol. To demonstrate a distinction
let:

P1 = s[3][1]?(v);s[3][2]?(v);0 P2 = s[3][2]?(v);s[3][1]?(v);0
P3 = s[3][1]!〈v〉;s[3][2]!〈v〉;0 P4 = s[3][2]!〈v〉;s[3][1]!〈v〉;0

with

P1 6≈s P2 P1 6≈o P2 P1 ≈i P2 P1 ≈io P2
P3 6≈s P4 P3 ≈o P4 P3 6≈i P4 P3 ≈io P4

to distinct between the output, input and input/output asynchronous multiparty π calcu-
lus. We cannot govern the behaviour of each pair with the same protocol. The governed
behavioural results follow the same pattern as the non-governed equivalences:

E1 ` P1 6≈s E2 ` P2 E1 ` P1 ≈o E2 ` P2 E1 ` P1 6≈i E2 ` P2 E1 ` P1 ≈io E2 ` P2
E3 ` P3 6≈s E4 ` P4 E3 ` P3 6≈o E4 ` P4 E3 ` P3 ≈i E4 ` P4 E3 ` P3 ≈io E4 ` P4

The above distinction between asynchronous multiparty session π-calculus, also
holds by permutation between different session channels. Consider:

P1 = s1[1][2]!〈v〉;s2[1][2]!〈v〉;0 P2 = s2[1][2]!〈v〉;s1[1][2]!〈v〉;0
P3 = s1[1][2]?(v);s2[1][2]?(v);0 P4 = s2[1][2]?(v);s1[1][2]?(v);0

and

P1 6≈s P2 P1 ≈o P2 P1 6≈i P2 P1 ≈io P2
P3 6≈s P4 P3 6≈o P4 P3 ≈i P4 P3 ≈io P4

Input and output asynchronous semantics do not distinguish between input and out-
put permutations, respectively, between different global protocols, while input/output
asynchronous semantics allow both input and output permutations.

54

An example that shows the govern equivalence distinction between the different
asynchronous calculi:

P1 = s1[2][1]!〈v1〉;s2[3][1]!〈v2〉;(s2[1][3]!〈v3〉;0 | s2[2][3]?(x);0)
P2 = s2[3][1]!〈v2〉;s1[2][1]!〈v1〉;(s2[1][3]!〈v3〉;s3[1][2]!〈v4〉;0 | s3[2][1]?(y);s2[2][3]?(x);0)

P3 = s1[2][1]?(z1);s2[3][1]?(z2);(s2[1][3]!〈v3〉;0 | s2[2][3]?(x);0)
P4 = s2[3][1]?(z2);s1[2][1]?(z1);(s2[1][3]!〈v3〉;s3[1][2]!〈v4〉;0 | s3[2][1]?(y);s2[2][3]?(x);0)

and

E1 = s1 : 2→ 1 : 〈U1〉.end · s2 : 3→ 1 : 〈U2〉.1→ 3 : 〈U3〉.3→ 2 : 〈U4〉.end · s3 : 1→ 2 : 〈U5〉.end
E2 = s1 : 2→ 1 : 〈U1〉.end · s2 : 3→ 1 : 〈U2〉.3→ 2 : 〈U4〉.1→ 3 : 〈U3〉.end · s3 : 1→ 2 : 〈U5〉.end

E3 = s1 : 1→ 2 : 〈U1〉.end · s2 : 1→ 3 : 〈U2〉.1→ 3 : 〈U3〉.3→ 2 : 〈U4〉.end · s3 : 1→ 2 : 〈U5〉.end
E4 = s1 : 1→ 2 : 〈U1〉.end · s2 : 1→ 3 : 〈U2〉.3→ 2 : 〈U4〉.1→ 3 : 〈U3〉.end · s3 : 1→ 2 : 〈U5〉.end

with

E1 ` P1 ≈o
g P2 E1 ` P1 6≈i

g P2 E1 ` P1 ≈io
g P2

E2 ` P1 6≈o
g P2 E2 ` P1 6≈i

g P2 E2 ` P1 6≈io
g P2

E3 ` P3 6≈o
g P4 E3 ` P3 ≈i

g P4 E3 ` P3 ≈io
g P4

E4 ` P3 6≈o
g P4 E4 ` P3 6≈i

g P4 E4 ` P3 6≈io
g P4

I Usecase from OOI
We tested the real world usecase UC.R2.13 “Acquire Data From Instrument” from the
Ocean Observatories Initiative (OOI) [14] Use Case library (Release 2). In this usecase,
a user program (U) is connected to the Integrated Observatory Network (ION), which
provides the infrastructure between users and remote sensing instruments. The user
requests, via an ION agent service (A), the acquisition of data from an instrument (I).
In the implementation, the ION agent (A) is realised by two sub ION agents (A1 and A2)
which internally interact and synchronise together.

We are able to reason that the behaviour of A1 and A2 is equated by A by≈s
g applying

the thread transformation in Example 5.2.
We explain here with more detailed examples.

I.1 Usecase scenario 1
Suppose the scenario where a user program (U) wants to acquire data from the instru-
ment (I) and at the same time acuire processed data from a agent service (A1). The
communication between an agent (A) and an instrument happens on a separate private
session.

– A new session connection s1 is established between (U), (I) and (A).
– A new session connection s2 is established between (A) and (I).
– (I) sends raw data through s2 to (A).
– (A) sends processed data (format 1) through s1 to (U).

55

– (A) sends acknowledgement through s2 to (I).
– (I) sends processed data (format 2) through s1 to (U).

The above scenario is implemented as follows:

I | A |U

where

I = a[i](s1).b[i](s2).s2[i][a1]!〈rd〉;s2[i][a1]?(x);s1[i][u]!〈pd〉;0
A = a[a1](s1).b[a1](s2).s2[a1][i]?(x);s1[a1][u]!〈pd〉;s2[a1][i]!〈ack〉;0
U = a[u](s1).s1[u][a1]?(x);s1[u][i]?(y);0

and i is the instrument role, a1 is the agent role and u is the user role.

I.2 Usecase scenario 2
Use case scenario 1 implementation requires from the instrument program to process
raw data in a particular format (format 2) before sending them to the user program. On
a more fine-grain level the instrument program invokes an agent service to process the
raw data into the desired data format.

To capture this in a more modular and fine-tuned implementation we assume a sce-
nario with the user program (U), the instrument (I) and agents (A1) and (A2)

– A new session connection s1 is established between (U), (A1) and (A2).
– A new session connection s2 is established between (A1), (A2) and (I).
– (I) sends raw data through s2 to (A1).
– (I) sends raw data through s2 to (A2).
– (A1) sends processed data (format 1) through s1 to (U).
– (A1) sends acknowledgement through s2 to (I).
– (A2) sends processed data (format 2) through s1 to (U).
– (A2) sends acknowledgement through s2 to (I).

The process is now refined as

I′ | A1 | A2 |U

where

I′ = a[i′](s1).b[i′](s2).s2[i
′][a1]!〈rd〉;s2[i

′][a2]!〈rd〉;s2[i
′][a1]?(x);s2[i

′][a2]?(y);0
A1 = a[a1](s1).b[a2](s2).s2[a1][i

′]?(x);s1[a1][u]!〈pd〉;s2[a1][i
′]!〈ack〉;0

A2 = a[a2](s1).b[a2](s2).s2[a2][i
′]?(x);s1[a2][u]!〈pd〉;s2[a2][i

′]!〈ack〉;0
U = a[u](s1).s1[u][a1]?(x);s1[u][a2]?(y);0

and i′ is the instrument role, a1 and a2 are the agent roles and u is the user role. Further-
more for session s1 we have that i (from scenario 1) = a2, since we want to maintain
the session s1 as it is defined in the scenario 1.

56

I.3 Bisimulations
The two scenarios of the ”acquire data from instrument” protocol were implemented
with respect to the user process. Under the assumption that i = a2 we have the same
user process for both scenarios.

Having the user process as the observer we can see that processes

A |U
A1 | A2 |U

are not bisimilar since (recall that i= a2)

A1 | A2 |U =⇒s1[a2][u]!〈pd〉−→ and A |U =⇒
s1[i][u]〈pd〉
6−→ .

The two processes though are equivalent and interchangable under governed seman-
tics.

We begin with the definition of the global environment.

= s1 : a1→ u : 〈PD〉.a2→ u : 〈PD〉.

The global protocol governs processes A |U and A1 |A2 |U to always observe action
s1[a2][u]!〈pd〉−→ after action

s1[a1][u]!〈pd〉−→ for both processes.
Note that the global protocol for s2 is not present in the global environment since s2

after its creation is restricted.

57

