
Multiparty Asynchronous Session Types

Kohei Honda
Queen Mary, University of London

kohei@dcs.qmul.ac.uk

Nobuko Yoshida
Imperial College London
yoshida@doc.ic.ac.uk

Marco Carbone
Queen Mary, University of London

carbonem@dcs.qmul.ac.uk

Abstract
Communication is becoming one of the central elements in soft-
ware development. As a potential typed foundation for structured
communication-centred programming, session types have been
studied over the last decade for a wide range of process calculi and
programming languages, focussing on binary (two-party) sessions.
This work extends the foregoing theories of binary session types
to multiparty, asynchronous sessions, which often arise in practical
communication-centred applications. Presented as a typed calculus
for mobile processes, the theory introduces a new notion of types in
which interactions involving multiple peers are directly abstracted
as a global scenario. Global types retain a friendly type syntax of
binary session types while capturing complex causal chains of mul-
tiparty asynchronous interactions. A global type plays the role of a
shared agreement among communication peers, and is used as a ba-
sis of efficient type checking through its projection onto individual
peers. The fundamental properties of the session type discipline
such as communication safety, progress and session fidelity are
established for general n-party asynchronous interactions.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Semantics of Pro-
gramming Languages]: Process models

General Terms Theory, Types, Design

Keywords communications, multiparty, structured programming,
session types, mobile processes, causality, choreography

1. Introduction
Backgrounds Communication is becoming one of the central
elements in software development, ranging from web services
to business protocols to parallel scientific computing to multi-
core programming. As a potential typed foundation for struc-
tured communication-centred programming, session types have
been studied in many contexts over the last decade, including
calculi of mobile processes (Takeuchi et al. 1994; Gay and Hole
2005; Honda et al. 1998; Bonelli and Compagnoni 2008), higher-
order processes (Mostrous and Yoshida 2007), Ambients (Gar-
ralda et al. 2006), multi-threaded ML (Vasconcelos et al. 2006),
Haskell (Neubauer and Thiemann 2004b), F# (Corin et al. 2007),
operating systems (Fähndrich et al. 2006), Java (Dezani-Ciancaglini
et al. 2006; Coppo et al. 2007; Hu et al. 2007), and Web Ser-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

vices (Carbone et al. 2006, 2007; WS-CDL; Sparkes 2006; Honda
et al. 2007a). A basic observation underlying session types is that
a communication-centred application often exhibits a highly struc-
tured sequence of interactions involving, for example, branching
and recursion, which as a whole form a natural unit of conversa-
tion, or session. The structure of a conversation is abstracted as a
type through an intuitive syntax, which is then used as a basis of
validating programs through an associated type discipline.

As an example, the following session type describes a simple
business protocol between Buyer and Seller from Buyer’s view-
point: Buyer sends the title of a book (a string), Seller sends a quote
(an integer). If Buyer is satisfied by the quote, then sends his ad-
dress (a string) and Seller sends back the delivery date (a date);
otherwise it quits the conversation.

!string; ?int;⊕{ok :!string; ?date;end, quit : end} (1)

Above !t denotes an output of a value of type t, dually for ?t; ⊕
denotes a choice of the options; and end represents the termination
of the conversation.

Such explicit representation of conversation structures helps us
deal with one of the most common bugs in programming with com-
munication, the synchronisation bugs. A programmer expects that
communicating programs should together realise a consistent con-
versation, but they easily fail to handle a specific incoming mes-
sage or to send a message at the correct timing, with no way to
detect such errors before runtime. An explicit specification as in
(1) guides principled programming of communication behaviour
and enables automatic protocol validation (WS-CDL; UNIFI; Hu
et al. 2007). In addition, a clean separation between abstraction
and implementation given by type-based abstraction and associated
primitives leads to intelligible programs and flexible implementa-
tions (Hu et al. 2007). Underlying these merits are the following
central properties guaranteed by session types.

1. Interactions within a session never incur a communication error
(communication safety).

2. Channels for a session are used linearly (linearity) and are
deadlock-free in a single session (progress).

3. The communication sequence in a session follows the scenario
declared in the session type (session fidelity, predictability).

Multiparty Asynchronous Sessions The foregoing studies on
session types have focussed on binary (two-party) sessions. While
many conversation patterns can be captured through a composi-
tion of binary sessions, there are cases where binary session types
are not powerful enough for describing and validating interactions
which involve more than two parties.

As an example, let us consider a simple refinement of the above
Buyer-Seller protocol: consider two buyers, Buyer1 and Buyer2,
wish to buy an expensive book from Seller by combining their
money. Buyer1 sends the title of the book to Seller, Seller sends
to both Buyer1 and Buyer2 its quote, Buyer1 tells Buyer2 how

273

much she can pay, and Buyer2 either accepts the quote or receives
the quote by notifying Seller. It is extremely awkward (if logically
possible) to decompose this scenario into three binary sessions, be-
tween Buyer1 and Seller, between Buyer2 and Seller, and between
Buyer1 and Buyer2. Abstracting this protocol as three separate ses-
sion types also means that our type abstraction loses essential se-
quencing information in this interaction scenario. For validating
this conversation scenario as a whole, therefore, the conversation
structure should be represented as a single session.

Many existing business protocols including financial protocols
are written as a collaboration of several peers. Typical message-
passing parallel algorithms also frequently demand distribution of
a request to, and collection of the results from, many peers. All
these usecases are most naturally abstracted as a single session.
Furthermore, many of these applications are implemented with an
asynchronous transport where the senders send the messages with-
out being blocked (but often preserving their order), to avoid the
heavy overhead of synchronisation. The widely used network trans-
port, such as TCP, provides this mechanism through familiar APIs
to alleviate the latency problem. Thus we ask: can we generalise the
foregoing binary session types to multiparty asynchronous sessions
preserving clarity and their key formal properties? This question
was repeatedly posed by not only researchers but also the members
of a W3C working group (WS-CDL) through our collaboration as
invited experts (Honda et al. 2007a; Carbone et al. 2006, 2007), be-
cause of urgent need for a theoretical basis to validate a wide range
of business protocols.

Challenges of Multiparty Asynchronous Sessions To answer
this open question, we face two major technical difficulties. First,
simplicity and tractability of the theory of binary sessions come
from a notion of duality in interactions (Girard 1987). Consider the
binary session type given in (1) for Buyer. Not only Buyer’s be-
haviour can be checked against the session type, but also the whole
conversation structure is already represented in this single type,
since the interaction pattern of Seller is fully given as this type’s
dual (exchanging input and output and branching and selection in
the original type). When composing two parties, we only have to
check they have mutually dual types. This framework based on du-
ality is no longer effective in multiparty sessions where the whole
conversation cannot be constructed from only single behaviour.
We need an effective means to abstract as a type a global scenario
which a programmer wishes to realise through interacting programs
(hence against which she would wish to check their correctness),
and establish an effective method to ensure composability.

Second, linearity analysis of channels, which is the key to en-
sure safety and progress, becomes highly involved under a com-
bination of asynchrony and multiparty since a conflict of actions
can arise more easily. This demands a precise causal analysis for
correct sequencing of interactions distributed among multi-peers.

This Work. This paper presents a generalisation of binary session
types to multiparty sessions for the π-calculus. We overcome the
aforementioned challenges with the following three technical ap-
paratus:

1. A new notion of types which can directly abstract intended con-
versation structure among n-parties as global scenarios, retain-
ing intuitive type syntax.

2. Consistency criteria for a conversation structure given as a
causality analysis of actions in global types, modularly artic-
ulating different kinds of dependency.

3. A type discipline for individual processes (programs) which
uses a global type through its projection onto individual local
participants: the resulting local types are directly associated
with individual processes for efficient type checking.

The idea of type abstraction based on a global view (Point 1)
comes from an abstract version of “choreography” developed in a
W3C web services working group (Carbone et al. 2006; WS-CDL).
Causality structures in asynchronous interactions are precisely and
modularly captured in the abstract setting of global types, offering
a foundation for the type discipline (Point 2). Through the use of
global types, we can stipulate a new effective method for designing
and type-checking multiparty sessions (Point 3). First, we design a
global type G as an intended scenario. A team of programmers then
develop code, one for each participant, incrementally validating its
conformance to (the projection of) G. When programs are executed,
their interactions automatically follow the stipulated scenario. For
materialising this design framework, we propose a type discipline
which can validate whether a program is typable or not, given
G (as shared agreement) and an individual program (as its local
realiser). The resulting type discipline guarantees all the original
key properties, such as communication error freedom, progress and
fidelity in a session among multiparty.

In the remainder, Section 2 gives the syntax and semantics of
the calculus, and motivates the key ideas through business and
streaming protocol examples. Section 3 explains the global types.
Section 4 describes the typing system. Section 5 establishes the
main results. Section 6 gives extensions and related works. Section
7 concludes with future issues. The omitted definitions, proofs and
large size of examples are left in (Honda et al. 2007b).

2. Multiparty Asynchronous Sessions
2.1 Syntax for Multiparty Sessions

Several versions of the π-calculi with session types are proposed
in the literature; the paper (Yoshida and Vasconcelos 2007) offers
detailed discussions and analysis of their typing systems. We use
a simple extension of the original language in (Honda et al. 1998;
Takeuchi et al. 1994) to multiparty sessions.

Informally, a session is a series of interactions which serve
as a unit of conversation. A session is established among multi-
ple parties via a shared name, which represents a public interac-
tion point. Then fresh session channels are generated and shared
through which a series of communication actions are performed.

We use the following base sets: shared names or names, ranged
over by a,b, x,y,z, . . . ; session channels or channels, ranged over by
s, t, ...; labels, ranged over by l, l′, . . . ; and process variables, ranged
over by X,Y, In the syntax for hiding, we use n for either a
single shared name or a vector of session channels. Then processes,
ranged over by P,Q . . . , and expressions, ranged over by e,e′, . . . ,
are given by the grammar in Figure 1.

Except for the first two primitives for session initiation and the
final message queue, all constructs are from (Honda et al. 1998).
The prefix a[2..n] (s̃).P initiates a new session through a shared
interaction point a, by distributing a vector of freshly generated
session channels s̃ to the remaining n−1 participants, each of shape
a[p] (s̃).Qp for 2≤ p≤ n. All receive s̃, over which the actual session
communications can now take place among the n parties. p, q,...
range over natural numbers called participants of a session.

Session communications are performed using the next three
pairs of primitives: the sending and receiving, the session delega-
tion and reception (the former delegates to the latter the capability
to participate in a session by passing the whole channels associ-
ated with the session), and the selection and branching (the former
chooses one of the branches offered by the latter). The next three
(the conditional, parallel and inaction) are standard. (νa)P makes a
local to P while (νs̃)P makes s̃ local to P. The recursion and process
call realise recursive behaviour. s : h̃ is a message queue represent-
ing ordered messages in transit h̃ with destination s (which may be
considered as a network pipe in a TCP-like transport). (νs̃)P and

274

Figure 1 Syntax

P ::= a[2..n] (s̃).P multicast session request

| a[p] (s̃).P session acceptance

| s!〈ẽ〉; P value sending

| s?(x̃); P value reception

| s!〈〈s̃〉〉; P session delegation

| s?((s̃)); P session reception

| s� l; P label selection

| s� {li : Pi}i∈I label branching

| if e then P else Q conditional branch

| P | Q parallel composition

| 0 inaction

| (νn)P hiding

| def D in P recursion

| X〈ẽs̃〉 process call

| s : h̃ message queue

e ::= v | e and e′ | not e ... expressions

v ::= a | true | false values

h ::= l | ṽ | s̃ messages-in-transit

D ::= {Xi(x̃i s̃i) = Pi}i∈I declaration for recursion

s : h̃ only appear at runtime. We often omit trailing 0 and write s!
and s?.P, omitting the arguments if unnecessary.

Binders are s̃ in a[2..n] (s̃).P, a[p] (s̃).P and s?((s̃)); P, x̃ in s?(x̃); P,
x̃s̃ in X(x̃s̃) = P, n in (νn)P and process variables in def D in P. The
notions of bound and free identifiers, channels, alpha equivalence
≡α and substitution are standard. fpv(P) and fn(P), respectively
denote the sets of free process variables and free identifiers in P.
dpv({Xi(x̃i s̃i) = Pi}i∈I) denotes the set of process variables {Xi}i∈I
introduced in {Xi(x̃i s̃i) = Pi}i∈I . A sequence of parallel composition
is written ΠiPi.

2.2 Operational Semantics

Structural congruence is the smallest congruence relation on pro-
cesses that includes the equations in Figure 2. The operational se-
mantics is given by the reduction relation, denoted P→ Q, which
is the smallest relation on processes generated by the rules in Fig-
ure 3. In the figure, e ↓ v says that expression e evaluates to values v.

[Link] describes a session initiation among n-parties through
synchronisation, generating m fresh session channels and the asso-
ciated m empty queues (∅ denotes the empty string). As a result n
participants now share the newly generated m channels, hence their
queues. Note the number of threads (n) can be different from that
of session channels (m), giving flexibility in channel usage.

[Send], [Deleg] and [Label] respectively enqueue values, chan-
nels and a label at the tail of the queue for s. [Recv], [SRec]1 and
[Branch] dequeue, at the head of the queue, values, channels and
a label. [Branch] further selects the corresponding branch. Since
[Link] provides a queue for each channel, these rules say that a
sending action is never blocked (asynchrony) and that two mes-
sages from the same sender to the same channel arrive in the send-
ing order (order preservation). Other rules are standard.

1 This delegation rule (which is from (Honda et al. 1998)) is chosen over the
more liberal one in (Gay and Vasconcelos 2007; Yoshida and Vasconcelos
2007) (which uses substitution as in [Recv]) for simpler presentation. The
technical development does not depend on this choice, see §6.2.

Figure 2 Structural congruence.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νn)P | Q ≡ (νn)(P | Q) if n � fn(Q) (νnn′)P ≡ (νn′n)P

(νn)0 ≡ 0 def D in 0 ≡ 0 (ν s1..sn)Πi si :∅ ≡ 0

def D in (νn)P ≡ (νn)def D in P if n � fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = ∅
def D in (def D′ in P) ≡ def D and D′ in P if dpv(D)∩dpv(D′) = ∅

2.3 Examples

Two Buyer Protocol We describe the two-buyers-protocol from
the Introduction first by a sequence diagram, then by processes.

Buyer1 Seller Buyer2

[Link] [Link]

title

quotequote

quote div 2

ok

quit

address

date }branch

First Buyer1 sends a book title to Seller, then Seller sends back a
quote to Buyer1/2; Buyer1 now tells Buyer2 how much she can
contribute, and Buyer2 notifies Seller if it accepts the quote or not.
We now describe the behaviour of Buyer1 as a process:

Buyer1
def
= a[2,3] (b1,b2,b

′
2, s). s!〈“War and Peace”〉;

b1?(quote); b′2!〈quote div 2〉; P1

Channel b1 is for Buyer1 to receive messages: b2 and b′2 for Buyer2
and s for Seller (we discuss soon why Buyer2 needs two receiving
channels). Buyer1 above is willing to contribute to half of the quote.
In P1, Buyer1 may perform the remaining transactions with Seller
and Buyer2. The remaining participants follow.

Buyer2
def
= a[2] (b1,b2,b

′
2, s). b2?(quote); b′2?(contrib);

if (quote− contrib ≤ 99)

then s�ok; s! 〈address〉;b2?(x); P2

else s�quit;0

Seller
def
= a[3] (b1,b2,b

′
2, s). s?(title); b1,b2!〈quote〉;

s� {ok : s?(x);b2! 〈date〉; Q , quit : 0}
Above s1..sm!〈v〉; P stands for s1!〈v〉; ..sm!〈v〉; P, assuming s1..sm
are pairwise distinct.2 We can now explain why Buyer2 needs to
use two input channels, b2 and b′2. The first input (for quote) is from
Seller, while the second one (for contrib) is from Buyer1. Hence
there is no guarantee that they arrive in a fixed order, as can be
easily seen by analysing reduction paths (this is Lamport’s principle
(Lamport 1978)). Thus if we were to use b2 for both actions, the
two messages can be confused, losing linear usage of a channel.
Later we shall show our type discipline can detect such an error.

2 Due to asynchrony there is in effect no order among the sending actions at
s1..sm.

275

Figure 3 Reduction

a[2..n] (s̃).P1 | a[2] (s̃).P2 | · · · | a[n] (s̃).Pn [Link]

→ (ν s̃)(P1 | P2 | ... | Pn | s1 :∅ | · · · | sm :∅)
s!〈ẽ〉; P | s : h̃→ P | s : h̃ · ṽ (ẽ ↓ ṽ) [Send]

s!〈〈t̃〉〉; P | s : h̃→ P | s : h̃ · t̃ [Deleg]

s� l; P | s : h̃→ P | s : h̃ · l [Label]

s?(x̃); P | s : ṽ · h̃ → P[ṽ/x̃] | s : h̃ [Recv]

s?((t̃)); P | s : t̃ · h̃ → P | s : h̃ [SRec]

s� {li : Pi}i∈I | s : l j · h̃ → P j | s : h̃ (j ∈ I) [Branch]

if e then P else Q → P (e ↓ true) [IfT]

if e then P else Q → Q (e ↓ false) [IfF]

def D in (X〈ẽs̃〉 | Q) → def D in (P[ṽ/x̃] | Q) [Def]

(ẽ ↓ ṽ,X(x̃s̃) = P ∈ D)

P→ P′ ⇒ (νn)P→ (νn)P′ [Scop]

P→ P′ ⇒ P | Q → P′ | Q [Par]

P→ P′ ⇒ def D in P → def D in P′ [Defin]

P ≡ P′ and P′ → Q′ and Q′ ≡ Q ⇒ P→ Q [Str]

A Streaming Protocol We next consider a simple protocol for the
standard stream cipher (Schneier 1993).

kernel consumer

data

key

Data Producer and Key Producer continuously send a data stream
and a key stream respectively to Kernel. Kernel calculates their
XOR and sends the result to Consumer.

Assuming streams are sent block by block (say as large arrays),
we can realise this protocol as communicating processes. We only
focus on communication behaviour. The kernel initiates a session:

Kernel
def
= def K(d,k,c) = d?(x); k?(y); c!〈x xor y〉; K〈d,k,c〉

in a[2,3,4] (d,k,c).K〈d,k,c〉
The channels d and k are used for Kernel to receive data and keys
from Data Producer and Key Producer, respectively, while c is
used for Consumer to receive the encrypted data from Kernel. Data
Producer and Consumer can be given as:

DataProducer
def
=

def P(d,k,c) = d!〈data〉;P〈d,k,c〉 in a[2] (d,k,c).P〈d,k,c〉
Consumer

def
=

def C(d,k,c) = c?(data);C〈d,k,c〉 in a[3] (d,k,c).C〈d,k,c〉
Key Producer is identical to Data Producer except it outputs at k
instead of d. When three processes are composed, we can verify
that, although processes repeatedly send and receive data using the
same channels, messages are always consumed in the order they are
produced, an essential requirement for correctness of the protocol.
This is because each channel is used by exactly one sender. We shall
show how this argument can be cleanly represented and validated
through session types in the subsequent two sections.

Figure 4 Syntax of Global Types

Global G ::= p→ p′ : k 〈U〉.G′ values
| p→ p′ : k {l j : G j} j∈J branching
| G,G′ parallel
| μt.G recursive
| t variable
| end end

Value U ::= S̃ | T @p

Sort S ::= bool | nat | ... | 〈G〉

3. Global Types and Causal Analysis
Developing programs for multiparty sessions demands a clear for-
mal design as to how multiple participants communicate and syn-
chronise with each other. To program individual participants with-
out such a design and hope they somehow realise a meaningful and
error-free conversation is hardly practical, especially for team pro-
gramming. In binary session types the type for an endpoint also
served as the description of the whole conversation, but this is no
longer possible for multiparty sessions. This is why we need the
type abstraction which describes global conversation scenarios of
multiparty sessions, introduced in this section.

3.1 Session Types from a Global Viewpoint

The grammar of global session type, or global type, denoted
G,G′, . . ., is given in Figure 4. Type p → p′ : k 〈U〉.G′ says that
participant p sends a message of type U to channel k (represented
as a finite natural number) received by participant p′: and inter-
actions described in G′ takes place. U, ... range over value types,
denoting types for message values. Each value type is a vector of
types for shared names called sorts, written S ,S ′, . . ., or of those
for session channels. Both of these types are discussed in detail
in § 4.2. For understanding this section, it suffices to consider U
as a single base type. Type p→ p′ : k {l j : G j} j∈J says participant
p sends one of the labels to channel k which is then received by
participant p′. If l j is sent, interactions described in G j take place.

Type G,G′ represents concurrent run of interactions specified
by G and G′. Type μt.G is a recursive type for recurring conver-
sation structures, assuming type variables (t, t′, . . .) are guarded in
the standard way, i.e. type variables only appear under the prefixes
(hence contractive). We take an equi-recursive view, not distin-
guishing between μt.G and its unfolding G[μt.G/t] (Pierce 2002).
We assume that 〈G〉 in the grammar of sorts is closed, i.e. without
type variables.3 Type end represents the termination of the session.
We identify “G,end” and “end,G” with G.

Definition 3.1 (prefix). We say the initial “p → p′ : k” in p →
p′ : k 〈U〉.G′ and p→ p′ : k {l j : G j} j∈J is a prefix from p to p′ at
k over G′ where in the former U is a carried type. If U is a carried
type in a prefix in G then U is also a carried type in G.

Conventions 3.2. We assume that in each prefix from p to p′ we
have p � p′, i.e. we prohibit reflexive interaction.

Henceforth we often regard a global type G as the acyclic directed
graph given by its standard regular tree presentation (Pierce 2002).
A basic ordering on its nodes is induced by prefixes.

Definition 3.3 (prefix ordering). Write n,n′, .. for prefixes occur-
ring in a global type, say G (but not in its carried types), seen as
nodes of G as a graph. We write n ∈ G when n occurs in G. Then

3 In the presence of the standard recursive sorts (Honda et al. 1998), which
we omit for simpler presentation, we allow sort variables to occur in 〈G〉.

276

Figure 5 Causality Analysis

(II) Good (II) Bad (IO) Good (IO) Bad (OO, II) Good (OI) Bad

A→ B : s
C→ B : t

s! | s?; t? | t!

A→ B : s
C→ B : s

s! | s?; s? | s!

A→ B : s
B→ C : t

s! | s?; t! | t?

A→ B : s
B→ C : s

s! | s?; s! | s?

A→ B : s
A→ B : s

s!; s! | s?; s?

A→ B : s
C→ A : s

s!; s? | s? | s!

we write n1 ≺ n2 ∈ G when n1 directly or indirectly prefixes n2 in
G. Formally ≺ is the least partial order including:

n1 ≺ n2 ∈ p→ p′ : k 〈U〉.G′ if n1 = p→ p′ : k,n2 ∈G′
n1 ≺ n2 ∈ p→ p′ : k {l j : G j} j∈J if n1 = p→ p′ : k, ∃i∈ J.n2 ∈Gi

as well set setting n1 ≺ n2 ∈ G if n1 ≺ n2 ∈ G′ and G′ occurs in G
but not in its carried types.

The prefix ordering allows us to express intended sequencing in
global types. To clarify its meaning is essential for its proper usage.
Consider a global type:

A→ B : s 〈U〉. A→ C : t 〈U′〉. end (2)

The two prefixes are ordered by ≺. In a “synchronous” interpre-
tation, this ordering would mean: “only after the first sending and
receiving take place, the second sending and receiving take place”.
This is a suitable reading when sending and receiving constitute a
single atomic action, as in synchronous calculi, but not with asyn-
chronous communication, where it is hard to impose this ordering
on (2), since messages to distinct channels may not arrive in order.

Thus the present theory takes the more liberal interpretation of
≺, imposing sequencing only on the actions of the same participant
in ordered prefixes. For example, in (2), A’s two sending actions are
ordered, but B’s and C’s receiving actions are not. The remaining
causal ordering comes from communication à la Lamport (Lamport
1978). Let us further illustrate this idea with examples.

3.2 Examples of Global Types

The following is a global type of the two-buyer-protocol in §2.3.
We write principals and channels with legible symbols though they
are actually numbers: Bi = i, S = 3, b1= 1, b2= 2, b′2= 3 and s = 4.

1 B1→ S : s〈string〉.
2 S→ B1 : b1〈int〉.
3 S→ B2 : b2〈int〉.
4 B1→ B2 : b′2〈int〉.
5 B2→ S : s{ok : B2→ S : s 〈string〉.S→ B2 : b2 〈date〉.end,

quit : end}
The type gives a vantage view of the whole conversation scenario.
We show several salient points in the interpretation of this type.

• Consider Lines 3 and 4. Since they have different senders,
the sending actions are unordered in spite of their ≺-ordering.
Hence if b2 = b′2 two messages can have a conflict at s. Note
this analysis echoes our operational argument in §2.3.

• Next we consider the following causal chain of actions from
Line 1 to Line 3 to Line 5:

B1 → S ≺ S → B2 ≺ B2→ S
Above→ denotes the ordering given by message delivery, while
≺ is the prefix ordering. Note in particular two sending actions
by B1 (Line 1) and by B2 (Line 5), both done at s, are causally
ordered. By focussing on ≺ from the first S (of Line 1) to
the last S (of Line 5), the receiving actions in Lines 1 and 5
are also ordered. Since both sending and receiving take place
in strict temporal order, no conflict occurs between these two
communications in spite of their use of a common channel s.

Next we present the global type of the simple streaming protocol
in §2.3. Below we unfold its recursion once, and set: d = 1, k = 2,
c = 3, K = 1, DP = 2, C = 3 and KP = 4.

1 μt. DP→ K : d 〈bool〉.
2 KP→ K : k 〈bool〉.
3 K→ C : c 〈bool〉.

4 DP→ K : d 〈bool〉.
5 KP→ K : k 〈bool〉.
6 K→ C : c 〈bool〉.t

The following arguments hold for any n-fold unfoldings.

• Lines 1 and 2 are temporally unordered in sending: but this does
not cause conflict since channels d and k are distinct.

• Line 1 and its unfolding, Line 4, share d. But the two use the
same sender and the same receiver, so each pair of actions are
≺-ordered, hence safe. Similarly for other unfolded actions.

3.3 Safety Principle for Global Types

For a conversation in a session to proceed properly, it is desirable
that there is no conflict (racing) at session channels. To ensure this,
when a common channel is used in two communications, their send-
ing actions and their receiving actions should respectively be or-
dered temporally, so that no confusion arises at neither sending nor
receiving. If a global type satisfies this principle, then it specifies
a safe protocol, and can be used as a basis of guaranteeing safe
process behaviours through type checking.

Causality is induced in several ways in the present asynchronous
model. We summarise all essential cases in Figure 5, with concrete
process instances for illustration. IO denotes the causal ordering by
≺ is from input (receiving) to output (sending), similarly for II, OO
and OI. In (II)-Bad, we demand A � C. We observe:

• The “good” and “bad” cases for II shows that II alone is safe
only when two channels differ. Similarly for IO.

• In OO,II (the fifth case), two outputs have the same sender and
the same channel, so (by message order-preservation) outputs
are ordered. Inputs are also ordered by ≺ hence they are safe.

• There is no ordering from output to input (due to asynchrony),
so OI gives us no dependency.

These observations lead to the following “effective” causal rela-
tions on global types.

Definition 3.4. (dependency relations) Fix G. The relation ≺φ, with
φ ∈ {II, IO,OO}, over its prefixes is generated from:

n1 ≺II n2 if n1 ≺ n2 and ni = pi→ p : ki (i = 1,2)
n1 ≺IO n2 if n1 ≺ n2, n1 = p1→ p : k1 and n2 = p→ p2 : k2.
n1 ≺OO n2 if n1 ≺ n2, ni = p→ pi : k (i = 1,2)

An input dependency from n1 to n2 is a chain of the form n1 ≺φ1· · · ≺φn n2 (n ≥ 0) such that φi ∈ {II, IO} for 1 ≤ i ≤ n−1 and φn = II.
An output dependency from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2
(n ≥ 1) such that φi ∈ {OO, IO}.
In the input dependency, the last II-ordering is needed since if it
ends with an IO-edge an input at n2 may not be suppressed.

Definition 3.5. (linearity) G is linear if, whenever ni = pi→ p′i : k
(i = 1,2) are in G for some k and do not occur in different branches
of a branching, then both input and output dependencies exist from

277

Figure 6 Syntax of Local Types

Value U ::= S̃ | T @p

Sort S ::= bool | ... | 〈G〉
Local T ::= k! 〈U〉;T send

| k? 〈U〉;T receive
| k⊕{li : Ti}i∈I selection
| k&{li : Ti}i∈I branching
| μt.T | t | end

n1 to n2, or, if not, both exist from n2 to n1. If G carries other global
types, we inductively demand the same.

We illustrate the condition on branching by an example:

1. A→ B : t{ok : C→ D : s.end A→ B : t.(C→ D : s.end,
2. quit : C→ D : s.end } C→ D : s.end)

(a) branching (b) parallel

The type (a) represents branching: since only one of two branches
is selected, there is no conflict between the two prefixes C→ D : s in
Lines 1 and 2. On the other hand, (b) means a concurrent execution
of two independent C→ D : s, so an input conflict at D exists.

Linearity and its violation can be detected algorithmically, with-
out infinite unfoldings. First we observe we do need to unfold once.

μX.(A→ B : s.end, B→ A : t.X)

This is linear in its 0-th unfolding (i.e. we replace X with end): but
when unfolded once, it becomes non-linear, as follows:

A→ B : s.end, B→ A : t.μX.(A→ B : s.end, B→ A : t.X)

since the two prefixes A → B : s appear in parallel. But in fact
unfolding once turns out to be enough. Taking G as a syntax, let
us call the one-time unfolding of G the result of unfolding once for
each recursion in G (but never in carried types), and replacing the
remaining variable with end.

Proposition 3.6. (1) A global type is linear iff its one-time unfold-
ing is linear. (2) The linearity of a global type is decidable.

(2) is an immediate corollary of (1). For (1), we show if one-time
unfolding is linear then each n-th folding is linear by induction on
n, using tail recursiveness of the present global types.

4. Type Discipline for Multiparty Sessions
4.1 Programming Methodology for Multiparty Interactions

Once given global types as our tool, we can consider the following
development steps for programs with multiparty sessions.

Step 1 A programmer describes an intended interaction scenario as
global type G, and checks that it is linear.

Step 2 She develops code, one for each participant, incrementally
validating its conformance to the projection of G onto each
participant by efficient type-checking.

When programs are executed, their interactions are guaranteed to
follow the stipulated scenario. The type specification also serves as
a basis for maintenance and upgrade. This section introduces the
type discipline which materialises this framework.

4.2 Local Types

Syntax Local session types or local types, ranged over by T,T ′, ..,
are types for local behaviour of processes, acting as a link between
global types and processes. The grammar is given in Figure 6 (the
grammars for U and S are repeated from Figure 4). All constructs

come from the binary session types (Honda et al. 1998) except for
the following major changes for multiparty interactions.

• Since a process now uses multiple channels for addressing
multiple parties, a session type records the identity (number)
of a session channel it uses at each action type.

• Since a type is inferred for each participant, we use a notation
T @p (called located type) representing a local type T assigned
to participant p. A located type is also used for delegation.

Type k? 〈U〉;T represents the behaviour of inputting values of type
U at sk (assume s1...sn is shared at initialisation), then performing
the actions represented by T . Similarly k! 〈U〉;T is for sending.
Type k&{li : Ti}i∈I describes a branching: it waits with n options at
k, and behave as type Ti if i-th label is selected; type k⊕ {li : Ti}i∈I
represents the behaviour which selects one of the labels say li at
k then behaves as Ti. The rest is the same as the global types,
demanding type variables occur guarded by a prefix and taking
an equi-recursive approach for recursive types. We often omit end.
Note local type T does not contain parallel composition.

In addition to the folding/unfolding of recursive types, local
types are considered up to the following isomorphism (closed under
all type constructors). We assume k � k′, m ∈ I and n ∈ J.

k! 〈U〉;k′! 〈U′〉;T ≈ k′! 〈U′〉;k! 〈U〉;T (3)

k⊕{li :k′ ⊕ {l′j :Ti j} j∈J}i∈I ≈ k′ ⊕ {l′j :k⊕{li :Ti j}i∈I} j∈J (4)

The equations permute two consecutive outputs with different sub-
jects, capturing asynchrony in communication. The equation (4)
specialises to permutation between selection and output by setting
I or J a singleton: and to (3) when both are singletons.

Projection and Coherence The following defines the projection
of a global type to local types at each participant.

Definition 4.1 (Projection). Let G be linear. Then the projection of
G onto p, written G�p, is inductively given as:

• (p1→ p2 : k 〈U〉.G′)�p =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k! 〈U〉.(G′ �p) if p = p1 � p2

k? 〈U〉.(G′ �p) if p = p2 � p1

(G′ �p) if p � p2 and p � p1

• (p1→ p2 : k {l j : G j} j∈J)�p =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⊕{l j : (G j �p)} j∈J if p = p1 � p2

&{l j : (G j �p)} j∈J if p = p2 � p1

(G1 �p) if p � p2 and p � p1

and ∀i, j ∈ I.Gi �p =G j �p
• (G1,G2)�p ={

Gi �p if p ∈Gi and p �G j, i � j ∈ {1,2}
end if p �G1 and p �G2

• (μt.G)�p = μt.(G�p), t�p = t, and end�p = end.

When a side condition does not hold the map is undefined.

The mapping is intuitive. We regard the map to act on the syntax
of global types. In the branching, all projections should generate
an identical local type (otherwise undefined); and in parallel com-
position, p should be contained in at most a single type, ensuring
each type is single-threaded. Below pid(G) denotes the set of par-
ticipant numbers occurring in G (but not in carried types). In (2)
Tp@p appeared at the beginning of §4.2.

Definition 4.2 (Coherence). (1) We say G is coherent if it is linear
and G � p is well-defined for each p ∈ pid(G), similarly for each
carried global type inductively. (2) {Tp@p}p∈I is coherent if for
some coherent G s.t. I = pid(G), we have G�p = Tp for each p ∈ I.

278

Theorem 4.3. Coherence of G is decidable.

We also believe the coherence of {Tp@p}p is decidable but this
is not necessary for the present technical development. Without
projectability, a global type is not consistent. Linearity guarantees
linear channel usage including message-order preservation. The
next examples demonstrate the need of these conditions.

Examples of Coherence The following global type is linear but
not coherent because the projection is undefined.

A→ B : k{ok : C→ D : k′〈bool〉, quit : C→ D : k′〈nat〉}
Intuitively, when we project this type onto C or D, regardless of the
choice made by A, they should behave in the same way: participants
C and D should be independent threads. If we change the above nat
to bool as: A→ B : k{ok : C→ D : k′〈bool〉,quit : C→ D : k′〈bool〉}, we
can define the coherent projection as follows:

{ k⊕{ok : end, quit : end}@A, k&{ok : end, quit : end}@B
k′!〈bool〉@C, k′?〈bool〉@D }

As examples of local types which are not coherent, consider pro-
cesses in the second case of Figure 5:

(II) Bad {s!〈〉@A, s?〈〉; s?〈〉@B, s!〈〉@C}
This process is not coherent since the corresponding global type
A→ B : s.C→ B : s is not linear.

4.3 Typing System

The purpose of the typing system introduced below is to efficiently
type behaviours which are built by programmers hence which do
not include runtime elements such as queues.

Definition 4.4 (program phrase and program). A process P is a
program phrase if P has no queues and no ν-bound session chan-
nels. P is a program if P is a program phrase in which no free
session channels and process variables occur.

All of Buyer1, Buyer2, Seller, Data Producer, etc. in §2.3 are
programs, hence are also program phrases.

Environments and Type Algebra The typing system uses a map
from shared names to their sorts (S ,S ′, ..). As given in Figure 6,
other than atomic types, a sort has the shape 〈G〉 assuming G is
coherent. Using these sorts we define:

Γ ::= ∅ | Γ,u : S | Γ,X : S̃ T̃
Δ ::= ∅ | Δ, s̃ : {T @p}p∈I

A sorting (Γ,Γ′, ..) is a finite map from names to sorts and from
process variables to sequences of sorts and types. Typing (Δ,Δ′, ..)
records linear usage of session channels. In the binary sessions,
it assigned a type to a single channel; now it assigns a family of
located types to a vector of session channels. sid(G) stands for
the set of session channel numbers in G. We write s̃ : T @p for a
singleton typing s̃ : {T @p}. Below we define a simple algebra of
types for typing program phrases.

Definition 4.5. A partial operator ◦ is defined as:

{Tp@p}p∈I ◦ {T ′p′@p′}p′∈J = {Tp@p}p∈I ∪{T ′p′@p′}p′∈J

if I∩ J = ∅. Then we say Δ1 and Δ2 are compatible, written Δ1 �Δ2,
if for all s̃i ∈ dom(Δi) such that s̃1 ∩ s̃2 � ∅, s̃ = s̃1 = s̃2 and
Δ1(s̃)◦Δ2(s̃) is defined. When Δ1 � Δ2, the composition of Δ1 and
Δ2, written Δ1 ◦Δ2, is given as:

Δ1 ◦Δ2 = {Δ1(s̃)◦Δ2(s̃) |s̃ ∈ dom(Δ1)∩dom(Δ2)}
∪Δ1 \dom(Δ2)∪Δ2 \dom(Δ1)

In brief this algebra gives the disjoint union of located types which
is undefined when disjointness is not satisfied.

Figure 7 Typing System for Expressions and Processes

Γ,a : S � a : S Γ � true, false : bool
Γ � ei �bool

Γ � e1or e2 : bool
[Name], [Bool], [Or]

Γ � a : 〈G〉 Γ � P �Δ, s̃ : (G�1)@1 |s̃| =max(sid(G))
Γ � a[2..n] (s̃).P �Δ

[Mcast]

Γ � a : 〈G〉 Γ � P �Δ, s̃ : (G�p)@p |s̃| =max(sid(G))
Γ � a[p] (s̃).P �Δ

[Macc]

∀ j. Γ � e j : S j Γ � P �Δ, s̃ : T @p

Γ � sk!〈ẽ〉; P �Δ, s̃ : k! 〈S̃ 〉;T @p
[Send]

Γ, x : S̃ � P �Δ, s̃ : T @p

Γ � sk?(x̃); P �Δ, s̃ : k? 〈S̃ 〉;T @p
[Rcv]

Γ � P �Δ, s̃ : T @p

Γ � sk!〈〈t̃〉〉; P �Δ, s̃ : k! 〈T ′@p′〉;T @p, t̃ : T ′@p′ [Deleg]

Γ � P �Δ, s̃ : T @p, t̃ : T ′@p′
Γ � sk?((t̃)); P �Δ, s̃ : k? 〈T ′@p′〉;T @p

[SRec]

Γ � P �Δ, s̃ : T j@p j ∈ I

Γ � sk � l j; P �Δ, s̃ : k⊕{li : Ti}i∈I@p
[Sel]

Γ � Pi �Δ, s̃ : Ti@p ∀i ∈ I
Γ � sk � {li : Pi}i∈I �Δ, s̃ : k &{li : Ti}i∈I@p

[Branch]

Γ � P �Δ Γ � Q �Δ′ Δ � Δ′
Γ � P | Q �Δ◦Δ′ [Conc]

Γ � e �bool Γ � P �Δ Γ � Q �Δ
Γ � if e then P else Q �Δ

[If]

Δ end only
Γ � 0 �Δ

Γ,a : 〈G〉 � P �Δ
Γ � (νa)P �Δ

[Inact],[NRes]

Γ � ẽ : S̃ Δ end only

Γ,X : S̃ T̃ � X〈ẽs̃1..s̃n〉 �Δ, s̃1 : T1@p1, .., s̃n : Tn@pn

[Var]

Γ,X : S̃ T̃ , x̃ : S̃ � P � s̃1 : T1@p1..s̃n : Tn@pn

Γ,X : S̃ T̃ � Q �Δ

Γ � def X(x̃s̃1..s̃n) = P in Q �Δ
[Def]

Typing System The type assignment system for processes is given
in Figure 7. We use the judgement Γ � P �Δ which reads: “under
the environment Γ, process P has typing Δ”. If we set |s̃| = 1 and
n = 2, and delete p from located type, the shape of rules is essen-
tially identical with the original binary session typing (Yoshida and
Vasconcelos 2007). Below we only illustrate the rules.

[Name],[Bool],[Or] are the rules for the expressions and identi-
cal with (Yoshida and Vasconcelos 2007).

[Mcast] is the rule for the session request. The type for s̃ is the
first projection of the declared global type for a in Γ. [Macc] is for
the session accept, taking the p-th projection. The local type (G �
p)@pmeans that the participant p has G�p, which is the projection
of G onto p, as its local type. The condition |s̃| = max(sid(G))
ensures the number of session channels meets those in G. The
typing s̃ : T @p (which stands for s̃ : {T @p}) ensures each prefix
does not contain parallel threads which share s̃.

[Send] and [Rcv] are the rules for sending and receiving values.
Since the k-th name sk of s̃ is used as the subject, we record the
number k. In both rules, “p” in T@p ensures that P is (being in-
ferred as) the behaviour for participant p, and its domain should be

279

s̃. Then the relevant type prefixes (k!〈S̃ 〉 for the output and k?〈S̃ 〉 for
the input) are composed in the conclusion’s session environment.

[Deleg] and [SRec] are the rules for delegation of a session
and its dual. Delegation of a multiparty session passes the whole
capability to participate in a multiparty session: thus operationally
we send the whole vector of session channels. The carried type T ′
is located, making sure that the behaviour by the receiver at the
passed channels takes the role of a specific participant (here p′)
in the delegated multiparty session. The rest follows the standard
delegation rule (Yoshida and Vasconcelos 2007), observing [Deleg]
says that t̃ : T ′@p′ does not appear in P symmetrically to [SRec]
which uses the channels in P.

[Sel] and [Branch] are the rules for selection and branching,
and identical with (Yoshida and Vasconcelos 2007).

[Conc] uses � to ensure well-formedness of the session typing,
taking a the disjoint union of each local type.

[If], [Inact], [Var], and [Def] are standard. [NRes] is the restric-
tion rule for shared name a. In [Inact] and [Var], “end only” means
Δ only contains end as session types.

An annotated P is the result of annotating P’s bound names
as e.g. (νa : 〈G〉)P and s?(x : 〈G〉)P. Assuming these annotations is
natural from our design framework. For typing annotated processes
we assume the obvious updates for [Rcv] and [NRes] in Fig. 7.

Theorem 4.6. Assume given an annotated program phrase P and
Γ. Then it is decidable if there exists Δ such that Γ � P �Δ or not. If
such Δ exists there is an algorithm to construct one.

Corollary 4.7 (typing for programs). Given an annotated pro-
gram P and Γ, it is decidable if Γ � P �∅.
4.4 Typing Examples

Two Buyer Protocol Write Buyer1 as a[2,3] (b1,b2,b′2, s).Q1 and
Buyer2 as a[2] (b1,b2,b′2, s).Q2, both from §2.3. Then Q1 and Q2
have the following typing under Γ = {a : 〈G〉} where G is given in
the corresponding example in § 3.2, letting Bi = i, S = 3, b1 = 1,
b2 = 2, b′2 = 3 and s = 4 and assuming P1,P2,Q are 0:

Γ � Q1 � s̃ : s! 〈string〉;b1? 〈int〉;b′2! 〈int〉@B1
Γ � Q2 � s̃ : b2? 〈int〉;b′2? 〈int〉;

s⊕{ok : s! 〈string〉;b2? 〈date〉;end, quit : end}@B2
Similarly for Seller. After prefixing at a, we can compose all three
by [Conc]. Note these typings are calculable by Corollary 4.7.

A Streaming Protocol We let Γ = {a : 〈G′〉} where G′ is given in
the corresponding example in § 3.2. Let d = 1, k = 2, c = 3, K = 1,
DP = 2, C = 3 and KP = 4. Write R1, R2, R3 and R4 for the processes
which are under the initial prefix (at the shared name) of Kernel,
DataProducer, Consumer and KeyProducer, respectively. Then we
can type each agent as:

Γ � R1 �dkc : μt.d? 〈bool〉;k? 〈bool〉;c! 〈bool〉; t@K
Γ � R2 �dkc : μt.d! 〈bool〉; t@DP Γ � R4 �dkc : μt.c? 〈bool〉; t@C

(R4 is similar as R2). Note these types correspond to the projec-
tion of G′ onto respective participants: thus Kernel, DataProducer,
Consumer and KeyProducer are typable programs, which can be
composed to make the initial configuration.

Delegation One source of the expressiveness of the session types
comes from a facility of delegation (often called higher-order ses-
sion passing). We will type and see the relationship with global and
local types. Consider the following three participants:

Alice
def
= a[2] (t1, t2).b[2,3] (s1, s2).t1!〈〈s1, s2〉〉;0

Bob
def
= a[2] (t1, t2).b[1] (s1, s2).t1?((s1, s2)); s1! 〈1〉;0

Carol
def
= b[2] (s1, s2).s1?(x); P

where Alice delegates its capability to Bob. Since there are two
multicasting, there are two global specifications, one for a and
another for b as follows:

Ga = A→ B : t1 〈s1! 〈int〉@B〉.end

Gb = B→ C : s1 〈int〉.end

where the type s1! 〈int〉@B means the capability to send an integer
from participant B via channel s1. This capability is passed to B so
that B behaves as A. However, since two specifications are indepen-
dent, C does not have to know who would pass the capability.

Let (Alice | Bob | Carol)→→ (νt̃ s̃)(A | B | C | R) where A,B,C
are the processes of Alice, Bob and Carol after initial multicasting
and R are the generated queues. Let s1 = 1, t1 = 1,A= 1,B= 2,C= 3.
These processes have the following typings under Γ with P ≡ 0:

Γ � A � t̃ : t1! 〈s1! 〈int〉@B〉@A, s̃ : s1! 〈int〉@B
Γ � B � t̃ : t1? 〈s1! 〈int〉@B〉@B
Γ �C � s̃ : s1? 〈int〉@C

where each local type reflects the original global specifications
(e.g. Carol does not know Alice passed the capability to Bob).
These types give projections of Ga and Gb.

5. Safety and Progress
This section establishes the fundamental behavioural properties of
typed processes. We follow three technical steps:

1. We extend the typing rules to include those for runtime pro-
cesses which involve message queues.

2. We define reduction over session typings which eliminates a
pair of minimal complementary actions from local types.

3. We then relate the reduction of processes and that of typings:
showing the latter follows the former gives us subject reduc-
tion (Theorem 5.4), safety (Theorem 5.5) and session fidelity
(Corollary 5.6), while showing the former follows the latter un-
der a certain condition gives us progress (Theorem 5.12).

By the correspondence between local types and global types, these
results guarantee that interactions between typed processes exactly
follow the conversation scenario specified in a global type.

How to Type a Queue We first illustrate a key idea underlying
our runtime typing using the following example.

s!〈3〉; s!〈true〉;0 | s :∅ | s?(x); s?(x);0 (5)

We type the two processes with s : 1! 〈nat〉;1! 〈bool〉;end@p and
s : 1? 〈nat〉;1? 〈bool〉;end@q. After a reduction, (5) changes into:

s!〈true〉;0 | s :3 | s?(x); s?(x);0 (6)

Note that (6) is identical with (5) except that an output prefix in (5)
changes its place to the queue. Thus we can go back from (6) to
(5) by placing this message on the top of the process. A key idea in
our runtime typing is to carry out this “rollback of a message” in
typing, using a local type with a hole (a type context) for typing a
queue. For example we type the queue in (6) as:

s : { 1! 〈nat〉; []@p, []@q } (7)

where [] indicates a hole. Now we cover the type 1! 〈bool〉;end with
the type context for p given above, 1! 〈nat〉; [], obtaining the type
1! 〈nat〉;1! 〈bool〉;end for p, restoring the original typing.

Labels in a queue are also typed using a type context. For
example k : l1l2 can be typed with k⊕ l1 : k⊕ l2 : [], omitting braces
for a singleton selection. To do a “rollback” for selection types, we
use the standard session subtyping (Gay and Hole 2005; Carbone
et al. 2007), denoted ≤sub, which is the maximal fixed point of

280

Figure 8 Selected Typing Rules for Runtime Processes

Γ � P �t̃ Δ Δ ≤ Δ′
Γ � P �t̃ Δ′

Δ end only
Γ � sk :∅ �sk s̃ : {[]@p}p ◦Δ [Subs],[Qnil]

Γ � vi : S i Γ � sk : h̃�skΔ, s̃ : ({T@q}∪R) R= {Hp@p}p∈I
Γ � sk : h̃ · ṽ �sk Δ, s̃ : (T[k! 〈S̃ 〉; []]@q}∪R)

[Qval]

Γ � sk : h̃ �sk Δ, s̃ : {T@q}∪R R= {Hp@p}p∈I
Γ � sk : h̃ · t̃′ �skΔ, s̃ : (T[k! 〈T ′@p′〉; []]@q}∪R, t̃′:T ′@p′

[Qsess]

Γ � sk : h̃ �sk Δ, s̃ : {T@q}∪R R = {Hp@p}p∈I
Γ � sk : h̃ · l �sk Δ, s̃ : (T[k⊕ l : []]@q}∪R

[Qsel]

Γ � P �t̃1 Δ Γ �t̃2 Q �Δ′ t̃1∩ t̃2 = ∅ Δ � Δ′
Γ �t̃1·t̃2 P | Q �t̃1·t̃2 Δ◦Δ′

[Conc]

Γ � P �t̃ Δ, s̃ : {Tp@p}p∈I s̃ ∈ t̃ {Tp@p}p∈I coherent

Γ �t̃\s̃ (ν s̃)P �Δ
[CRes]

the function S that maps each binary relation R on local types as
regular trees to S (R) given as:

• If TRT ′ then k! 〈U〉TS (R)k! 〈U〉T ′ and k? 〈U〉TS (R)k? 〈U〉T ′.
• If TiRT ′i for each i ∈ I ⊂ J then ⊕{li : Ti}i∈I S (R) ⊕ {l j : T ′j} j∈J

and &{l j : T j}i∈J S (R) &{li : T ′i }i∈I .
For example we have k⊕{ok : T1} ≤sub k⊕{ok : T1,quit : T2}.
Type Contexts The type contexts (T,T′, ...) and the extended ses-
sion typing (Δ,Δ′, ... as before) are given as:

T ::= [] | k! 〈U〉;T | k⊕ li : T
H ::= T | T
Δ ::= ∅ | Δ, s̃ : {Hp}p∈I

The isomorphism ≈ on type contexts is generated from permuta-
tions given in §4.2 (3, 4). Each assignment in Δ may contain both
local types and type contexts. We extend ◦ in Definition 4.5 as fol-
lows (sid(T) denotes the channel numbers in T).

T ◦T = T ◦T = T[T]
T ◦T′ = T[T′] (sid(T)∩sid(T′) = ∅)

In the first rule, we place the output types of message queues on that
of a process. In the second, we compose the type contexts for two
sets of messages from the mutually disjoint sets of queues. Note
T ◦T′ is defined iff T′ ◦ T is defined and in which case we have
T[T′] ≈ T′[T]. Note also T ◦T ′ is never defined. Composition of
{Hp@p}p∈I by ◦ is given point-wise. The definition of Δ1 ◦Δ2 and
Δ1 � Δ2 stay the same as Definition 4.5.

Typing Rules for Runtime To guarantee that there is at most one
queue for each channel, we use the typing judgement refined as:

Γ � P �s̃ Δ

where s̃ (regarded as a set) records the session channels associated
with the message queues. The typing rules for runtime are given in
Figure 8. [Subs] allows subsumption (≤sub is extended pointwise
from types). [Qnil] starts from the empty hole for each participant,
recording the session channel in the judgement. [Qval] says when
we enqueue ṽ, the type for ṽ is added at the tail. [Qsess] and
[Qsel] are the corresponding rules for delegated channels and a
label. [Conc] is refined to prohibit duplicated message queues.
The rule does not use coherence (cf. Def.4.2 (2)) since coherence
is meaningful only when all participants and queues are ready.
In [CRes], since we are hiding session channels, we now know

no other participants can be added. Hence we check all message
queues are composed and the given configuration at s̃ is coherent.

The original typing rules in Figure 7 not appearing in Figure 8
are refined as follows: [Mcast], [Macc], [Rcv], [SRec], [Branch],
[Def] replace Γ � P �Δ with Γ � P �∅ Δ and both [Def] and [NRes]
replace Γ � P �Δ by Γ � P �s̃ Δ.

Using these typing rules, we can check that the configurations
at the beginning of this section, (5) and (6), are given an identical
typing by “rolling back” the type of the message in the queues.

The typability in the original system in §4 and the one in this
system coincide for processes without runtime elements.

Proposition 5.1. Let P be a program phrase and Δ be without a
type context. Then Γ � P �Δ iff Γ � P �∅ Δ without using [Subs].

Proposition 5.2. If Γ � P �s1..sm Δ then P has a unique queue at si
(1 ≤ i ≤ m), no other queue at a free channel occurs in P, and no
queue in P is under any prefix.

Type Reduction Next we introduce reduction over session typ-
ings and global types, which abstractly represents interaction at
session channels. Below we assume well-formedness of typing.

k! 〈U〉; H@p,k? 〈U〉;T @q
k→ H@p,T @q [TR-Com]

k⊕{l : H, ...}@p,k&{l : T, ...}@q k→ H@p,T @q [TR-Bra]

H1@p1,H2@p2

k→ H′1@p1,H′2@p2 p1,p2 ∈ I

s̃ : {H1@p1,H2@p2, ...}i∈I ,Δ sk→ s̃ : {H′1@p1,H′2@p2, ...}i∈I ,Δ
[TR-Context]

Then we write G
k→G′ if [[G]]

k→ [[G′]] where we set [[G]] to be the

family {(G �p)@p | p ∈ pid(G)}. In G
k→G′, we take off a prefix at

k in G not suppressed by ≺II, ≺IO or ≺OO, to obtain G′.

Proposition 5.3. Below Δ is coherent if Δ(s̃) is coherent for each
s̃ ∈ dom(Δ).

1. Δ1
s→ Δ′1 and Δ1 � Δ2 imply Δ′1 � Δ2 and Δ1 ◦Δ2

s→ Δ′1 ◦Δ2.

2. Let Δ be coherent. Then Δ
s→ Δ′ implies Δ′ is coherent.

3. Let Δ be coherent and Δ(s̃) = [[G]]. Then Δ
sk→ Δ′ iff G

k→ G′
with Δ′(s̃) = [[G′]].

Subject Reduction, Communication Safety and Session Fidelity
By the above proposition and the substitution lemma, we obtain:

Theorem 5.4 (subject congruence and reduction).

1. Γ � P �s̃ Δ and P ≡ P′ imply Γ � P′ �s̃ Δ.
2. Γ � P �s̃Δ such that Δ is coherent and P→ P′ imply Γ � P′ �s̃Δ′

where Δ = Δ′ or Δ
s′→ Δ′ for some s′.

3. Γ � P �∅ ∅ and P→ P′ imply Γ � P′ �∅ ∅.
Theorem 5.4 immediately entails the lack of the standard type
errors in expressions (such as true + 3). The type discipline also
satisfies, as in the preceding session type disciplines (Honda et al.
1998), communication error freedom, including linear usage of
channels. We first introduce the reduction context E as follows:

E ::= E |P | P |E | (νn)E | def D in E

We also say and write:

• A prefix is at s (resp. at a) if its subject (i.e. its initial channel)
is s (resp. a). Further a prefix is emitting if it is request, output,
delegation or selection, otherwise it is receiving.

281

• A prefix is active if it is not under a prefix or an if branch, after
any unfoldings by [Def]. We write P〈〈s〉〉 if P contains an active
subject at s after applying [Def], and P〈〈s!〉〉 (resp. P〈〈s?〉〉) if P
contains an emitting (resp. receiving) active prefix at s.

• P has a redex at s if it has an active prefix at s among its redexes.

The following result decomposes the standard property for syn-
chronous session types (Takeuchi et al. 1994; Honda et al. 1998;
Yoshida and Vasconcelos 2007) into the sending side and the re-
ceiving side, due to the existence of queues. We assume the stan-
dard bound name convention.

Theorem 5.5 (communication safety). Suppose Γ � P �t̃ Δ s.t. Δ is
coherent and P has a redex at free s. Then:

1. (linearity) P ≡ E[s : h̃] such that either
(a) P〈〈s?〉〉, s occurs exactly once in E and h̃ � ∅; or
(b) P〈〈s!〉〉 and s occurs exactly once in E; or
(c) P〈〈s?〉〉, P〈〈s!〉〉, and s occurs exactly twice in E.

2. (error-freedom) if P ≡ E[R] with R〈〈s?〉〉 being a redex:
(a) If R ≡ s?(ỹ); Q then P ≡ E′[s : ṽ · h̃] for some E′ and |ṽ| = |ỹ|.
(b) If R ≡ s?((s̃)); Q then P ≡ E′[s : t̃ · h̃] for some E′ and |s̃| = |t̃|.
(c) If R≡ s� {li : Qi}i∈I then P≡E′[s : l j·h̃] for some E′ and j∈ I.

By Theorems 5.4 and 5.5, a typed process “never goes wrong”
in the sense that its interaction at a multiparty session channel is
always one-to-one and that each delivered value matches the re-
ceiving prefix. As the corollary of Theorem 5.4(2) and Proposition
5.3(3), we obtain session fidelity: the interactions of a typable pro-
cess exactly follow the specification described by its global type.

Corollary 5.6 (session fidelity). Assume Γ � P �t̃ Δ such that Δ
is coherent and Δ(s̃) = [[G]]. If P → P′ at the redex of sk, then

Γ � P′ �t̃ Δ′ with G
k→G′ and [[G′]] = Δ′(s̃).

Progress Communication safety says that if a process ever does
a reduction, it conforms to the typing and it is linear. If interactions
within a session are not hindered by initialisation and communi-
cation of different sessions, then the converse holds: the reduction
predicted by the typing surely takes place, the standard progress
property in binary session types (Dezani-Ciancaglini et al. 2006;
Honda et al. 1998). First we define:

Definition 5.7. Let Γ � P �s̃ Δ. Then P is queue-full when {s̃} coin-
cide with the set of session channels occurring in Δ.

A process is queue-full when it has a queue for each session chan-
nel. The following precludes interleaving of other sessions (includ-
ing initialisations and communications) which can introduce dead-
lock. For example, two session initialisations a[2](s).b[2](t).s?; t!
and a[2](s).b[2](t).t?; s! cause deadlock. Observe, because we have
multiparty sessions, there is less need to use interleaved sessions.

Definition 5.8 (simple). A process P is simple when it is typable
with a type derivation where the session typing in the premise and
the conclusion of each prefix rule in Figure 7 is restricted to at most
a singleton.

Thus each prefixed subterm in a simple process has only a unique
session. Another element which can hinder progress is when inter-
actions at shared names cannot proceed.

Definition 5.9 (well-linked). We say P is well-linked when for
each P→∗ Q, whenever Q has an active prefix whose subject is
a (free or bound) shared name, then it is always part of a redex.

Thus, in a simple well-linked P, each session is never hindered by
other sessions nor by a name prefixing. The key lemma for simple

processes follows. Below we safely confuse a channel in a typing
and the corresponding free session channel of a process.

Lemma 5.10. Let Γ � P �s̃ Δ and P is simple. If there is an active
receiving (resp. active emitting) prefix in Δ at s and none of prefixes
at s in P is under a prefix at a shared name or under an if-branch,
then P〈〈s?〉〉 (resp. either P〈〈s!〉〉 or the queue at s is not empty).

Proposition 5.11. Let Γ � P �s̃ Δ, Δ is coherent, P is simple, well-
linked and queue-full. Then:

1. If P �≡ 0 then P→ P′ for some P′.
2. If Δ(t̃) = [[G]] and G

k→G′, then P→+ P′ at the redex at tk s. t.
Γ � P′ �s̃ Δ′ with Δ′(t̃) = [[G′]].

(2) above gives the converse of Corollary 5.6: if the global type has
a reduction, then the process can always realise it.

Theorem 5.12 (progress). Let P be a simple and well-linked pro-
gram. Then P has the progress property in the sense that P→∗ P′
implies either P′ ≡ 0 or P′ → P′′ for some P′′.

A simple application of Theorems 5.4 (3), 5.5 and 5.12 for pro-
cesses from §2.3 follow. Below communication mismatch stands
for the violation of the conditions given in Theorem 5.5 (2).

Proposition 5.13 (properties of two protocols).

1. Let Buyer1|Buyer2|Seller →∗ P. Then P is well-typed, simple
and well-linked, P has no communication mismatch, and either
P ≡ 0 or P→ P′ for some P′.

2. Similarly for DataProducer|KeyProducer|Kernel|Consumer.

6. Extensions and Related Work
6.1 Extensions

Graph-Based Global Types The syntax of global types uses the
standard abstract syntax tree. We can further generalise this tree-
based syntax to graph structures to obtain a strictly more expres-
sive type language, enlarging typability. Consider the two end-point
processes P ≡ s!.t? and Q ≡ t!.s?: their parallel composition does
not introduce conflict hence it is linear and safe. This situation how-
ever cannot be represented in the current global types since two
“prefixes” criss-cross each other. Interestingly, our linearity con-
ditions in § 3.3, based on input/output dependencies, can directly
capture the safety of this configuration. All we need to do is to take
the graphs of prefixes and II, IO and OO-edges (cf. Figure 5) under
the linearity condition (precisely following §3.3) as global types,
augmented with an acyclicity condition on chains of these causal
edges. All other definitions and results stay the same.

Synchrony and Asynchrony Most of the session types currently
studied are binary and synchronous (Honda et al. 1998). In some
computing environments (e.g. tightly coupled SMP), synchrony
would be more suitable. Adding synchrony means we have more
causality: OO-dependency between different names as well as the
OI-dependency (i.e. the dependency from output to input, cf. Figure
5), which in asynchrony never arises § 3.2.

A different direction is to consider asynchronous message pass-
ing without order-preservation (Honda and Tokoro 1991) which
are also used in some computing environments (though in many
environments we have efficient order-preserving transport such as
TCP). Again we can use our modular articulation, by taking off
OO-edges to obtain a consistent theory for pure asynchrony.

Multicast Primitives for Sessions Communication Two Buyer
Protocol uses a multicasting prefix notation s, t! 〈V〉. The present
work treats it as a macro for s! 〈V〉; t! 〈W〉 which has an essentially

282

identical abstract semantics. Having proper multicasting primitives
for session communication is however useful especially in the case
of sessions involving a large number of participants, using multicast
protocols such as IP-multicast through APIs. It also enriches the
type structures: we extend p→ p′ : k in the prefix of global types to
p→ p1, ..,pn : {k1, ...,kn} (with a practical adaptation such as group
addressing), representing the multicast of a message to p1, ..,pn
via channels k1, ...,kn by participant p, similarly we extend local
session types to k̃!〈U〉 from k!〈U〉. Causality analysis remains the
same by decomposing each multicasting prefix into its unicasting
elements and considering causality for each of them.

6.2 Related Work

Asynchronous Session Types Our multiparty session types are
based on message-order preserving asynchronous communication.
Operational semantics of binary sessions based on asynchronous
communication was first considered by Neubauer and Thiemann
(2004a). Recently Gay and Vasconcelos (2007) study the asyn-
chronous version of binary sessions for an ML-like language based
on (Vasconcelos et al. 2006). In (Gay and Vasconcelos 2007), a
message queue is given two endpoint channels and a direction.

Coppo, Dezani-Ciancaglini, and Yoshida (2007) study the asyn-
chronous binary session types for Java, extending the previous
work in (Dezani-Ciancaglini et al. 2006), and prove the progress by
introducing an effect system. The resulting system does not allow
interleaving sessions so that interactions involving more than two
parties such as examples in § 2.3 cannot be represented. Our theo-
rem establishes the progress property on multiple session channels,
significantly enlarging the framework in (Coppo et al. 2007). Re-
cently Dezani-Ciancaglini, de’ Liguoro, and Yoshida (2008) pro-
pose a typing system for progress in binary synchronous inter-
leaving sessions. Typable processes there obey the partial orders
of shared and session channels inferred during type-checking. Be-
cause of a use of the global types, processes typed by our multiparty
session typing do not have to follow such ordering. The system in
(Dezani-Ciancaglini et al. 2008) does not include recursive agents
or types, but does not require the simpleness condition (Definition
5.8). A combination of these two typing systems will enlarge typa-
bility, guaranteeing the progress in many situations.

The concurrent work done by Bonelli and Compagnoni (2008),
which is independently conceived and developed, studies a multi-
party session typing for asynchronous communication. While treat-
ing the common topic, the technical direction of their work is dif-
ferent from that of the present work. Instead of global types, they
solely use what we call (recursion-free) local types. In type check-
ing, local types are projected to each binary session, so that type
safety can be ensured using duality. Since we lose sequencing in-
formation in this way, the progress property is not guaranteed. The
use of global types in the present work leads to transparent treat-
ment of type structures such as recursion, the guarantee of stronger
behavioural properties such as progress, and (arguably) more intel-
ligible description of multiparty interaction structures.

Global Description of Session Types There are two recent works
which studied global descriptions of sessions in the context of
web services and business protocols, by the present authors (Car-
bone et al. 2007) and by Corin et al. (2007). Carbone, Honda, and
Yoshida (2007) presented an executable language for directly de-
scribing Web interactions from a global viewpoint and provided
the framework for projecting a description in the language to local
processes. The use of global description for types and its associated
theories have not been developed in (Carbone et al. 2007). The type
disciplines for the two (global and local) calculi studied in (Carbone
et al. 2007) are based on binary synchronous session types, hence
safety and progress for multiparty interactions are not considered.

Corin et al. (2007) investigates approaches to cryptographically
protecting session execution from both external attackers in net-
works and malicious session principals. Their session specification
models an interaction sequence between two or more constituent
roles, an abstraction of network peers. The description is given as
a graph whose node represents a specific state of a role in a ses-
sion, and whose edge denotes a dyadic communication and control
flow. The purpose of the message flow graphs in (Corin et al. 2007)
is more to serve as a model for systems and programs than to of-
fer a type discipline for programming languages. First their work
does not (aim to) present compositional typing rules for processes.
Secondly their flow graphs do not (try to) represent such elements
as local control flow (e.g. prefixing), channel-based communica-
tion and delegation. Third their operational structures may not be
oriented towards type abstractions: for example their choice struc-
tures are based on transitions of flow graphs than additive structures
realisable by branching and selection.

Semantics of Delegation The present work uses, for a simpler
presentation, the operational semantics of delegation from (Honda
et al. 1998) which demands that delegated channels do not occur
in the receiver. This prevents a process from acting as two or
more participants in the same session, which usually deadlock. The
duplication check is easily implementable in a way analogous to
the standard mechanism of firewalls. The more generous rule (Gay
and Hole 2005; Yoshida and Vasconcelos 2007) allows substitution
of session channels as in [Recv], which also satisfies type safety
and progress through annotations on channels and types. With this
change the whole theories remain intact with exactly the same
operational semantics and typing for programs.

Linear and Behavioural Types for Mobile Processes The ses-
sion type disciplines are related with linear and IO-typed π-
calculi with causality information. The causality analysis in global
types is partly inspired by the graph-based linear types devel-
oped in (Yoshida 1996) where ordering among multiple lin-
ear names (which correspond to session channels) guarantees
deadlock-freedom of typed processes. Kobayashi and his col-
leagues (Kobayashi 2006; Igarashi and Kobayashi 2004; Kobayashi
et al. 2000) study generalised forms of linear typing for guarantee-
ing different kinds of deadlock-freedom, incorporating synchroni-
sations and locking, with a detailed type inference system.

A main difference of session type disciplines from these and
other preceding works in this field is a notion of rigorously struc-
tured conversations and their direct type abstraction. By raising the
level of abstraction through the use of structured primitives such as
separate session initiation, branching and recursion, session types
can describe complex interaction structures more intelligibly and
enable efficient type checking. These features would have direct ap-
plicability for the design of programming languages with commu-
nication (Hu et al. 2007; Carbone et al. 2007; Honda et al. 2007a).

One of the novelties of the present work is the introduction
of global description as types and a use of their projection for
type-checking. They offer a modular and systematic causality anal-
ysis rather than directly working on individual syntax and op-
erational semantics, with adaptations to asynchronous and syn-
chronous communications. Composability of multiple programs is
transparent through projection of a common global type while com-
plex syntax of types and typing are required in the traditional ap-
proach. To our knowledge, this method has not been investigated
so far in the types of mobile processes.

Our session types use a static participant information in the
syntax and types. Recent advanced typing systems for location-
based distributed processes (Hennessy 2007) use the similar notion
for types T@p, allowing dynamically instantiate locations into the
capabilities using dependent type techniques. Since our aim is to

283

prove the simplest extension of the original session types to multi-
party, the static participants are enough even for delegations. It is
a valuable further study to investigate a dynamic change of partici-
pant numbers when session initialisation (without explicitly declar-
ing p in the syntax) by using channel dependent types (Mostrous
and Yoshida 2007) or polymorphism.

7. Conclusion
One of the main open problems of the session types is whether bi-
nary sessions can be extended to n-party sessions and, if they can,
what is their additional expressiveness and benefits. This paper an-
swers the question affirmatively. The present theory can guarantee
stronger conformance to stipulated conversation structures than bi-
nary sessions when a protocol involves more than two parties. The
central technical underpinning of the present work is the introduc-
tion of global types, which offer an intuitive syntax for describing
multiparty conversation structures from a global viewpoint; and
the use of their projection for efficient type-checking, proposing
a new effective methodology for programming multiparty inter-
actions in distributed environments. Global types also offer a ba-
sis of a clean modular causal analysis systematically applicable to
both synchronous and asynchronous communications, ensuring the
progress and session fidelity.

There are several significant future topics on the theory and ap-
plications of the proposed theory. We are currently starting to use
this generalised session type structure as one of the formal foun-
dations of the next version of a web service description language,
WS-CDL from W3C (WS-CDL) and a message scheme for finan-
cial protocols, UNIFI from ISO (UNIFI). Another topic is the use
of this theory as a basis of communication-centred extensions of
general purpose programming languages (Hu et al. 2007). Others
include tools assistance for the design and elaboration of global
types; incorporation of typed exceptions to sessions; and integra-
tion of the type discipline with diverse specification concerns in-
cluding security and assertional methods.

Acknowledgements. We thank the reviewers for their useful
comments and suggestions and our academic and industry col-
leagues for their stimulating conversations. The work is par-
tially supported by EPSRC GR/T04236, GR/T04724, GR/T03208,
GR/T03215, EP/F002114, EP/F003757 and IST2005-015905 MO-
BIUS.

References
Eduardo Bonelli and Adriana Compagnoni. Multipoint session types for a

distributed calculus. In TGC07, LNCS. Springer, 2008. To appear.

Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary
Brown, and Steve Ross-Talbot. A theoretical basis of communication-
centred concurrent programming. To be published by W3C. Available at
www.dcs.qmul.ac.uk/˜carbonem/cdlpaper, 2006.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In ESOP’07,
volume 4421 of LNCS, pages 2–17. Springer, 2007.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.
Asynchronous Session Types and Progress for Object-Oriented Lan-
guages. In FMOODS’07, volume 4468 of LNCS, pages 1–31, 2007.

Ricardo Corin, Pierre-Malo Denielou, Cedric Fournet, Karthikeyan Bhar-
gavan, and James Leifer. Secure Implementations for Typed Session
Abstractions. In CFS’07. IEEE-CS Press, 2007.

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and
Sophia Drossopoulou. Session Types for Object-Oriented Languages. In
ECOOP’06, volume 4067 of LNCS, pages 328–352. Springer, 2006.

Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida.
On Progress for Structured Communications. In TGC07, LNCS.
Springer, 2008. To appear.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C.
Hunt, James R. Larus, , and Steven Levi. Language Support for Fast
and Reliable Message-based Communication in Singularity OS. In
EuroSys2006, ACM SIGOPS, pages 177–190. ACM Press, 2006.

Pablo Garralda, Adriana Compagnoni, and Mariangiola Dezani-
Ciancaglini. BASS: Boxed Ambients with Safe Sessions. In PPDP’06,
pages 61–72. ACM Press, 2006.

Simon Gay and Malcolm Hole. Subtyping for Session Types in the Pi-
Calculus. Acta Informatica, 42(2/3):191–225, 2005.

Simon Gay and Vasco T. Vasconcelos. Asynchronous functional session
types. TR 2007–251, University of Glasgow, may 2007.

Jean-Yves Girard. Linear logic. TCS, 50:1–102, 1987.

Matthew Hennessy. A Distributed Pi-Calculus. CUP, 2007.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In Proceedings of ECOOP’91, 1991.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primi-
tives and type disciplines for structured communication-based program-
ming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer-
Verlag, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Web Services, Mobile
Processes and Types. The Bulletin of the European Association for
Theoretical Computer Science, February(91):165–185, 2007a.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Full version of this
paper. Technical Report 5, Imperial College London, 2007b.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. Type-safe Commu-
nication in Java with Session Types. http://www.doc.ic.ac.uk/
˜rh105/sessiondj.html, March 2007.

Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-
calculus. Theoretical Computer Science, 311(1-3):121–163, 2004.

Naoki Kobayashi. A new type system for deadlock-free processes. In
CONCUR’06, volume 4137 of LNCS, pages 233–247, 2006.

Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed
deadlock-free process calculus. In CONCUR’00, volume 1877 of LNCS,
pages 489–503, 2000.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–564, July 1978.

Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for
higher-order mobile processes. In TLCA’07, volume 4583 of LNCS,
pages 321–335. Springer, 2007.

Matthias Neubauer and Peter Thiemann. Session Types for Asynchronous
Communication. Universität Freiburg, 2004a.

Matthias Neubauer and Peter Thiemann. An Implementation of Session
Types. In PADL, volume 3057 of LNCS, pages 56–70. Springer, 2004b.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., 1993.

Stephen Sparkes. Conversation with Steve Ross-Talbot. ACM Queue, 4(2),
March 2006.

Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based
Language and its Typing System. In PARLE’94, volume 817 of LNCS,
pages 398–413. Springer-Verlag, 1994.

UNIFI. International Organization for Standardization ISO 20022 UNIver-
sal Financial Industry message scheme. http://www.iso20022.org.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a
multithreaded functional language with session types. TCS, 368(1–2):
64–87, 2006.

WS-CDL. Web Services Choreography Working Group. http://www.
w3.org/2002/ws/chor/.

Nobuko Yoshida. Graph types for monadic mobile processes. In FSTTCS,
volume 1180 of LNCS, pages 371–386. Springer, 1996.

Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives
and type discipline for structured communication-based programming
revisited: Two systems for higher-order session communication. Electr.
Notes Theor. Comput. Sci., 171(4):73–93, 2007.

284

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

