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ABSTRACT

We present RustSmith, the �rst Rust randomised program generator

for end-to-end testing of Rust compilers. RustSmith generates pro-

grams that conform to the advanced type system of Rust, respecting

rules related to borrowing and lifetimes, and that are guaranteed

to yield a well-de�ned result. This makes RustSmith suitable for

di�erential testing between compilers or across optimisation lev-

els. By applying RustSmith to a series of versions of the o�cial

Rust compiler, rustc, we show that it can detect insidious histori-

cal bugs that evaded detection for some time. We have also used

RustSmith to �nd previously-unknown bugs in an alternative Rust

compiler implementation, mrustc. In a controlled experiment, we

assess statement and mutation coverage achieved by RustSmith vs.

the rustc optimisation test suite.

CCS CONCEPTS

• Software and its engineering → Compilers; Maintaining soft-

ware; Software testing and debugging.
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1 INTRODUCTION

The Rust programming language is growing rapidly in popular-

ity. Through an innovative type system, Rust statically eliminates

classes of memory-related bugs that are the bane of unsafe lan-

guages such as C and C++. Because of these safety guarantees,

Rust is being used for the development of key infrastructure. It is

thus critical that the Rust compiler, rustc, is thoroughly tested. To

increase the thoroughness of rustc testing, we have built Rust-

Smith, the �rst randomised generator of Rust programs suitable for

di�erential compiler testing. The name, and some of the design of

RustSmith is inspired by Csmith [20], a widely-used generator of C

programs. RustSmith produces well-formed programs that conform

to the advanced type system of the language. Generated programs
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can be used to cross-check rustc at di�erent optimisation levels,

or against other Rust compilers such as mrustc [2].

RustSmith supports the full range of Rust control �ow constructs,

including conditionals, loops and (potentially recursive) function

calls, along with a wide range of data types such as dynamic and

static arrays, tuples and structs. Currently out of scope features are

concurrency, traits, generics, generators and unsafe code blocks.

We outline how to use RustSmith, discuss its design and imple-

mentation details, and showcase historic bugs found independently

by RustSmith in various versions of rustc as well as previously

unknown bugs in mrustc. We also present statement and mutation

coverage results over the rustc optimiser codebase.

Availability and video demonstration. RustSmith is available

as open source,1 together with an artifact allowing rustc bugs and

controlled experiments to be reproduced,2 and a video walkthrough

of the use of RustSmith.3

2 USING RUSTSMITH

The RustSmith repository provides binary releases and build instruc-

tions for the tool. Invoking the tool via the rustsmith command

causes 100 random programs to be generated into an outRust direc-

tory, each with an accompanying text �le containing the command-

line arguments to be supplied to the generated program. RustSmith

itself accepts command-line arguments to control the number of

generated programs, output directory and random number genera-

tor seed.

RustSmith provides several generation modes that can be speci-

�ed on the command line. The default mode controls the block sizes

and mean recursive depths via parameters that we have manually

tuned during the development of the tool, and results in programs

with an average size ≈ 3, 000 lines.

3 DESIGN AND IMPLEMENTATION

Overall design. RustSmith works by recursively building a random

abstract syntax tree (AST) conforming to the Rust grammar, which

is then printed in textual form. Generation starts from the main

function, and additional functions can be created during genera-

tion. To respect the Rust typing rules and semantics, generation is

context-aware, e.g. a break is only generated inside a loop; and an

if statement condition is restricted to type bool. To support this,

RustSmith maintains a symbol table—akin to the symbol table of

a compiler—that provides contextual information for each lexical

scope of the program being generated, such as names and types of

available variables, as well as globally-available information about

constants, struct and function de�nitions.

Avoiding dangerous operations. Various “dangerous” operations

are de�ned to yield runtime errors in Rust, including division by

1RustSmith on GitHub: https://github.com/rustsmith/rustsmith
2RustSmith artifact: https://doi.org/10.5281/zenodo.7940979
3Video walkthrough of RustSmith: https://youtu.be/ILdDLP2hH7I

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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zero and accessing an array out-of-bounds. Integer over�ow is

speci�ed as trapping in debug mode, but exhibiting wrap-around

semantics in release mode. Careless generation of dangerous op-

erations would lead to programs that abort with high probability,

making them unlikely to be useful for �nding compiler bugs, as well

as making di�erential testing between release and debug modes

a challenge. To address this, RustSmith follows Csmith and uses

wrappers to guard potentially dangerous operations so that runtime

errors are avoided (in both release and debug modes). For example,

unsigned integer division is handled by a macro that yields zero

if the denominator is zero, and the regular result of the division

operation otherwise.

Borrowing. Borrowing and lifetimes (discussed below) are the key

features of the Rust type system that allow memory safety (as well

as freedom from data races) to be statically enforced. In Rust, objects

are passed with move semantics by default: the source reference to

the object becomes invalid, so that accesses via this reference are no

longer allowed, and the receiving reference becomes the sole owner

of the object. To support sharing of object references without object

ownership changing, Rust allows objects to be borrowed through

additional immutable or mutable references, denoted by & and &mut

in type declarations, respectively. To ensure freedom from data

races in a multi-threaded context, the owner of an object must only

give out either (a) at most onemutable reference, or (b) any number

of immutable references to the object. The Rust borrow checker

checks that these rules are obeyed.

RustSmith does not generate concurrent programs, but all Rust

programs must obey borrowing rules, so RustSmith must respect

them. To this end, the RustSmith symbol table tracks the valid-

ity, mutability and borrowing states for reference variables and

struct/tuple members. As an example, consider this Rust code:

fn main() {

let mut a = 1i32;

let b: &i32 = &a; // OK: multiple immutable borrows

let c: &i32 = &a; // are allowed

let d: &mut i32 = &mut a; // BAD: a is already borrowed

*d = *b + *c;

}

RustSmith could generate the declarations b and c, which each

borrow a immutably; the symbol table tracks the number of such

borrows. But RustSmithwould not generate the declaration d: know-

ing that a has already been borrowed at this program point, it is

not legitimate for a to be borrowed mutably. Tracking validity in-

formation also allows RustSmith to ensure that move-semantics are

respected, by avoiding uses of references after moves.

The restrictions that RustSmith places on generated program are

slightly stricter than the actual borrowing rules of Rust, which only

concern live references. It is acceptable for a mutably-borrowed

object to be borrowed additionally (either mutably or immutably)

as long as rustc can statically prove that at most one of the bor-

rowing references will actually be used. In the above example, if

*d = *b + *c; is changed to *d = 1i32; then rustc accepts the

code despite the borrowing rules apparently being violated. This

is because the immutable references b and c are no longer live:

rustc can see that they will never be used, and thus there is no

risk associated with d borrowing a immutably. Although this exam-

ple is simple, mirroring exactly these kinds of edge-case programs

that rustc accepts requires intricate data-�ow analysis within Rust-

Smith, whichwould be particularly di�cult to achieve in the context

of a program that is mid-way through being generated. Adopting

slightly stricter rules su�ces to ensure the generation of valid pro-

grams, at the cost of some loss in expressivity.

Lifetimes. Rust is not garbage-collected. Instead, every object

has a unique owning reference, and each reference has a well-

de�ned lifetime, related to its lexical scope. When the lifetime of a

reference ends, the object that it refers to (if any) is automatically

deallocated. The Rust type system has been designed to ensure

that it is impossible for a reference to refer to an object whose

owning reference’s lifetime has ended. This achieves freedom from

use-after-free errors that are typically a problem in non garbage-

collected languages such as C and C++. Most object lifetimes in Rust

are implicit—they are inferred by the compiler. However, explicit

annotations are required in certain places, such as in reference

members of structs. The compiler checks that the lifetime of a

reference is no longer than the lifetime of the owner of the object

that it points to.

To ensure that whenever a binding of a reference to an object

is made, the object will outlive the reference, RustSmith exploits

scoping information from the symbol table. Declarations at the

top-level scope have the longest lifetimes, while declarations in a

child scope have shorter lifetimes than declarations in enclosing

scopes. Consider the following program fragment:

fn main() {

let mut a = 100i32;

let r: &mut i32;

if (...) {

r = &mut a; // OK: lifetimes of a and r match

} else {

let mut c = 10i32;

r = &mut c; // BAD: r outlives c

}

*r = 42i32;

}

RustSmith could generate the assignment r = &mut a; because

based on symbol table information it knows that a and r have

matching lifetimes (as they are declared in the same scope). In

contrast, the assignment r = &mut c; would not be generated,

because RustSmith can deduce from the symbol table that c will

not outlive r (as c is declared in a deeper scope than r).

When a struct is declared, RustSmith must equip its reference-

typed members with appropriate lifetime annotations. To handle

this, RustSmith creates structs “on demand”, in that the struct de�ni-

tion is added the �rst time an object of the struct type is instantiated.

For the struct de�nition, the current lifetimes of its reference-typed

members will be used as lifetime parameters. An e�ect of this

method of generation is that future instantiations of the struct

will then only succeed with members having lifetime annotations

identical to the �rst instance. This was simple to implement, but

is conservative: it means that generated programs do not exercise

the lifetime coercion mechanism of Rust, where values with longer

lifetimes can be used in locations requiring a shorter lifetime.

Exercising the type inference engine.When generating a dec-

laration statement (let name : type = expr), RustSmith internally

determines a suitable type for the declaration, but randomly chooses
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to omit it from the declaration, leaving it up to the compiler to infer

the type and hence exercising its type inference engine.

Function inlining. RustSmith can randomly annotate generated

functions with #[inline(always)] and #[inline(never)] to en-

sure that the compiler’s inliner is exercised.

Inhibiting optimisations. RustSmith uses command-line argu-

ments as a source of values that are unknown to the compiler. The

use of such values ensures that an aggressive compiler cannot fully

optimise a generated program to a trivial form.

Test-case reduction. Test cases produced by RustSmith can be

large, so that an automated means of reducing them is required

when they trigger a compiler bug. We �nd that the reduction tool

C-Reduce [18], originally designed for C/C++, works well enough

on RustSmith-generated programs to prove useful for this purpose.

4 BUG FINDING

During its development, we repeatedly used RustSmith in an un-

controlled fashion (and using its default generation mode) to test

nightly builds of rustc. We also ran experiments against historic

versions of rustc. The rustc version tags used were:

• 1.28 (the earliest version with all optimisation levels present)

• 1.40 (2 years old rustc version at time of development)

• 1.56 (rustc 2021 version)

• Latest (To always pick up latest stable version)

• Nightly (To pick up latest development builds)

This led to independent discovery of �ve historic bugs. We de-

tail two of these, as well as one of two previously-unknown bugs

a�ecting mrustc [2], an implementation of Rust in C++, found by

RustSmith. We decided not to run RustSmith on historic versions

of mrustc as mrustc is still a work in progress. The programs we

show have been reduced from RustSmith-generated programs.

rustc bug: invalid opcode generated (a�ected v1.59–1.61).

This program exhibits in�nite recursion on fun25:

#[inline(never)]

fn fun25(var574: Box<i32>) -> ! { fun25(var574) }

fn main() {

let var574 = Box::from(1745183449i32);

fun25(var574);

}

Rust mandates that this should lead to a well-de�ned stack over-

�ow error. Instead, when compiled with any optimisations enabled

the program’s execution leads to a runtime crash. We �led a bug

report, but the issue turned out to have been independently re-

ported two weeks earlier [13] and has now been �xed in rustc

v1.62. Nevertheless, this demonstrates that RustSmith is capable

of �nding recent Rust miscompilations that developers care about

�xing.

rustc bug: incorrect constant propagation (a�ected v1.45).

This program exhibits di�erent execution results when compiled

with rustc v1.45 vs. v1.61:

fn main() {

let mut var1: (bool, f64, i32) = (false, 0.5f64, 100i32);

let var2: &mut bool = &mut var1.0;

*var2 = true;

let var3: (bool, f64, i32) = var1;

if (var3.0) {

let var4 = 10i32;

println!("{:?}", ("var4", var4));

} else {

let var5 = 1i32;

println!("{:?}", ("var5", var5));

}

}

Due to an error in constant propagation, the v1.45-compiled version

of the program incorrectly takes the else branch of the conditional.

This problem was �xed in rustc in response to a bug report [4].

Again, it demonstrates RustSmith’s ability to detect issues that

developers deem worth �xing.

mrustc bug: crash on program featuring nested return. This

program should compile without error and terminate normally:

fn fun1() -> () { return { return (); }; }

fn main() {}

However, with mrustc revision cd573b2, compilation crashes in

mir_builder.cpp. The mrustc developers labelled our report of

this issue [19] and another issue as “enhancement”, re�ecting the

fact that mrustc is a self-professed “In-progress” project.

5 CONTROLLED EXPERIMENTS

We performed experiments assessing the coverage achieved by

RustSmith on the rustc “mid-level IR” (MIR) optimiser—where the

majority of Rust-speci�c optimisations are performed. For compari-

son, we also assessed coverage of the MIR optimiser achieved by the

Rust o�cial optimisations test suite (OOTS) within tests/mir-opt.

Both code and mutation coverage experiments are performed on

release v1.62.1 (Git hash e092d0b6b) of rustc.

Code coverage. We computed code coverage for the OOTS by

running it against the coverage-instrumented compiler. To com-

pute code coverage achieved by RustSmith, we generated 1,000

programs as a representative cohort (we repeated this three times

and observed variance of 0.1% or below for both line and function

coverage). See the code-coverage folder in our artifact for repro-

duction instructions. Unsurprisingly, the OOTS covered a large

proportion of the MIR optimiser codebase, with overall line and

function coverage of 82.12% and 72.78% respectively, compared to

the RustSmith cohort’s 51.59% and 54.06%. Although RustSmith

was not written speci�cally to exercise these optimisations, Rust-

Smith is able to achieve comparable coverage to the hand-written

OOTS across many �les, and achieved better coverage in multiple

optimisations. For example, within add_call_guards.rs, Rust-

Smith achieved 100.00% line coverage vs. OOTS’s 55.56%; whilst

within nrvo.rs, RustSmith achieved both higher function coverage

(86.67% vs. 80.00%) and line coverage (94.12% vs. 93.38%).

Mutation coverage. To better compare the fault-�nding ability of

RustSmith vs. the OOTS, we turned to mutation coverage. While it

would be possible in principle to perform exhaustive mutation anal-

ysis using the cargo-mutants project [17] we were concerned this

would lead to an infeasibly large set of mutants when applied to the

sizeable MIR optimiser code base. The mutation study can be repro-

duced following the instructions within the mutation-coverage

folder of our accompanying artifact.

Based on previous evidence that miscompilation bugs often arise

from incorrect optimisation preconditions [14, 15], we devised a
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Table 1: RustSmith vs. OOTS on ability to kill mutants

RustSmith killed RustSmith survived Total

OOTS killed 130 109 239

OOTS survived 3 112 115

Total 133 221 354

simple mutation operator that yielded a tractable set of mutants

when applied over the MIR optimiser code base: negating the guard

of an if statement. To avoid repeated recompilation of rustc,

we devised a method to introduce mutants dynamically via an

environment variable. Overall, mutations are applied to 354 distinct

if statements across the MIR optimiser codebase. This provides a

set of mutants that have been obtained systematically, and is small

enough in number so that exhaustive analysis is feasible.

An input program kills a mutant if compiling the program using

themutated compiler produces detectably di�erent results compared

with the original compiler. Kills can arise due to compile-time panics

or timeouts, or di�erences in generated object code. The latter may

also lead to di�erences in results when the object code is executed

(akin to miscompilation bugs).

To evaluate the mutation coverage of OOTS, we execute the full

suite against each mutant, deeming a mutant killed if at least one

test fails. The OOTS compares generated IR to expected IR, so that a

test failures are either due to compiler panics or binary di�erences.

To evaluate the mutation coverage of RustSmith we performed a

controlled experiment on an Ubuntu 18.04 machine with a 3.2GHz

8-core processor and 16 threads. RustSmith was applied to each

mutant in turn, with a maximum time budget of 3 minutes to kill

the mutant by repeatedly generating, compiling and executing pro-

grams. The 3-minute time limit was chosen to allow the experiment

to �nish within a reasonable timescale (≈ 18 hours). The experiment

would move on from a mutant either when this time budget was

exhausted, or the mutant was found to be killable both via a compile

panic and an execution mismatch. We were interested in both types

of kill as neither subsumes the other in severity—compile panic

is a compile-time symptom of the mutant, whereas an execution

mismatch is a run-time symptom caused by the mutant.

Table 1 summarises the ability of the OOTS vs. RustSmith to

kill mutants via this experiment. Three mutants were killed by

RustSmith but survived the OOTS. The generated tests that kill

these mutants could be re�ned into tests to be added to the OOTS.

6 RELATED WORK

A recent survey provides details of numerous compiler testing tech-

niques [5]. RustSmith employs di�erential testing [16], which has

had major impact in compiler testing through the Csmith [20] tool

for C and various other “smiths” such as CLsmith [12] for OpenCL

and Verismith [10] for Verilog. To our knowledge, RustSmith is the

�rst di�erential compiler testing tool for Rust.

Several other successful approaches to randomised compiler

testing are based on metamorphic testing [6], e.g. via equivalence

modulo inputs testing [11], or semantics-preserving transforma-

tions [8]. We are not aware of any such methods targeting Rust.

Mutation based fuzzing tools such as AFL [9] and libFuzzer [1]

have led to the discovery of numerous rustc bugs [3], but these

are primarily front-end crashes triggered by invalid programs. In

contrast, RustSmith allows end-to-end testing using valid programs.

In [7], the authors focus on rustc’s typechecker, by introducing

mutations within the typing rules, and applying constraint logic

programming to generate programs with subtle typing errors.

7 CONCLUSIONS

We have introduced RustSmith, a random generator of programs

suitable for di�erential testing of Rust compilers. Our results show

that RustSmith can �nd bugs in historic versions of rustc, �nd

new bugs in mrustc, and achieve complementary statement and

mutation coverage on the rustc optimiser codebase compared with

the rustc o�cial optimisation test suite. Directions for future work

include extending RustSmith to support missing language features

(e.g. traits, generics and unsafe code), and leveraging RustSmith as

a source of new regression tests to �ll test coverage gaps in rustc.
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