Bernardo Yo%
Tonmho

@@ programming language @GG 3'6. (2009)

4 Messaje - Passmj based multicore PL, successor of C

» Do not communicate by shared memory;
Instead, share memory by Cammum'qu/‘\/;rj
. - G’O égnj P/*o Ver_/p
» Explicrt channel-based ConcurrEI’IC)/
e Boftered /O communication channels
. Lrgh-rwerjh-r +hread spawm‘nj — gorountnes @é[‘a@’
o Selective Send /receive

] } @M Dropbox , Netfix, Docker, Core0S

Motivation

Deadlock Detection in Go

Fibonacci in Go

func fib(m int, ch chan int) {
if (n <= 1) {
<_
ch n func main() {
} else { .
. ¢ := make(chan int)
newch := make(chan int)
. go fib(10,c)
go fib(n-1,newch) .
X fmt.Println(<-c¢)
go fib(n-2,newch)
close ¢
x := <-mnewch }
y := <-newch
ch <- x+y
3}

w

[

Motivation

Deadlock Detection in Go

Fibonacci in Go

func fib(n int, ch chan int) {
if (n <= 1) {

o c? <—{n Send n 1o ch func main() {
ch rme/ . szh := make(chan int) ¢ := make(chan int)
LG e newes e o £ib(10,c)

ib(n- n
go fib(n-1,newch) gogioun fmt.Println (<-c)

"go fib(n-2,newch) S
x := <-newch } Close dhanne)

y := <-newch -
ch <- x+y receive X

at
1 newch

n
[
¢

Motivation
Deadlock Detection in Go

Fibonacci in Go

func fib(m int, ch chan int) {
if (n <= 1) {

ch <- n Ch!<f7> func main() {
} else { ¢ := make(chan int)
newch := make(cha- ’

: T 0 £ib(10,c)
go fib(n-1,newch) Fﬁb<n4/ﬁﬂmv1nt Println(<-c)
go fib(n-2,newch) . clo;e c
X := <-newch newzh?(l)
y := <-mnewch
ch <- x+y

}3

ul

» @ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for reqlistic programs?

> (se behavioura/ types m process calculr

eg: [ACM Surve)/ , 2006] 185 crfationS , 6 pages

» . -
Dynamic channel creations, unbounded thread creatins, recursions
-

» Scalable (synchronous/asynchronous) Modvlar, Refinable

Go runtime deadlock detector

) R

Send(ch
ch <- 42
log.Println("

Recv(ch
log.Println("

Send(ch)
Recv(ch, ack)
o CL

» @ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for reqlistic pragrams?

® (se behavioural types m proess calculr ;; ;i

e.g. [ACM Swve/ , 20/5_7 135 CrrationS , 6 pages

» Dynamic channel creations, unbounded thread creatins, recursions
-

' ch/aé/e (Sync/oronous/ asynchronous) Modu/al"} Refinable

» @@ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for realistic programs?

> (lse behavrovral types n process calculr ;; ;i

e.g. [ACM Swve)/ , 2006] 185 citations , 6 pages
(56 27
» Dynamic channel creations, uvnbounded thread creatins, recursions

’ \SCCI lable ¢ Synchronous / asynchronous) Modv la r, Refinable

Uhderstandable

APProacH
STEP1L MiGo (wlve-passing ccs)

» (Most) Message passing features of @O
» Trfck)/ primitives @ Selectton , channel closrnj

» Liveness / Safet

STEP 2 MiGo TYPES (<cs5)

» Restrict to F@m@@d Types and define Symbol?c Semantics
» Check Liveness / SaFeV

STEP 3

» Relate Liveness / Safety ™ Migo with Liveress/Sifety m Migo Types

Implement verifrcation tools

AP)D l’OGCh
STE P j_ MT GI'O (Va/ue~FaSST“j §CS)

»(Most) Message passing features of @O
> Trrck)/ primitives : Selection , channel c/osrnj
Abstract

» Liveness / Safet

STEP 2 MiGo TYPES (<cs)

? Restrict to F@m@@d types and define Symboltc semantits
» Check Liveness / Sa€e1y

STEP 3

» Relate Liveness / Safety ™ Higo with Liveness/ Sifety Migo Types

Implement verification tools

Fibonacci in MiGo

Defmrtion
Fib(n,c) £ if (n < 1)thenc!(n) else

newchan(c’:int); (Fib(n—1,c') | Fib{n—2,c) | ¢?(z); ' (y); c{z+y))
Progravn
{Fib(n,c)} in newchan(c:int); (F'ib(10, ¢} | c?(u); 0)

Gen(n,c) £ cl{n);Gen({n+1,c)
F(n,i,0) £ 4?(x);if (z%n # 0)thenol(z); F(n,i, 0) else F(n, i, 0)
Rec(c) £ c?(z);newchan(c’:int); (F(z,c,c) | Rec(c'))

{Gen(n,c), F(n,i,0), Rec(c)} in newchan(c:int); (Gen(2, c) | Rec(c))

Mi GO |_iveness /Smcef)’ P T Barb
U a [Miber 3

Channel Safe,T)/ Singioi 12
» Channel is closed at most once
» -
Can only mpot from a closed channel (default val e)
v

»
Others raise. an error and crash

Mi G—O | jveness / SQTLQT)’ P i Barb
U a [Miber 3
C hannel Safe:r)/ {

Sangiorgt QZ]
» Channel is closed at most once
» Can only mput from a closed channel Cdefault valve)

» Others raise. an error and crash

P 's channel safe f P —a*(yav)Q and S0 dose
-'(Qalend(a)) N7 (Q,ﬂ, a) a closed

never dostng never Send

Mrﬁo Ltveness / Smce‘t‘)/
» Liveness
All reachable acttons are eventually pertorme d
¥
Pishve if P—09Q
QLQ = Q Jl/ = et q feducﬁoh
@“‘J’a = Q‘\U' T aqg ag)ﬁ

TYPES

Fibonacci Types

fib(x)
to()

Z @ (newb)(fib(b) | b;b;7 | fib(b))
(new a)(fib{a) | a)

> 1>

Prime Sieve Types

7; gen(x)

z; (7; filter (z,y) @ filter(z,y))
x; (new b)(filter (z,b) | rec(b))
(new a)(gen(a) | rec(a))

gen(z)
filter(z,y)
rec(z)

to()

> > > 11>

Subjecf Reduction [heorem

P EPRT A PP S ToTA TEPST

TYPES

Fibonacci Types

fib(x)
to()

Z @ (newb)(fib(b) | b;b; | fib(b))
(new a)(fib{a) | a)

> >

Prime Sieve Types
gen(z)

filter(z,y)

rec(x)

to()

z; gen(z)

x; (; filter (z,y) & niter(z, y))
z; (new b)(filter(x,b) | rec(b))
(new a)(gen(a) | rec(a))

> e > 1>

Subject Reduction Theorem

P EPsT APoP S ToTA TRPT

Typmg MiGo Types T
G; 255 ET[juement for [FEM@@

Stngle. thread recursto

muHT thread for each recursion, at least one. of
parameters must Be forgottein

Ensore Finite Control of Labelled Transttion -'—Q‘> over

» Fenced Types

T

Created new names are less than K

u}
o)
I
i
it

Analysing Behavioural Types

Fencing

Fibonacci Types — Fenced

fib(z) & T @© (newb)(fib(b) | b;b;T | fib(b))
to) = (newa)(fib(a) | a)
Observation: Recursive calls to fib(b) cannot access parameter .
e
" fib{a) \a."-..
)~

f:b([) bbial f:b(b1)
Pt i g
fib(bs) fib(bs) bo;by; by ba;by; by fib(bs) fib(bs)

|

(
JINSIN INSEN

Analysing Behavioural Types

Fencing

Prime Sieve Types — Fenced

gen(z) = 7;gen(z)
filter(z,y) = =;(y; filter(z,y) & filter(z,y))
rec(z) = x;(newbd)(filter(z,b) | rec(b))
to() = (newa)(gen(a) | rec(a))
()—»gen(ao) fllter(ag al) f:lter(m ag) : filte;(a;é.ul-,'u,{)mfilter(fr},ak+1)

rec(an) — rec(a;) — rec(ag) rec(a.) . rec{a+1)

1

Analysing Behavioural Types

Fencing

Prime Sieve Types — Fenced

gen(z) = T;gen(z)
filter(z,y) = z;(y;filter(z,y) & filter(z,y))
rec() 2 x;(newbd)(filter(z,b) | rec(b))
to() £ (newa)(gen(a) | rec(a))
‘to() — gen(ap) fllter(m,,al) fllter(al,ag) : frlter(a,‘ L) fllter(u aHl)_
rec(an) — rec(le) — rec(ag) rec{a;)y — rec(akﬂ)

» Fmitely Manx “Kmds” of Multt threads
« All names are shared by Fmitely Many threads

NO Fence

X Recy)= (T [+ Rec(xg))
X Rec (x, 4,2)= (T /- (newa)-- ﬁec(_{,aq);

V Rec (f/ﬁ/i‘) = (T | (newa) - Rec %,zlq))
T Shif+

forgottein

¥
I

BENGED TYPES e e oe s e

_Lemma (Fmite Cownrol) N

{[T] | t0<> —;'T } TCTnT‘/'e for fmzfel(29

NIz o e T

K- Safety - K-Liveness e T
| Tt 75 decidable whether T 7s k- safe and k-lve
b I —-w;f

- 23 Py
A N R £ AR AR RN o (R YL A

DA o3

F@b\’] @E@ TYP ES asome types are fenced then

Ley,,,ma (F‘YHTE COHTYO‘) o el 4 AT A s . .

{[TJ ‘ t0<> JT } fiane fOr flnn‘ek 3

L

,/K— Safety + K-Liveness - e i e
\,, It ©s decidable whether T s k-Safe and k-lve ,e'}
= e MR T ﬁ"”i‘"

- A L R
A g 20 v P ST TG ST RIS et 3

Safety - Liveness

There exists K st ¥ T is
then T s Sare (live)

k-safe (k-live)

F@N @E@ TYPE S Assome types are fenced then

Lemma (Fmite Comrol)

v i,

{[:I'] ‘ toO _.§' T } ﬁnT‘re o an«ek 3

K— &{E"-y : K— LTVEhess e e g 6TV AT SRS R
r’

RAES D

e

I't s decidable whether T s k- safe and k-ltve d

)
TN YT B 2 4 hww«"*’mmh

z
R 2 LRI A gl ~ R Y s-r‘i,d’"
‘,,,Safe'ry + L1veness o
- There exists K " s b NOT rve mmk-s \
_) \
then T 7s Safe weie, TRVE - i’

- @“’/

Re lating Programs and Types
Program |
F(n,i,0) =

- Type
filter(i,0) =

i?(x); if (x%n # 0) then ol{z); F(n, 1, o) else F(n,i, o) .
i; (03 tr(i,0) © t5(3,0))

> Idenﬁfy % classes (Lrvehess)

1. May Terminate
2 . Without nfinttely runhing Conditionals

3. Non- determ:mS'ft(_ conditiona |

> Channel Sa\‘e-ty Pragrams = Types

o F

Re (q'ﬁnj PYUfjmms and Types
Program =~ |

F(n,i,0) = i?(z); if (x%n

Type
filter(i,0) =

» Tdentif 2 cla§5e5 (Lr en \
y B veness) it
1. May Terminate e
n . Without nfinttely running condittonals

T olx); F(n,i,o0) else F{n,i,0) .

i (3; tr (i, 0) @ tF(i,0))

3. Non- demrmumwc_ condittona |

» Channel Sa{-e17 Pragmms = Types

o F

Implementation

Toolchain

’ Gong

|

Behavioural types

GoInfer

go/ssa package

Load main()

Go source code

github.com/nickng/gong

Gong written in Haskell

The tool checks input behavioural types
for liveness and channel safety.

GoInfer written in Go
The tool loads source code, type-checks
and builds SSA IR using go/ssa package,
then extracts communication from the
SSA IR as behavioural types.

https://github.com/nickng/gong

Conclusion
o M'[G‘O a formal model €or Go Liveness/ Sa‘FeTy

- MiGo TYES fenced types k-lrveness / k-'sa{:ETy
e Relate MiGo and MiGo Types’ Irveness /smce'y

AS)'hChY'DV\)/ . Tools

Future Work_

chanrel pass™g - locks
behaviour semantics - behavioural typing system

Model Checkmﬁ = Fencnqj

Conclusion
° MT G'O a formal model for Go Liveness/ SqfeTy

e MiGo TYES fenced types k~Irveness/ k—SO-FE'\‘y
o Relate MiGo and MiGo Types’ Irveness /smce-\y

Asynchrony - Tools

Future Work (%‘;\8‘"29 . Sesstoﬂs
ovprold T/Pe

channel pass™g - locks G3)(Gkeie) | Comtract®
el
ﬁ behaviour semantiCs - behaviourn | typmgq system

Model Checkl‘t«_rj = Fencma

Conclusion
° MT G"O a formal model €or Cro LTveh&/SqfeTy

e MiGo TYES fenced types k-liveness/ k—SaFE't‘)/
o Relate M1Go and MiGo Types’ lrveness/smce-\y

Asynchrony « Too Is

Future Work_ {%;?%, 00) Sesstov

ol Type>
Channel PQSSTV\3 0 'OCkS %&?%é?ié%ﬂ COY\Tm(‘-ts

behaviour semantics - behavioural typtq system

MOdel CheCkerﬁ = FehCThj : @ ,_f.'

Evaluation

chans Analysis [4]

Examples LoC unbuf. buf. Live Safe| Time (ms) |Static Safe
sieve 19 2 o v v 209.55 X

fib 23 2 0 v v | 14638.4 X
fib-async 23 1 1 v v | 321738 X

fact 19 2 o v Vv 206.63 X
dinephil [2] | 56 3 0 Vv Vv |646921.76| x
jobsched 41 0 1 v v 48.12 X
concsys [1] [112 2 0 x Vv 323.75 X
fanin [5, 4] | 36 3 o v Vv 89.14 v v
fanin-alt [4]| 37 3 0 x! v | 209.02 v v
mismatch [4] | 26 2 0 x v 26.59 v X
fixed [4] 25 2 0 v v | 2458 VRV
alt-bit [3] 74 0 2 v v 405.78 v v
forselect 40 3 o v v 31.01 v v
cond-recur 32 2 o v v 34.08 v v

L. testing for channel close state is not supported in this version

Collection of Golang concurrency patterns.
https://github.com/stillwater-sc/concurrency.

E. Giachino, N. Kobayashi, and C. Laneve.

Deadlock analysis of unbounded process networks.

In CONCUR, volume 8704 of LNCS, pages 63—77. Springer,
2014.

R. Milner.
Communication and Concurrency.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

N. Ng and N. Yoshida.

Static Deadlock Detection for Concurrent Go by Global
Session Graph Synthesis.

In CC 2016, pages 174-184. ACM, 2016.

Sameer Ajmani.
Go Concurrency Patterns: Pipelines and cancellation, 2014.
https://blog.golang.org/pipelines.

https://github.com/stillwater-sc/concurrency
https://blog.golang.org/pipelines

