Stephen Muggleton's Book Chapters

     
    [1]
    S.H. Muggleton and W-Z. Dai. Human-like computer vision. In S.H. Muggleton and N. Chater, editors, Human-Like Machine Intelligence, pages 199-217. Oxford University Press, 2021.

    [2]
    A.K. Fidjeland, W. Luk, and S.H. Muggleton. Customisable multi-processor acceleration of inductive logic programming. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 123-139. Imperial College Press, 2015.

    [3]
    R.J. Henderson and S.H. Muggleton. Automatic invention of functional abstractions. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 217-224. Imperial College Press, 2015.

    [4]
    S.H. Muggleton and C. Xu. Can ILP learn complete and correct game strategies?. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 3-10. Imperial College Press, 2015.

    [5]
    N. Pahlavi and S.H. Muggleton. Towards efficient higher-order logic learning in a first-order datalog framework. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 207-215. Imperial College Press, 2015.

    [6]
    Alireza Tamaddoni‐Nezhad, Dianhuan Lin, Hiroaki Watanabe, Jianzhong Chen, and Stephen Muggleton. Machine learning of biological networks using abductive ILP. In Katsumi Inoue Luis Fariñas del Cerro, editor, Logical Modeling of Biological Systems, pages 363-401. Wiley, Bognor Regis, 2014.

    [7]
    D. Bohan, A. Raybould, C. Mulder, G. Woodward, A. Tamaddoni-Nezhad, N. Bluthgen, M.J.O Pocock, S.H. Muggleton, D.M. Evans, J. Astegiano, F. Massol, N. Loeuille, S. Petit, and S. Macfadyen. Networking agroecology: Integrating the diversity of agroecosystem interactions. In G. Woodward and D.A. Bohan, editors, Advances in Ecological Research, Vol. 49, pages 2-67. Academic Press, Amsterdam, 2013.

    [8]
    A. Tamaddoni-Nezhad, G. Milani, A. Raybould, S.H. Muggleton, and D. Bohan. Construction and validation of food webs using logic-based machine learning and text mining. In G. Woodward and D.A. Bohan, editors, Advances in Ecological Research, Vol. 49, pages 224-290. Academic Press, Amsterdam, 2013.

    [9]
    J. Chen, L. Kelley, S.H. Muggleton, and M.J.E. Sternberg. Protein fold discovery using Stochastic Logic Programs. In L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors, Probabilistic Inductive Logic Programming, pages 244-262. Springer-Verlag, 2007.

    [10]
    S.H. Muggleton and J. Chen. Comparison of some probabilistic logic models. In L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors, Probabilistic Inductive Logic Programming, pages 305-324. Springer-Verlag, 2007.

    [11]
    S.H. Muggleton and N. Pahlavi. Stochastic logic programs: A tutorial. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning, pages 323-338. MIT Press, 2007.

    [12]
    S.H. Muggleton, H. Lodhi, A. Amini, and M.J.E. Sternberg. Support Vector Inductive Logic Programming. In D.E. Holmes and L.C. Jain, editors, Innovations in Machine Learning, pages 113-135. Springer-Verlag, 2006.

    [13]
    S.H. Muggleton and J. Firth. CProgol4.4: a tutorial introduction. In S. Dzeroski and N. Lavrac, editors, Relational Data Mining, pages 160-188. Springer-Verlag, 2001.

    [14]
    S.H. Muggleton and F. Marginean. Logic-based machine learning. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 315-330. Kluwer, 2000.

    [15]
    S.H. Muggleton. Inductive Logic Programming. In Robert A. Wilson and Frank C. Keil, editors, The MIT Encyclopedia of the Cognitive Sciences (MITECS). MIT Press, 1999.

    [16]
    S.H. Muggleton and D. Page. A learnability model for universal representations and its application to top-down induction of decision trees. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 15. Oxford University Press, 1999.

    [17]
    I. Bratko, S.H. Muggleton, and A. Karalic. Applications of Inductive Logic Programming. In R.S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and Data Mining. John Wiley and Sons Ltd., Chichester, 1998.

    [18]
    R. Parson and S.H. Muggleton. An experiment with browsers that learn. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 15. Oxford University Press, 1998.

    [19]
    S.H. Muggleton. Inverting entailment and Progol. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 14. Oxford University Press, 1995.

    [20]
    S.H. Muggleton. Logic and learning: Turing's legacy. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 13, pages 37-56. Oxford University Press, 1994.

    [21]
    A. Srinivasan, S.H. Muggleton, and M. Bain. The justification of logical theories based on data compression. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 13, pages 87-121. Oxford University Press, 1994.

    [22]
    M.J.E. Sternberg, J. Hirst, R. Lewis, R.D. King, A. Srinivasan, and S.H. Muggleton. Application of machine learning to protein structure prediction and drug design. In S. Schulze-Kremer, editor, Advances in Molecular Bioinformatics, pages 1-8. IOS Press, 1994.

    [23]
    B. Dolsak and S.H. Muggleton. The application of Inductive Logic Programming to finite element mesh design. In S.H. Muggleton, editor, Inductive Logic Programming, pages 453-472. Academic Press, London, 1992.

    [24]
    M. Bain and S.H. Muggleton. Non-monotonic learning. In D. Michie, editor, Machine Intelligence 12, pages 105-120. Oxford University Press, 1991.

    [25]
    S.H. Muggleton. Inverting the resolution principle. In Machine Intellience 12, pages 93-104. Oxford University Press, 1991.

    [26]
    S.H. Muggleton. Inductive acquisition of chess strategies. In Machine Intellience 11, pages 375-390. Oxford University Press, 1988.


    ML Group Home Page