All paper's cited in Stephen Muggleton's Publications

     
    [1]
    S.H. Muggleton A. Fidjeland, W. Luk. Scalable acceleration of inductive logic programs. In IEEE international conference on field-programmable technology, pages 252 -- 259. IEEE, 2002.

    [2]
    M. A-Razzak, T. Hassan, and R. Pettipher. Extran-7: A Fortran-based software package for building expert systems. In M.A. Bramer, editor, Research and Development in Expert Systems, pages 23-30. Cambridge University Press, Cambridge, 1984.

    [3]
    H. Abramson and V. Dahl. Logic Grammars. Springer-Verlag, Berlin, 1989.

    [4]
    Harvey Abramson. Definite clause translation grammars. Technical report, Vancouver, BC, Canada, Canada, 1984.

    [5]
    H. Ade, L. De Raedt, and M. Bruynooghe. Theory revision. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 179-192, 1993.

    [6]
    R. Agrawal. Sample mean based index policies with o(log n) regret for the multi-armed bandit problem. Advanced Applied Probability, 27:1054-1078, 1995.

    [7]
    L. Ai, S.H. Muggleton, C. Hocquette, M. Gromowski, and U. Schmid. Beneficial and harmful explanatory machine learning. Machine Learning, 110:695-721, 2021.

    [8]
    L. Ai, J. Langer, S.H. Muggleton, and U. Schmid. Explanatory machine learning for sequential human teaching. Machine Learning, 112:3591-3632, 2023.

    [9]
    James S Aitken. Learning information extraction rules: An inductive logic programming approach. In ECAI, pages 355-359, 2002.

    [10]
    K. Ali and M. Pazzani. Hydra : a noise tolerant relational concept-learning algorithm. In Proceedings of the 13th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1993.

    [11]
    B.P. Allen. Case-based reasoning: business applications. Communications of the ACM, 37(3):40-44, 1994.

    [12]
    J.F. Allen. Natural language understanding. Benjamin/Cummings, Menlo Park, CA, 1995.

    [13]
    E. Alpaydin. Intoduction to Machine Learning. MIT Press, 2004.

    [14]
    H. Alshawi. The Core Language Engine. M.I.T.Press, 1992.

    [15]
    A.P. Ambler, H.G. Barrow, C.M. Brown, R.M. Burstall, and R. J. Popplestone. A versatile system for computer controlled assembly. Artificial Intelligence, 6(2):129-156, 1975.

    [16]
    A. Amini, H. Lodhi S.H. Muggleton, and M.J.E. Sternberg. A novel logic-based approach for quantitative toxicology prediction. Journal of Chemical Information and Modelling, 47(3):998-1006, 2007.

    [17]
    A. Amini, P.J. Shrimpton, S.H. Muggleton, and M.J.E. Sternberg. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins, 69(4):823-831, 2007. DOI: 10.1002/prot.21782.

    [18]
    B. Andres, B. Kaufmann, O. Matheis, and T. Schaub. Unsatisfiability-based optimization in clasp. In Proceedings of the 28th International Conference on Logic Programming, 2012.

    [19]
    E. Andrianantoandro, S. Basu, D. Karig, and R. Weiss. Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(2006:0028), 2006.

    [20]
    N. Angelopoulos and J. Cussens. Markov chain Monte Carlo using tree-based priors on model structure. In UAI-2001, Los Altos, CA, 2001. Kaufmann.

    [21]
    N. Angelopoulos and S.H. Muggleton. Machine learning metabolic pathway descriptions using a probabilistic relational representation. Electronic Transactions in Artificial Intelligence, 6, 2002.

    [22]
    D. Angluin and C.H. Smith. A survey of inductive inference: theory and methods. Computing Surveys, 15(3):237-269, 1983.

    [23]
    D. Angluin. On the complexity of minimum inference of regular sets. Information and Control, 39:337-350, 1978.

    [24]
    D. Angluin. Inference of reversible languages. Journal of the ACM, 29:741-765, 1982.

    [25]
    D. Angluin. A note on the number of queries needed to identify regular languages. Information and Control, 51(1):76-87, 1982.

    [26]
    D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.

    [27]
    Martin HG Anthony and Norman Biggs. Computational learning theory. 1997.

    [28]
    C. Apté, F.J. Damerau, and S.M. Weiss. Automated learning of decision rules for text categorization. ACM Trans on Information Systems, 12:233-251, 1994.

    [29]
    B. Arbab and D. Michie. Generating rules from examples. In IJCAI-85, pages 631-633, Los Altos, CA, 1985. Kaufmann.

    [30]
    Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.

    [31]
    J. Arima. Preduction: a common form of induction and analogy. In IJCAI-97, pages 23-29. Morgan Kaufmann, 1997.

    [32]
    J. Arima. Logical Foundations of Induction and Analogy. PhD thesis, Kyoto University, 1998.

    [33]
    M. Arita and T. Nishioka. Hierarchical classification of chemical reactions. Bio Industry, 17(7):45-50, 2000.

    [34]
    R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Webwatcher: a learning apprentice for the World Wide Web. In AAAI Spring symposium on Information Gathering from Heterogeneous, Distributed Environments, Stanford, 1995. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-6/web-agent/www/project-home.html.

    [35]
    A. Arvanitis, S.H. Muggleton, J. Chen, and H. Watanabe. Abduction with stochastic logic programs based on a possible worlds semantics. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [36]
    F. Baganz, A. Hayes, D. Marren, D.C.J. Gardner, and S.G. Oliver. Evaluation of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast, 13:1563-1573, 1997.

    [37]
    M. Bain and S.H. Muggleton. Non-monotonic learning. In D. Michie, editor, Machine Intelligence 12, pages 105-120. Oxford University Press, 1991.

    [38]
    M. Bain. Specification of attributes for computer induction. TIRM, The Turing Institute, Glasgow, 1987.

    [39]
    M. Bain. Experiments in non-monotonic first-order induction. TIRM, The Turing Institute, Glasgow, 1990.

    [40]
    M. Bain. Machine-learned rule-based control. In J. McGhee, editor, Knowledge-Based Systems for Industrial Control, pages 222-243. London, 1990.

    [41]
    M. Bain. Experiments in non-monotonic learning. In Proceedings of the Eighth International Workshop on Machine Learning, pages 380-384, San Mateo, CA, 1991. Morgan Kaufmann.

    [42]
    R.B. Banerji. Learning in the limit in a growing language. In IJCAI-87, pages 280-282, Los Angeles, CA, 1987. Kaufmann.

    [43]
    R.B. Banerji. Learning theoretical terms. In S.H. Muggleton, editor, Inductive Logic Programming. Academic Press, London, 1992.

    [44]
    J-W. Bang, D.J. Crockford, E. Holmes, F. Pazos, M.J.E. Sternberg, S.H. Muggleton, and J.K. Nicholson. Integrative top-down system metabolic modeling in experimental disease states via data-driven bayesian methods. Journal of Proteome Research, 7(2):497-503, 2008.

    [45]
    H. Bannai, Y. Tamada, O. Maruyama, and S. Miyano. Hypothesiscreator: Concepts for accelerating the computational knowledge discovery process. Electronic Transactions in Artificial Intelligence, 6-B1(019):73-83, November 2001.

    [46]
    C. Baroglio, A. Giordana, and L. Saitta. Learning mutually dependent relations. Journal of Intelligent Information Systems, 2, 1992.

    [47]
    H.G. Barrow and S.H. Salter. Design of low-cost equipment for cognitive robot research. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 555-566. Edinburgh University Press, 1969.

    [48]
    H.G. Barrow and J.M. Tenenbaum. Interpreting line drawings as three-dimensional surfaces. Artificial Intelligence, 17:75-116, 1981.

    [49]
    J. Baxter. Theoretical models of learning to learn. In T. Mitchell and S. Thrun, editors, Learning to Learn. Kluwer, Boston, 1997.

    [50]
    Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task learning. In Learning Theory and Kernel Machines, pages 567-580. Springer, 2003.

    [51]
    S. Ben-David, B. Chor, and O. Goldreich. On the theory of average case complexity. Journal of Information and System Sciences, 44:193-219, 1992.

    [52]
    Y. Bengio, J. Louradour, , R. Collobert, R., and J. Weston. Curriculum learning, 2009.

    [53]
    C. Bennett. Logical depth and physical complexity. In R. Herken, editor, The Universal Turing Machine A Half Century Survey, pages 227-257. Kammerer and Unverzagt, Hamburg, 1988.

    [54]
    F. Bergadano and D. Gunetti. An interactive system to learn functional logic programs. In Proceedings of the 13th International Joint Conference on Artficial Intelligence. Morgan Kaufmann, 1993.

    [55]
    F. Bergadano and S. Ponsero. Integrating empirical and analytic learning in concept acquisition. In Proceedings of the International Symposium on Methodologies for Intelligent Systems: Lecture Notes in Artificial Intelligence. Springer-Verlag, 1989.

    [56]
    F. Bergadano, A. Giordana, and L Saitta. Concept acquisition in noisy environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:555-578, 1988.

    [57]
    F. Bergadano, A. Giordana, , and S. Ponsero. Deduction in top-down inductive learning. In Proceedings of the Sixth International Workshop on Machine Learning, Los Altos, CA, 1989. Kaufmann.

    [58]
    F. Bergadano. Towards an inductive logic programming language. Technical Report ESPRIT project no. 6020 ILP Deliverable TO1, Computer Science Department, University of Torino, 1993.

    [59]
    J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag, New York, 1985.

    [60]
    Elwyn R. Berlekamp and David Wolfe, editors. Mathematical go endgames: nightmares for the professional go player. Ishi Press International, 1994.

    [61]
    Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical plays, volume 1. A K Peters/CRC Press, London, 2001.

    [62]
    Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical plays, volume 2. A K Peters/CRC Press, London, 2001.

    [63]
    Elwyn R. Berlekamp. Blockbusting and domineering. Journal of Combinatorial Theory Series A, 49(1), 1988.

    [64]
    J.M. Bernardo and A.F.M Smith. Bayesian theory. Wiley, New York, 1994.

    [65]
    G. Bernot, J.P. Comet, A. Richard, and J. Guespin. Application of formal methods to biological regulatory networks: extending thomas' asynchronous logical approach with temporal logic. Journal of heoretical Biology, 229:339-347, 2004.

    [66]
    Manfred Besner. Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi solution. International Journal of Game Theory, pages 1-23, 2020.

    [67]
    A.W. Biermann and J.A. Feldman. On the synthesis of finite-state machines from samples of their behaviour. IEEE Transactions on Computers, C(21):592-597, 1972.

    [68]
    A.W. Biermann and R. Krishnaswamy. Constructing programs from example computations. IEEE Transactions on Software Engineering, 2(3), 1976.

    [69]
    A.W. Biermann. The inference of regular LISP programs from examples. IEEE Transactions on Systems, Man and Cybernetics, 8(8):585-600, 1978.

    [70]
    A. Biermann. Fundamental mechanisms in machine learning and inductive inference. In W. Bibel and P. Jorrand, editors, Fundamentals of Artificial Intelligence. Springer-Verlag, 1986.

    [71]
    N. Birch. Human-like computing: Report of a workshop held on 17 & 18 february 2016, bristol, uk. Technical report, EPSRC, Polaris House, Swindon, February 2016. In Press.

    [72]
    J. Black. Drugs from emasculated hormones: the principle of syntopic antagonism. Bioscience reports, 9(3), 1989. Published in Les Prix Nobel 1988, printed in Sweden by Norstedts Tryckeri, Stockholm, Sweden.

    [73]
    H. Blockeel and L. De Raedt. Lookahead and discretisation in ILP. In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic Programming, pages 77-84. Springer-Verlag, Berlin, 1997. LNAI 1297.

    [74]
    H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic programming by learning from interpretations. Data Mining and Knowledge Discovery, 3(1):59-93, 1999.

    [75]
    Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, and Henk Vandecasteele. Improving the efficiency of inductive logic programming through the use of query packs. Journal of Artificial Intelligence Research, 16(1):135-166, 2002.

    [76]
    L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Information and Control, 28:125-155, 1975.

    [77]
    B. Blumberg. Lessons from ethology for autonomous agent architectures. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 15: intelligent agents. Oxford University Press, Oxford, 1999.

    [78]
    A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. In Proceedings of the 18th ACM Symposium on Theory of Computing, pages 273-282, 1986.

    [79]
    A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.

    [80]
    R. Board and L. Pitt. On the necessity of Occam algorithms. UIUCDCS-R-89-1544, University of Illinois at Urbana-Champaign, 1989.

    [81]
    D.G. Bobrow and M. Stefik. The LOOPS manual. Xerox, Palo Alto, CA, 1983.

    [82]
    S. Bocionek and M. Sassin. Dialog-based learning (dbl) for adaptive interface agents and programming-by-demonstration systems. Technical Report CMU-CS-93-175, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA 15213, July 1993.

    [83]
    D.A. Bohan, C.W.H. Boffey, D.R. Brooks, S.J. Clark, A.M. Dewar, L.G. Firbank, A.J. Haughton, C. Hawes, M.S. Heard, M.J. May, et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proceedings of the Royal Society B: Biological Sciences, 272(1562):463, 2005.

    [84]
    D.A. Bohan, G. Caron-Lormier, S.H. Muggleton, A. Raybould, and A. Tamaddoni-Nezhad. Automated discovery of food webs from ecological data using logic-based machine learning. PloS ONE, 6(12), 2011.

    [85]
    D. Bohan, A. Raybould, C. Mulder, G. Woodward, A. Tamaddoni-Nezhad, N. Bluthgen, M.J.O Pocock, S.H. Muggleton, D.M. Evans, J. Astegiano, F. Massol, N. Loeuille, S. Petit, and S. Macfadyen. Networking agroecology: Integrating the diversity of agroecosystem interactions. In G. Woodward and D.A. Bohan, editors, Advances in Ecological Research, Vol. 49, pages 2-67. Academic Press, Amsterdam, 2013.

    [86]
    G. Boole. The Laws of Thought. MacMillan & Co., London, 1854.

    [87]
    H. Boström and P. Idestam-Almquist. Specialisation of logic programs by pruning SLD-trees. In S. Wrobel, editor, Proceedings of the Fourth Inductive Logic Programming Workshop (ILP94), pages 31-48, Bonn, 1994. GDM-studien Nr. 237.

    [88]
    H. Boström and P. Idestam-Almquist. Induction of logic programs by example-guided unfolding. Journal of Logic Programming, 40(2-3):159-183, 1999.

    [89]
    Jonas Bostrom, Kristina Berggren, Thomas Elebring, Peter J. Greasley, and Michael Wilstermann. Scaffold hopping, synthesis and structure-activity relationships of 5,6-diaryl-pyrazine-2-amide derivatives: A novel series of CB1 receptor antagonists. Bioorganic & Medicinal Chemistry, 15(12):4077 -- 4084, 2007.

    [90]
    H. Boström. Predicate invention and learning from positive examples only. In 10th European Conference on Machine Learning (ECML-98), pages 226-237. Springer, 1998.

    [91]
    M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational learning as search in a critical region. J. Mach. Learn. Res., 4:431-463, 2003.

    [92]
    Charles L. Bouton. Nim, a game with a complete mathematical theory. In The Annals of Mathematics, 2, pages 35-39, Princeton, 1902. Annals of Mathematics.

    [93]
    I. Bratko and M. Grobelnik. Inductive learning applied to program construction and verification. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 279-292, 1993.

    [94]
    I. Bratko and D. Michie. A representation of pattern-knowledge in chess endgames. In M. Clarke, editor, Advances in Computer Chess, volume 2, pages 31-56. Edinburgh University Press, Edinburgh, 1980.

    [95]
    I. Bratko and S.H. Muggleton. Applications of Inductive Logic Programming. Communications of the ACM, 38(11):65-70, 1995.

    [96]
    I. Bratko, S.H. Muggleton, and A. Varsek. Learning qualitative models of dynamic systems. In Proceedings of the Eighth International Machine Learning Workshop, San Mateo, Ca, 1991. Morgan-Kaufmann.

    [97]
    I. Bratko, S.H. Muggleton, and A. Karalic. Applications of Inductive Logic Programming. In R.S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and Data Mining. John Wiley and Sons Ltd., Chichester, 1998.

    [98]
    I. Bratko. Generating human-understandable decision rules. Working paper, E. Kardelj University Ljubljana, Ljubljana, Yugoslavia, 1983.

    [99]
    I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, London, 1986.

    [100]
    I. Bratko. Discovery of abstract concepts by a robot. In Proceedings of Discovery Science 2010, LNAI 6332, pages 372-379, Berlin, 2010. Springer-Verlag.

    [101]
    P. Brazdil and S.H. Muggleton. Learning to relate terms in a multiple agent environment. Technical report, LIACC, Porto, Portugal, 1990.

    [102]
    P. Brazdil. Knowledge states and meta-knowledge maintenance. In I. Bratko and N. Lavrac, editors, Progress in Machine Learning. Sigma Press, Wilmslow, England, 1987.

    [103]
    L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Wadsworth, Belmont, 1984.

    [104]
    L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

    [105]
    S.E. Brenner, C. Chothia, T.J. Hubbard, and A.G. Murzin. Understanding protein structure: using scop for fold interpretation. Methods in Enzymology, 266:635-643, 1996.

    [106]
    W. Bridewell and L. Todorovski. Learning declarative bias. In Proceedings of the 17th International Conference on Inductive Logic Programming, pages 63-77, Berlin, 2007. Springer-Verlag. LNAI 4894.

    [107]
    E. Brill. Automatic grammar induction and parsing free text: a transformation-based approach. In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, pages 259-265, Columbus, Ohio, 1993.

    [108]
    T. Briscoe and J. Carroll. Generalized probabilistic lr parsing of natural language (corpora) with unification-based grammars. Computational Linguistics, 19(1):25-59, 1993.

    [109]
    D.W. Bristol, J.T. Wachsman, and A. Greenwell. The niehs predictive-toxicology evaluation project. Environmental Health Perspectives, 3:1001-1010, 1996.

    [110]
    Krysia Broda, Keith Clark, Rob Miller, and Alessandra Russo. SAGE: a logical agent-based environment monitoring and control system. Springer, 2009.

    [111]
    H. Bronkhorst, G. Roorda, C. Suhre, and M. Goedhart. Logical reasoning in formal and everyday reasoning tasks. International Journal of Science and Mathematics Education, 2019.

    [112]
    R. Brooks. A robust layerd control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2:14-23, 1986.

    [113]
    A.L. Brown. Learning: From speculation to science. In RR Cocking JD Bransford, AL Brown, editor, How People Learn - Brain, Mind, Experience and School. National Research Council, Washington DC, 2000.

    [114]
    D.E. Brown. Conceptual change in physics. In International handbook of research on conceptual change. 2008.

    [115]
    C.A. Brunk and M.J. Pazzani. An investigation of noise-tolerant relational concept learning algorithms. In Proceedings of the 8th International Workshop on Machine Learning. Morgan Kaufmann, 1991.

    [116]
    M. Bruynooghe and G. Janssens. An instance of abstract interpretation integrating type and mode inferencing. In Proceedings of the 5th International Conference and Symposium on Logic Programming, pages 669-683, 1988.

    [117]
    Francois Bry. Intensional updates: abduction via deduction. In D. Warren and P. Szeredi, editors, Proceedings of the 7th International Conference on Logic Programming, pages 561-578. The MIT press, 1990.

    [118]
    C. H. Bryant and S. H. Muggleton. Closed loop machine learning. Technical Report YCS 330, University of York, Department of Computer Science, Heslington, York, YO10 5DD, UK., 2000.

    [119]
    C.H. Bryant, S.H. Muggleton, S.G. Oliver, D.B. Kell, P. Reiser, and R.D. King. Combining inductive logic programming, active learning and robotics to discover the function of genes. Electronic Transactions in Artificial Intelligence, 5-B1(012):1-36, November 2001.

    [120]
    B. Buchanan, G. Sutherland, and E.A. Feigenbaum. Heuristic dendral: a program for generating explanatory hypotheses in organic chemistry. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 209-254. Edinburgh University Press, 1969.

    [121]
    B. Buchanan, E. Feigenbaum, and N. Sridharan. Heuristic theory formation: data interpretation and rule formation. In B. Meltzer and D. Michie, editors, Machine intelligence 7, pages 267-290. Edinburgh University Press, 1972.

    [122]
    A. Bundy, E. Philalithis, and X. Li. Modelling virtual bargaining using logical representation change. In S.H. Muggleton and N.Chater, editors, Human-Like Machine Intelligence. Oxford university Press, Oxford, UK, 2020. In Press.

    [123]
    W. Buntine. Generalised subsumption. In Proc. of the 7th European Conference on Artificial Intelligence (ECAI-86). European Coordinating Committee for Artificial Intelligence, 1986.

    [124]
    W. Buntine. Induction of horn clauses: methods and the plausible generalization algorithm. International Journal of Man-Machine Studies, 26(4):499-519, 1987.

    [125]
    W. Buntine. Induction of Horn-clauses: methods and the plausible generalization algorithm. International Journal of Man-Machine Studies, 26:499-520, 1987.

    [126]
    W. Buntine. Generalised subsumption and its applications to induction and redundancy. Artificial Intelligence, 36(2):149-176, 1988.

    [127]
    W. Buntine. A Theory of Learning Classification Rules. PhD thesis, School of Computing Science, University of Technology, Sydney, 1990.

    [128]
    W. Buntine. Ind package of machine learning algorithms. Technical Report 244-17, Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA 94035, 1992.

    [129]
    M. Burke, S. Penkov, and S. Ramamoorthy. From explanation to synthesis: Compositional program induction for learning from demonstration. In Proceedings of Robotics: Science and Systems. 2019.

    [130]
    R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal of the Association for Computing Machinery, 24:44-67, 1977.

    [131]
    L.W. Cai, W.Z. Dai, Y.X. Huang, Y.F. Li7, S.H. Muggleton, and Y. Jiang. Abductive learning with ground knowledge base. In Proceedings of the 30th Conference on Artificial Intelligence (IJCAI 2021), pages 1815-1821, 2021.

    [132]
    L. Calzone, F. Fages, and S. Soliman. Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22:1805-1807, 2006.

    [133]
    R. Camacho, N. Fonseca, R. Rocha, and V. Santos Costa. Ilp :- just trie it. In Proceedings of the 17th International Conference on Inductive Logic Programming, pages 78-87, Berlin, 2007. Springer-Verlag. LNAI 4894.

    [134]
    Stéphane Cambon, Fabien Gravot, and Rachid Alami. A robot task planner that merges symbolic and geometric reasoning. In ECAI 2004 Proceedings of the 16th European Conference on Artificial Intelligence, August 22-27, 2004, volume 16, page 895. IOS Press, 2004.

    [135]
    E.O. Cannon, A. Amini, A. Bender, M. J. E. Sternberg, S.H. Muggleton, R.C. Glen, and J.B.O. Mitchell. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. Journal of Computer Aided Molecular Design, 21:269-280, 2007.

    [136]
    J.G. Carbonell. Learning by analogy: Formulating and generalizing plans from past experience. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach. Tioga, Palo Alto, 1983.

    [137]
    B. Carlson, F. Kant, and Wünsche. A scheme for functions in logic programming. UPMAIL 57, Uppsala Programming Methodology and Artificial Intelligence Laboratory, Uppsala, Sweden, 1989.

    [138]
    A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M. Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010), 2010.

    [139]
    R. Carnap. The Continuum of Inductive Methods. Chicago University, Chicago, 1952.

    [140]
    R. Carnap. The Logical Foundations of Probability. University of Chicago Press, Chicago, 1962.

    [141]
    G. Caron-Lormier, D.A. Bohan, C. Hawes, A. Raybould, A.J. Haughton, and R.W. Humphry. How might we model an ecosystem? Ecological Modelling, 220(17):1935-1949, 2009.

    [142]
    JI Castrillo, A Hayes, S Mohammed, SJ Gaskell, and SG Oliver. An optimised protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry, 62:929-937, 2003.

    [143]
    B. Cestnik, I. Kononenko, and I. Bratko. Assistant 86: a knowledge-elicitation tool for sophisticated users. In Progress in machine learning, pages 31-45, Wilmslow, England, 1987. Sigma.

    [144]
    G. Chaitin. Information, Randomness and Incompleteness - Papers on Algorithmic Information Theory. World Scientific Press, Singapore, 1987.

    [145]
    C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, London, 1973.

    [146]
    E. Charniak. Statistical Language Learning. MIT Press, 1993.

    [147]
    C.H.Bryant, S.H. Muggleton, C.D.Page, and M.J.E.Sternberg. Combining Active Learning with Inductive Logic Programming to close the loop in Machine Learning. In S. Colton, editor, Proceedings of AISB'99 Symposium on AI and Scientific Creativity, pages 59-64, http://www.cogs.susx.ac.uk/aisb/, 1999. The Society for the Study of Artificial Intelligence and Simulation of Behaviour (AISB).

    [148]
    J. Chen and S.H. Muggleton. Multi-class protein fold prediction using stochastic logic programs. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [149]
    J. Chen and S.H. Muggleton. A revised comparison of Bayesian logic programs and stochastic logic programs. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [150]
    Y. Chen and D. Xu. Global protein function annotation through mining genome-scale data in yeast saccharomyces cerevisiae. Nucleic Acids Research, 32:6414-6424, 2004.

    [151]
    J. Chen, L. Kelley, S.H. Muggleton, and M.J.E. Sternberg. Protein fold discovery using Stochastic Logic Programs. In L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors, Probabilistic Inductive Logic Programming, pages 244-262. Springer-Verlag, 2007.

    [152]
    J. Chen, S.H. Muggleton, and J. Santos. Learning probabilistic learning models from examples (extended abstract). In Proceedings of the 17th International Conference on Inductive Logic Programming, LNAI 4894, pages 22-23. Springer-Verlag, 2007.

    [153]
    J.H. Chen, E. Linstead, S.J. Swamidass, D. Wang, and P. Baldi. ChemDB update — full-text search and virtual chemical space. Bioinformatics, 23:2348-2351, 2007.

    [154]
    J. Chen, S.H. Muggleton, and J. Santos. Learning probabilistic logic models from probabilistic examples. Machine Learning, 73(1):55-85, 2008.

    [155]
    Y. Chevaleyre and J.D. Zucker. A framework for learning rules from multiple instance data. In Proceedings of the European Conference on Machine Learning (ECML 2001), pages 49-60, Berlin, 2001. Springer-Verlag. LNAI 2167.

    [156]
    N. Chomsky. Knowledge of language: its nature, origin and use. Praeger, New York, 1986. First published 1965.

    [157]
    K. Church, S. Young, and G. Bloothooft, editors. Corpus-based methods in language and speech. Kluwer Academic, Dordrecht, 1996.

    [158]
    A. Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58:345-363, 1936.

    [159]
    P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261-283, 1989.

    [160]
    K.L. Clark. Negation as failure. In M. L. Ginsberg, editor, Readings in Nonmonotonic Reasoning, pages 311-325. Kaufmann, Los Altos, CA, 1987.

    [161]
    W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, Berlin, 1981.

    [162]
    W. Cohen and C.D. Page. Polynomial learnability and Inductive Logic Programming: methods and results. New Generation Computing, 13:369-409, 1995.

    [163]
    W. Cohen. Compiling knowledge into an explicit bias. In Proceedings of the 9th International Conference on Machine Learning. Morgan Kaufmann, 1992.

    [164]
    W. Cohen. Grammatically biased learning: learning logic programs using an explicit antecedent description language. Artificial Intelligence, 1993. To appear.

    [165]
    W. Cohen. Learnability of restricted logic programs. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming (Technical report IJS-DP-6707 of the Josef Stefan Institute, Ljubljana, Slovenia), pages 41-72, 1993.

    [166]
    W. Cohen. PAC-learning a restricted class of logic programs. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 41-72, 1993.

    [167]
    W. Cohen. Grammatically biased learning: Learning logic programs using an explicit antecedent description language. Artificial Intelligence, 68:303-366, 1994.

    [168]
    W. Cohen. Learning to classify english text with ILP methods. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 124-143. IOS Press, Ohmsha, Amsterdam, 1996.

    [169]
    J. Cohen. Classification of approaches used to study cell regulation: Search for a unified view using constraints and machine learning. Electronic Transactions in Artificial Intelligence, 6-B2(025):35-60, November 2001.

    [170]
    D. A. Cohn, Z.Ghabhramani, and M. I. Jordan. Active learning with statistical models. Journal of Artificial Intelligence Research, 4:129-145, 1996.

    [171]
    A.G. Cohn, D.C. Hogg, B. Bennett, A. Galata, D.R. Magee, and P. Santos. Cognitive vision: Integrating symbolic qualitative representations with computer vision. In Cognitive Vision Systems, pages 221-246. Springer, Berlin, 2006.

    [172]
    M. Collins and N. Duffy. Convolution kernels for natural language. In Advances in Neural Information Processing System 14. MIT Press, 2002.

    [173]
    M.J. Collins. A new statistical parser based on bigram lexical dependencies. In Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics, pages 184-191, Santa Cruz, California, USA, 1996.

    [174]
    R. Collobert and S. Bengio. Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1:143-160, 2001.

    [175]
    A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de communication homme-machine en français. Technical report, Groupe d'Intelligence Artificielle, Université d'Aix-Marseille II, 1973.

    [176]
    R.M. Colomb, A.Srinivasan, and C.A. Sammut. Making knowledge representation independent of knowledge processing. In IJCAI Workshop on Knowledge Acquisition, 1991.

    [177]
    S. Colton and S.H. Muggleton. ILP for mathematical discovery. In Proceedings of the 13th International Conference on Inductive Logic Programming, LNAI 2835, pages 93-111. Springer-Verlag, 2003.

    [178]
    S. Colton and S.H. Muggleton. Mathematical applications of inductive logic programming. Machine Learning, 64:25-64, 2006. DOI: 10.1007/s10994-006-8259-x.

    [179]
    JIPDEC Fifth Generation Computing Committee. Preliminary report on study and research on fifth-generation computers in 1979-1980. Technical report, Japan Information Processing Development Centre, Tokyo, 1981.

    [180]
    P. Compton, A.Srinivasan, et al. Knowledge base maintenance without a knowledge engineer. In First World Congress on Expert Systems, pages 16-19, Orlando, Florida, 1991.

    [181]
    P. Compton, A.Srinivasan, et al. Ripple down rules. In IJCAI Workshop on Representing Knowledge in Medical Decision Support Systems, 1991.

    [182]
    D. Conklin and I. Witten. Complexity-based induction. Technical report, Dept. of Computing and Information Science, Queen's University, Kingston, Ontario, Canada, 1992.

    [183]
    H. Conn and S.H. Muggleton. The effect of predicate order on curriculum learning in ILP. In Late Breaking Paper Proceedings of the 27th International Conference on Inductive Logic Programming, pages 17-21. CEUR, 2017.

    [184]
    The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics, 25:25-29, 2000.

    [185]
    The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics, 25:25-29, 2000.

    [186]
    International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 409:860-921, 15th February 2001.

    [187]
    John H. Conway. On numbers and Games. A K Peters/CRC Press, London, 2000.

    [188]
    A.P. Cootes, S.H. Muggleton, R.B. Greaves, and M.J. Sternberg. Automatic determination of protein fold signatures from structured superposition. Electronic Transactions in Artificial Intelligence, 6-B2(026):245-274, November 2001.

    [189]
    A. Cootes, S.H. Muggleton, and M.J.E. Sternberg. The automatic discovery of structural principles describing protein fold space. Journal of Molecular Biology, 330(4):839-850, 2003.

    [190]
    A. Cootes, S.H. Muggleton, and M.J.E. Sternberg. The identification of similarities between biological networks: Application to the metabolome and interactome. Journal of Molecular Biology, 369:1126-1139, 2003.

    [191]
    A.P. Cootes, S.H. Muggleton, and M.J.E. Sternberg. The identification of similarities between biological networks: Application to the metabolome and interactome prediction. Journal of Molecular Biology, 369(4):1126-1139, 2007. DOI: 10.1016/j.jmb.2007.03.013.

    [192]
    Vítor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart Demoen, Gerda Janssens, Jan Struyf, Henk Vandecasteele, and Wim Van Laer. Query transformations for improving the efficiency of ilp systems. Journal of Machine Learning Research, 4:465-491, 2003.

    [193]
    Vítor Santos Costa, Konstantinos F. Sagonas, and Ricardo Lopes. Demand-driven indexing of prolog clauses. In Dahl and Niemelä [227], pages 395-409.

    [194]
    J. Cowie and W. Lehnert. Information extraction. Communications of the ACM, 39(1):80-91, January 1996.

    [195]
    J. Cowie and W. Lehnert. Information extraction. Communications of the ACM, 39(1):80-91, January 1996.

    [196]
    D. Cox. Do we understand high-level vision? Current opinion in neurobiology, 25:187-193, 2014.

    [197]
    M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. Learning to extract symbolic knowledge from the world wide web. In Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), pages 509-516. AAAI Press / The MIT Press, 1998.

    [198]
    Mark Craven, Johan Kumlien, et al. Constructing biological knowledge bases by extracting information from text sources. In ISMB, volume 1999, pages 77-86, 1999.

    [199]
    N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines. Cambridge University Press, Cambridge, UK, 2000.

    [200]
    A. Cropper and S.H. Muggleton. Can predicate invention compensate for incomplete background knowledge?. In Thirteenth Scandinavian Conference on Artificial Intelligence (SCAI 2015), pages 27-36. IOS Press, 2015.

    [201]
    A. Cropper and S.H. Muggleton. Learning efficient logical robot strategies involving composable objects. In Proceedings of the 24th International Joint Conference Artificial Intelligence (IJCAI 2015), pages 3423-3429. IJCAI, 2015.

    [202]
    A. Cropper and S.H. Muggleton. Logical minimisation of meta-rules within meta-interpretive learning. In Proceedings of the 24th International Conference on Inductive Logic Programming, pages 65-78. Springer-Verlag, 2015. LNAI 9046.

    [203]
    A. Cropper and S.H. Muggleton. Learning higher-order logic programs through abstraction and invention. In Proceedings of the 25th International Joint Conference Artificial Intelligence (IJCAI 2016), pages 1418-1424. IJCAI, 2016.

    [204]
    A. Cropper and S.H. Muggleton. Learning efficient logic programs. Machine Learning, 108:1063-1083, 2019.

    [205]
    A. Cropper, A. Tamaddoni-Nezhad, , and S.H. Muggleton. Meta-interpretive learning of data transformation programs. In Proceedings of the 25th International Conference on Inductive Logic Programming, pages 46-59. Springer-Verlag, 2016.

    [206]
    A. Cropper, S. Dumancic, and S.H. Muggleton. Turning 30: New ideas in inductive logic programming. In Proceedings of the 29th International Joint Conference Artificial Intelligence (IJCAI 2020), pages 4833-4839. IJCAI, 2020.

    [207]
    A. Cropper, R. Morel, and S.H. Muggleton. Learning higher-order logic programs. Machine Learning, 109:1289-1322, 2020.

    [208]
    A. Cropper, R. Morel, and S.H. Muggleton. Learning higher-order programs through predicate invention. In Proceedings of the 34th Conference on Artificial Intelligence (AAAI 2020), pages 13655-13658. AAAI, 2020.

    [209]
    A. Cropper, S. Dumancic, Richard Evans, and S.H. Muggleton. Inductive Logic Programming at 30. Machine Learning, 111:147-172, 2021.

    [210]
    Andrew Cropper. Playgol: Learning programs through play. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), pages 6074-6080. AAAI Press, 2019.

    [211]
    James Cussens and Anthony Hunter. Using defeasible logic for a window on a probabilistic database: some preliminary notes. In R. Kruse and P. Seigel, editors, Symbolic and Quantitative Approaches for Uncertainty, pages 146-152. Lecture Notes in Computer Science 548, Springer-Verlag, 1991.

    [212]
    James Cussens and Anthony Hunter. Using maximum entropy in a defeasible logic with probabilistic semantics. In B. Bouchon-Meunier, L. Valverde, and R.R. Yager, editors, IPMU'92 - Advanced Techniques in Artificial Intelligence, pages 43-52. Lecture Notes in Computer Science 682, Springer-Verlag, 1993.

    [213]
    James Cussens, Anthony Hunter, and Ashwin Srinivasan. Generating explicit orderings for non-monotonic logics. In Proc. of the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 420-425. MIT Press, 1993.

    [214]
    James Cussens. Review of ``Chance and Structure: An Essay on the Logical Foundations of Probability''. History and Philosophy of Logic, 11(1):116-117, 1990.

    [215]
    James Cussens. Estimating rule accuracies from training data. ECAI-92 Workshop Notes, 1992.

    [216]
    James Cussens. Bayes and pseudo-Bayes estimates of conditional probability and their reliability. In Pavel B. Brazdil, editor, Machine Learning: ECML-93, pages 136-152. Lecture Notes in Artificial Intelligence 667, Springer-Verlag, 1993.

    [217]
    James Cussens. Review of ``Interactive Theory Revision: An Inductive Logic Programming Approach''. Journal of Logic and Computation, 1994.

    [218]
    James Cussens. A Bayesian analysis of algorithms for learning finite functions. In Armand Prieditis and Stuart Russell, editors, Machine Learning: Proceedings of the Twelfth International Conference (ML95), pages 142-149, San Francisco, CA, 1995. Morgan Kaufmann Publishers.

    [219]
    James Cussens. Deduction, induction and probabilistic support. Synthese, 1996. To appear.

    [220]
    James Cussens. Effective sample size in a dichotomous process with noise. Communications in Statistics: Theory and Methods, 25(6):1233-1246, 1996.

    [221]
    James Cussens. Machine learning. IEE Journal of Computing and Control, 7(4):164-168, August 1996.

    [222]
    J. Cussens. Part-of-speech tagging using Progol. In Proc. of the 7th International Workshop on Inductive Logic Programming (ILP-97), pages 93-108. Springer-Verlag, 1997. LNAI 1297.

    [223]
    J. Cussens. Loglinear models for first-order probabilistic reasoning. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence, pages 126-133, San Francisco, 1999. Kaufmann.

    [224]
    J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2001.

    [225]
    Anderson Faustino da Silva and Vítor Santos Costa. Design, implementation, and evaluation of a dynamic compilation framework for the yap system. In Dahl and Niemelä [227], pages 410-424.

    [226]
    W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. Memory-based part of speech tagging. In CLIN'95 Workshop, Antwerp, 1995.

    [227]
    Verónica Dahl and Ilkka Niemelä, editors. Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8-13, 2007, Proceedings, volume 4670 of Lecture Notes in Computer Science. Springer, 2007.

    [228]
    V. Dahl. Natural language processing and logic programming. Journal of Logic Programming, 19,20:681-714, 1994.

    [229]
    W-Z. Dai and S.H. Muggleton. Abductive knowledge induction from raw data. In Proceedings of the 30th Conference on Artificial Intelligence (IJCAI 2021), pages 1845-1851. IJCAI, 2021.

    [230]
    W-Z Dai, S.H. Muggleton, and Z-H Zhou. Logical Vision: Meta-interpretive learning for simple geometrical concepts. In Late Breaking Paper Proceedings of the 25th International Conference on Inductive Logic Programming, pages 1-16. CEUR, 2015.

    [231]
    W-Z Dai, S.H. Muggleton, J. Wen, A. Tamaddoni-Nezhad, and Z-H. Zhou. Logical vision: One-shot meta-interpretive learning from real images. In Nicholas Lachiche and Christel Vrain, editors, Proceedings of the 27th International Conference on Inductive Logic Programming, pages 46-62, Berlin, 2017. Springer-Verlag.

    [232]
    E. Dale and D. Michie. Pop-1: an on-line language. 1968.

    [233]
    J.M. Dale, L. Popescu, and P.D. Karp. Machine learning methods for metabolic pathway prediction. BMC Bioinformatics, 11:15, 2010.

    [234]
    S. Dasgupta, A.T. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In Learning Theory, pages 246-263. Springer, Berlin, 2005.

    [235]
    C.J. Date. An Introduction to Database Systems. Addison-Wesley, 1976.

    [236]
    P. Datta and Kibler. Concept-sharing: a means to improve multi-concept learning. In Proceedings of the 10th International Conference on Machine Learning, San Mateo, CA, 1993. Morgan-Kaufmann.

    [237]
    J.S. Davey, I. P. Vaughan, R. A. King, J. R. Bell, D. A. Bohan, M. W. Bruford, and W. O. Symondson. Intraguild predation in winter wheat: prey choice by a common epigeal carabid consuming spiders. Journal of Applied Ecology, 50(1):271-279, 2013.

    [238]
    T. Davies and S.J. Russell. A logical approach to reasoning by analogy. In IJCAI-87, pages 264-270. Morgan Kaufmann, 1987.

    [239]
    D. Davies. The Bombe a remarkable logic machine. Cryptologia, 23(2):108-138, 1999.

    [240]
    J. Davis and P. Domingo. Deep transfer via second-order markov logic. In Proceedings of the Twenty-Sixth International Conference on Machine Learning, pages 217-224, San Mateo, CA, 2009. Morgan Kaufmann.

    [241]
    C. de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition, 38:1332-1348, 2005.

    [242]
    L. De Raedt and M. Bruynooghe. Towards friendly concept-learners. In Proceedings of the 11th International Joint Conference on Artificial Intelligence, pages 849-856. Morgan Kaufmann, 1989.

    [243]
    L. De Raedt and M. Bruynooghe. Indirect relevance and bias in inductive concept-learning. Knowledge Acquisition, 2:365-390, 1990.

    [244]
    L. De Raedt and M. Bruynooghe. Clint: A multistrategy interactive concept-learner and theory revision system. In Proceedings of the 1st International Workshop on Multistrategy Learning, pages 175-191. Morgan Kaufmann, 1991.

    [245]
    L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and queries. Artificial Intelligence, 53:291-307, 1992.

    [246]
    L. De Raedt and M. Bruynooghe. Interactive concept-learning and constructive induction by analogy. Machine Learning, 8:107-150, 1992.

    [247]
    L. De Raedt and M. Bruynooghe. A unifying framework for concept-learning algorithms. The Knowledge Engineering Review, 7(3):251-269, 1992.

    [248]
    L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings of the 13th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1993.

    [249]
    L. De Raedt and S. Dzeroski. First-order jk-clause theories are pac-learnable. Technical report, Department of Computer Science, Katholieke Universieit Leuven, Heverlee, Belgium, 1994.

    [250]
    L. De Raedt and K. Kersting. Probabilistic inductive logic programming. In S. Ben-David, J. Case, and A. Maruoka, editors, Proceedings of the 15th International Conference on Algorithmic Learning Theory, volume 3244 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

    [251]
    L. De Raedt and N. Lavrac. Multiple predicate learning in two inductive logic programming settings. Journal on Pure and Applied Logic, 4(2):227-254, 1996.

    [252]
    L. De Raedt and N. Lavrac. The many faces of inductive logic programming. In J. Komorowski, editor, Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems: Lecture Notes in Artificial Intelligence. Springer-Verlag, 1993.

    [253]
    L. De Raedt, G. Sablon, and M. Bruynooghe. Using interactive concept-learning for knowledge base validation and verification. In M. Ayel and J.P. Laurent, editors, Validation, Verification and Testing of Knowledge Based Systems, pages 177-190. John Wiley and Sons, 1991.

    [254]
    L. De Raedt, N. Lavrac, and S. Dzeroski. Multiple predicate learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1993.

    [255]
    L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and its applications in link discovery. In R. Lopez de Mantaras and M.M Veloso, editors, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pages 804-809, 2007.

    [256]
    Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming for data mining and machine learning. In AAAI, 2010.

    [257]
    L. De Raedt. Inductive logic programming and scientific discovery. Technical report, Katholieke Universiteit Leuven, Department of Computing Science, 1992. submitted.

    [258]
    L. De Raedt. Interactive Theory Revision: an Inductive Logic Programming Approach. Academic Press, 1992.

    [259]
    L. De Raedt. Logical seetings for concept learning. Artificial Intelligence, 95:187-201, 1997.

    [260]
    L. De Raedt. Logical and Relational Learning. Springer, 2008.

    [261]
    L. De Raedt. Declarative modeling for machine learning and data mining. In Proceedings of the International Conference on Algorithmic Learning Theory, page 12, 2012.

    [262]
    A.K. Debnath, R.L Lopez de Compadre, G. Debnath, A.J. Schusterman, and C. Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786 -- 797, 1991.

    [263]
    H. Decker. Drawing updates from derivations. In S. Abiteboul and P.C. Kanellakis, editors, Proceedings of the 2nd International Conference on Database Theory, volume 470 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

    [264]
    L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery, 3(1):7-36, 1999.

    [265]
    G. DeJong and R. Mooney. Explanation-based learning: an alternative view. Machine Learning, 1(2):145-176, 1986.

    [266]
    G. DeJong. Generalisations based on explanations. In IJCAI-81, pages 67-69. Kaufmann, 1981.

    [267]
    A. Dekhtyar and V.S. Subrahmanian. Hybrid probabilistic programs. Journal of Logic Programming, 43(3):187-250, 2000.

    [268]
    A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39:1-38, 1977.

    [269]
    A.P. Dempster. A generalisation of Bayesian inference. Journal of the Royal Statistical Society, Series B, 30:205-247, 1968.

    [270]
    G. Van den Broeck, I. Thon, and M. van Otterlo. DTProbLog: A decision-theoretic probabilistic Prolog. In Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence, AAAI10, pages 1217-1222, 2010.

    [271]
    F. Denis. Learning regular languages from simple positive examples. Machine Learning, 44(1):37-66, 2001.

    [272]
    N. Dershowitz. Synthesis by completion. In IJCAI-85, pages 208-214, Los Altos, CA, 1985. Kaufmann.

    [273]
    Y. Deville and K. Lau. Logic program synthesis. Journal of Logic Programming, 1993. submitted to the Special Issue.

    [274]
    Warren D.H.D and Pereira F.C.N. An efficient easily adaptable system for interpreting natural language queries. American Journal of Computational Linguistics, 8:100-119, 1982.

    [275]
    T. Dietterich, P. Domingos, L. Getoor, S.H. Muggleton, and P. Tadepalli. Structured machine learning: the next ten years. Machine Learning, 73(1):3-23, 2008.

    [276]
    Dietterich. Limitations of inductive learning. In Proceedings of the Sixth International Workshop on Machine Learning, pages 124-128, San Mateo, CA, 1989. Morgan-Kaufmann.

    [277]
    T.G. Dietterich. Machine learning in ecosystem informatics and sustainability. In Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, Calif.: IJCAI, pages 8-13, 2009.

    [278]
    F. DiMaio and J. Shavlik. Learning an approximation to inductive logic programming clause evaluation. In Rui Camacho, Ross King, and Ashwin Srinivasan, editors, Proceedings of the 14th International Conference on Inductive Logic Programming, volume 3194, pages 80-96, 2004.

    [279]
    Y. Dimopoulos and A. Kakas. Abduction and inductive learning. In L. De Raedt, editor, Proceedings of the Fifth Inductive Logic Programming Workshop (ILP95), pages 25-28, Leuven, Belgium, 1995. KU Leuven.

    [280]
    P.C. Dodwell. Fundamental processes in vision. In R.L. Gregory and A.M. Colman, editors, Sensation and Perception. Longman, 1995.

    [281]
    B. Dolsak and S.H. Muggleton. The application of Inductive Logic Programming to finite element mesh design. In S.H. Muggleton, editor, Inductive Logic Programming, pages 453-472. Academic Press, London, 1992.

    [282]
    P.S. Domingos, S. Kok, H. Poon, M. Richardson, and P. Singla. Unifying logical and statistical AI. In Proceedings of the Twenty-First National Conference on Artificial Intelligence, AAAI06, pages 2-7. AAAI Press / The MIT Press, 2006.

    [283]
    P.S. Domingos. Bayesian averaging of classifiers and the overfitting problem. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 223-230. AAAI Press / The MIT Press, 2000.

    [284]
    Pedro Domingos. The Master Algorithm. Basic Books, New York, 2018.

    [285]
    Andrei Doncescu, Katsumi Inoue, and Yoshitaka Yamamoto. Knowledge based discovery in systems biology using cf-induction. In IEA/AIE, pages 395-404, 2007.

    [286]
    J.E. Doran. Planning and robots. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 519-532. Edinburgh University Press, 1969.

    [287]
    R. Dormer. An inductive logic programming implementation. Master's thesis, Oxford University Computing Laboratory, Oxford, 1993.

    [288]
    M. Dovey. Analysis of Sergei Rachmaninoff's piano performances using inductive logic programming. Master's thesis, Oxford University Computing Laboratory, Oxford, 1995.

    [289]
    Kurt Driessens and Jan Ramon. Relational instance based regression for relational reinforcement learning. In ICML, pages 123-130, 2003.

    [290]
    R. Droms. The Knowbot information service. FTP Report - Corporation for National Research Initiatives (CNRI), December 1989.

    [291]
    K.S.R. Dubba, A.G. Cohn, D.C. Hogg, M. Bhatt, and F. Dylla. Learning relational event models from video. Journal of Artificial Intelligence Research, 53:41-90, 2015.

    [292]
    R.O. Duda, J. Gashnig, and P.E. Hart. Model design in the prospector consultant program for mineral exploration. In D. Michie, editor, Expert Systems in the Microelectronic Age, pages 153-167. Edinburgh University Press, Edinburgh, 1979.

    [293]
    B. Dufay and J.C. Latombe. An approach to automatic robot programming based on inductive learning. International Journal of Robotics Research, 3(4):3-20, 1984.

    [294]
    J.E. Duffy. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7(8):437-444, 2008.

    [295]
    B. Dujon. The yeast genome project - what did we learn? Trends in Genetics, 12:263-270, 1996.

    [296]
    S.T. Dumais, J. Platt, D. Heckermann, and M. Sahami. Inductive learning algorithms and representations for text categorisation. In Proceedings of CIKM-98, 7th ACM International Conference on Information and Knowledge Management, pages 148-155, 1998.

    [297]
    H. Duncan, A. Bundy, J. Levine, A. Storkey, and M. Pollet. The use of data-mining for the automatic formation of tactics. In Workshop on Computer-Supported Mathematical Theory Development. IJCAR-04, 2004.

    [298]
    M.J. Dunham. Synthetic ecology: a model system for cooperation. Proceedings of the National Academy of Sciences, 104:1741-1742, 2007.

    [299]
    S. Dzeroski and T. Erjavec. Induction of Slovene nominal paradigms. In N. Lavrac and S. Dzeroski, editors, Proceedings of the 7th International Workshop on Inductive Logic Programming, pages 141-148, 1997. LNAI 1297.

    [300]
    S. Dzeroski, S.H. Muggleton, and S. Russell. PAC-learnability of determinate logic programs. In Proceedings of the 5th ACM Workshop on Computational Learning Theory, pages 128-135, New York, NY, 1992. ACM Press.

    [301]
    S. Dzeroski, S.H. Muggleton, and S. Russell. Learnability of constrained logic programs. In Proceedings of the European Conference on Machine Learning, pages 342-347, London, UK, 1993. Springer-Verlag.

    [302]
    S. Dzeroski, N. Jacobs, M. Molina, C. Moure, S.H. Muggleton, and W. Van Laer. Detecting traffic problems with ILP. In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, pages 281-290, Berlin, 1998. Springer-Verlag.

    [303]
    S. Dzeroski. Handling Noise in Inductive Logic Programming. University of Ljubljana, (M.Sc. Thesis), Ljubljana, 1991.

    [304]
    S. Dzeroski and N. Larac, editors. Relational Data Mining. Springer, Berlin, 2001.

    [305]
    S. Dzeroski and L. Todorovski. Discovering dynamics: From inductive logic programming to machine discovery. Journal of Intelligent Information Systems, 4(1):89-108, 1995.

    [306]
    Saso Dzeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine learning, 43(1-2):7-52, 2001.

    [307]
    M. Eastmond. Inductive Logic Programming applied to speed-flow problems on the m25. Master's thesis, Oxford University Computing Laboratory, Oxford, 1996.

    [308]
    E. Eastwood. Control theory and the engineer. Proceeding of the Institution of Electrical Engineers, 115(1):203-211, 1968.

    [309]
    J. Halpern (ed.). Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986 Conference. Morgan Kaufmann Publishers, Los Altos, CA, 1986.

    [310]
    J.B. Edel, R. Fortt, J.C. deMello, and A.J. deMello. Microfluidic routes to the controlled production of nanoparticles. Chemical Communications of the Royal Society of Chemistry, 10:1136-1137, 2002.

    [311]
    A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of examples needed for learning. In COLT 88: Proceedings of the Conference on Learning, pages 110-120, Los Altos, CA, 1988. Morgan-Kaufmann.

    [312]
    Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. Answer set planning under action costs. Journal of Artificial Intelligence Research, pages 25-71, 2003.

    [313]
    E.W. Elcock and D. Michie. Achieving several goals simultaneously. In E.W. Elcock and D. Michie, editors, Machine Intelligence 8, pages 94-136. Ellis Horwood, Edinburgh, 1977.

    [314]
    W. Emde and D. Wettschereck. Relational Instance-Based Learning. In L. Saitta, editor, Proceedings of the 13th International Machine Learning Conference, pages 122-130, Los Altos, 1996. Morgan Kaufmann.

    [315]
    W. Emde, C.U. Habel, and C.R. Rollinger. The discovery of the equator or concept driven learning. In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 455-458. Morgan Kaufmann, 1983.

    [316]
    W. Emde. An inference engine for multiple theories. In K. Morik, editor, Knowledge Representation and Organization in Machine Learning, volume 347 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1989.

    [317]
    S.L. Epstein. On the discovery of mathematical theorems. In IJCAI-87, pages 194-197, Los Angeles, CA, 1987. Kaufmann.

    [318]
    Esra Erdem, Erdi Aker, and Volkan Patoglu. Answer set programming for collaborative housekeeping robotics: representation, reasoning, and execution. Intelligent Service Robotics, 5(4):275-291, 2012.

    [319]
    S. Feferman et al., editor. Gödel's Collected Works. Oxford University Press, Oxford, 1980.

    [320]
    L.A. Mueller et al. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond. Plant Physiology, 138(3):1310-1317, 2005.

    [321]
    O. Etzioni and D. Weld. A softbot-based interface to the internet. Communications of the ACM, 37(7):72-76, July 1994.

    [322]
    O. Etzioni, H. M. Levy, R. B. Segal, and C. A. Thekkath. Os agents: Using ai techniques in the operating system environment. Technical Report UW-CSE-93-04-04, University of Washington, April 1993.

    [323]
    B. Di Eugenio. Action representations for nl instructions. In Proceedings of the 29th annual meeting on Association for Computational Linguistics, pages 333-334, Stroudsburg, PA, 1991. Association for Computational Linguistics.

    [324]
    T.G. Evans. A program for the solution of a class of geoemtric analogy intellgence test questions. In M. Minsky, editor, Semantic Information Processing. MIT Press, Cambridge, MA, 1968.

    [325]
    D. Gunetti F. Bergadano, S. Brusotti and U. Trinchero. Inductive test case generation. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 11-24, 1993.

    [326]
    L. Fagan, J. Kunz, E. Feigenbaum, and J. Osborne. On the discovery of mathematical theorems. In IJCAI-79, pages 260-262, Los Altos, CA, 1979. Kaufmann.

    [327]
    R. Fagin and J. Halpern. Uncertainty, belief and probability. In Proceedings of IJCAI-89, San Mateo, CA, 1989. Morgan Kauffman.

    [328]
    B. Falkenhainer, K.D. Forbus, and D. Gentner. The structure-mapping engine: Algorithm and examples. Artificial Intelligence, 41:1-63, 1989.

    [329]
    R. Farid and C. Sammut. Plane-based object categorization using relational learning. Machine Learning, 94:3-23, 2014.

    [330]
    C. Farquhar, G. Grov A. Cropper, S.H. Muggleton, and A. Bundy. Typed meta-interpretive learning for proof strategies. In Short Paper Proceedings of the 25th International Conference on Inductive Logic Programming. National Institute of Informatics, Tokyo, 2015.

    [331]
    U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in knowledge discovery and data mining. AAAI Press / MIT Press, 1996.

    [332]
    V. V. Fedorov. Theory of Optimal Experiments. Academic Press, London, 1972.

    [333]
    E.A. Feigenbaum and P. McCorduck. The Fifth Generation: artificial intelligence and Japan's computer challenge to the world. Joseph, London, 1984.

    [334]
    E.A. Feigenbaum. Themes and case studies of knowledge engineering. In D. Michie, editor, Expert Systems in the Micro-electronic Age, pages 3-25. Edinburgh University Press, Edinburgh, 1979.

    [335]
    Robin Felder, Randy Turner, William Holman, and Chris Estey. Robotic pick up and deliver system, April 8 2003. US Patent 6,543,983.

    [336]
    C. Feng and E. Grant. Generating experiments in robot learning. In Second Scandinavian Conference on Artificial Intelligence, pages 177-184, Tampere, Finland, 1989.

    [337]
    C. Feng and E. Grant. Learning by experimentation in a robot world. In Second Scandinavian Conference on Artificial Intelligence, pages 13-15, Tampere, Finland, 1989.

    [338]
    C. Feng and S.H. Muggleton. Towards inductive generalisation in higher order logic. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Workshop on Machine Learning, pages 154-162, San Mateo, CA, 1992. Morgan Kaufmann.

    [339]
    Cao Feng. Learning by Experimentation. PhD thesis, The Turing Institute, University of Strathclyde, 1990.

    [340]
    C. Feng. Inducing temporal fault dignostic rules from a qualitative model. In S.H. Muggleton, editor, Inductive Logic Programming. Academic Press, London, 1992.

    [341]
    A. Fidjeland, W. Luk, and S.H. Muggleton. A customisable multiprocessor for application-optimised inductive logic programming. In Proceedings of Visions of Computer Science - BCS International Academic Conference, LNAI 5816. British Computer Society, 2008.

    [342]
    A.K. Fidjeland, W. Luk, and S.H. Muggleton. Customisable multi-processor acceleration of inductive logic programming. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 123-139. Imperial College Press, 2015.

    [343]
    R. Fikes and N. Nilsson. Strips: a new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

    [344]
    T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML - a language and protocol for knowledge and information exchange. Technical Report CS-94-02, Computer Science Department, University of Maryland and Valley Forge Engineering Center, Unisys Corporation, Computer Science Department, University of Maryland, UMBC Baltimore MD 21228, 1994.

    [345]
    P. Finn, S.H. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using the Inductive Logic Programming system Progol. Machine Learning, 30:241-271, 1998.

    [346]
    LG Firbank, MS Heard, IP Woiwod, C Hawes, and AJ Haughton et al. An introduction to the farm-scale evaluations of genetically modified herbicide-tolerant crops. Journal of Applied Ecology, 40:2-16, 2003.

    [347]
    P. A. Flach and A. C. Kakas, editors. Abductive and Inductive Reasoning. Pure and Applied Logic. Kluwer, 2000.

    [348]
    P. Flach. A framework for inductive logic programming. In S.H. Muggleton, editor, Inductive logic programming. Academic Press, 1992.

    [349]
    P. Flach. Predicate invention in inductive data engineering. In Pavel B. Brazdil, editor, Machine Learning: ECML-93, pages 83-94. Lecture Notes in Artificial Intelligence 667, Springer-Verlag, 1993.

    [350]
    P. Flener and Y. Deville. Logic program synthesis ? Journal of Symbolic Computation, 1993. to appear.

    [351]
    P. Fletcher, S. Haswell, P. Watts, and X. Zhang. Micro reactors: principles and applications in organic synthesis. Tetrahedron, 58(24):4735-4757, 2002.

    [352]
    C. Flor^encio. Consistent identification in the limit of rigid grammars from strings is np-hard. Grammatical Inference: Algorithms and Applications, pages 729-733, 2002.

    [353]
    N. Foo and A. Courtney. A closer look at preduction. In H-Y. Lee and H. Motoda, editors, PRICAI'98: Proceedings of the Fifth Pacific Rim International Conference on Artificial Intelligence, LNAI 1531, pages 471-481, Berlin, 1998. Springer.

    [354]
    M.S. Fox and J. McDermott. The role of databases in knowledge-based systems. Technical Report CMU-RI-TR-86-3, Carnegie-Mellon University, Robotics Institute, Pittsburgh, PA, 1986.

    [355]
    Y. Freund and R. Shapire. A decision theoretic generalisation of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997.

    [356]
    N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In IJCAI-99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 1300-1309, San Mateo, CA:, 1999. Morgan-Kaufmann.

    [357]
    K.S. Fu and T.L. Booth. Grammatical inference: introduction and survey. IEEE Transactions on Systems, Man, Cybernetics, 5:95-111,409-423, 1975.

    [358]
    L.M. Fu and B.G. Buchanan. Learning intermediate concepts in constructing a hierarchical knowledge base. In IJCAI-85, pages 659-666, Los Altos, CA, 1985. Kaufmann.

    [359]
    K. Furukawa, D. Michie, and S.H. Muggleton. Machine Intelligence 13: machine intelligence and inductive learning. Oxford University Press, Oxford, 1994.

    [360]
    K. Furukawa, D. Michie, and S.H. Muggleton. Machine Intelligence 14: machine intelligence and inductive learning. Oxford University Press, Oxford, 1995.

    [361]
    K. Furukawa, D. Michie, and S.H. Muggleton. Machine Intelligence 15: machine intelligence and inductive learning. Oxford University Press, Oxford, 1999.

    [362]
    K. Furukawa. On the completion of the most specific hypothesis computation in inverse entailment for mutual recursion. In Proceedings of Discovery Science '98, LNAI 1532, pages 315-325, Berlin, 1998. Springer-Verlag.

    [363]
    I. Bratko G. Leban, J. Zabkar. An experiment in robot discovery with ilp. In Proceedings of the 18th International Conference on Inductive Logic Programming (ILP 2008), volume 5194. Springer-Verlag, 2008.

    [364]
    D. Gabbay and D. Nute. Defeasible reasoning: Syntax, semantics, implementation and application. Final report to the national science foundation of work performed under nsf grant no. ist-8505586, Department of Computing, Imperial College, 1988.

    [365]
    D. Gabbay. Executable temporal logic for interactive systems. Technical report, Department of Computing, Imperial College, 1987.

    [366]
    Galileo Galilei. The Herald of the Stars. 1610. English translation by Edward Stafford Carlos, Rivingtons, London, 1880; edited by Peter Barker, Byzantium Press, 2004.

    [367]
    R. G. Gallager. Information theory and Reliable Communication. Wiley, New York, 1968.

    [368]
    P. Gardenfors. Induction, conceptual spaces and ai. Philosophy of Science, 57:78-95, 1990.

    [369]
    Martin Gardner. Hexaflexagons and other mathematical diversions: the first Scientific American book of puzzles and games. University of Chicago Press, 1988.

    [370]
    T. Gartner, J.W. Lloyd, and P.A. Flach. Kernels for structured data. In T. Horváth and A. Yamamoto, editors, Proceedings of the Twelfth International Conference on Inductive Logic Programming, LNAI 2583, pages 66-83, Berlin, 2002. Springer-Verlag.

    [371]
    Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-instance kernels. In Proceedings of the Nineteenth International Conference on Machine Learning, pages 176-186. Morgan-Kaufmann, 2002.

    [372]
    Thomas Gärtner, John W. Lloyd, and Peter A. Flach. Kernels for structured data. In Stan Matwin and Claude Sammut, editors, Proceedings of the Twelfth International Conference on Inductive Logic Programming, LNAI 2583, pages 66-83, Berlin, 2002. Springer-Verlag.

    [373]
    C.W. Gear. Numerical Initial Value Problems is Ordinary Differential Equations. Prentice-Hall, Edgewood Cliffs, NJ, 1971.

    [374]
    M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Logic Programming and Nonmonotonic Reasoning, volume 4483 of Lecture Notes in Computer Science, pages 260-265. Springer Berlin / Heidelberg, 2007.

    [375]
    M. Genesereth and S.P. Ketchpel. Software agents. Communications of the ACM, 37(7):48-53, 1994.

    [376]
    J. Geringer, R. Watson, and J. Cooper. Robot vacuum cleaner, November 13 2012. US Patent D670,877.

    [377]
    L Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. MIT Press, Cambridge, Massachusetts, 2007.

    [378]
    L. Getoor. Tutorial on statistical relational learning. In Stefan Kramer and Bernhard Pfahringer, editors, Proceedings of the 15th International Conference on Inductive Logic Programming, volume 3625, page 415, 2005.

    [379]
    G.Grov, A. Kissinger, and Y. Lin. A Graphical Language for Proof Strategies. In Proceedings of the 19th International Conference on Logic for Programming Artificial Intelligence and Reasoning, 2013. To appear.

    [380]
    E. Gibney. What Google's winning Go algorithm will do next. Nature, 531:284-285, 2016.

    [381]
    J.J. Gibson. The ecological approach to visual perception. Houghton Mifflin, Boston, MA, 1979.

    [382]
    D.A. Gillies. The Turing-Good weight of evidence function and Poppers's measure of severity of a test. In Proceedings of the Conference on Reasoning as a Paradigm for Artificial Intelligence, Durham, 1987. University of Durham.

    [383]
    D.A. Gillies. Induction and probability. In G.M.R. Parkinson, editor, An Encyclopedia of Philosophy, pages 179-204. 1988.

    [384]
    D.A. Gillies. Confirmation theory and machine learning. In Proceedings of the Second Inductive Logic Programming Workshop, Tokyo, 1992. ICOT TM-1182.

    [385]
    M. Ginsberg. Knowledge interchange format: The kif of death. AI Magazine, 12(3):57-63, Fall 1991.

    [386]
    E. Giovannetti and C. Moiso. Some aspects of the integration between logic programming and functional programming. In P Jorrand and V. Sgurev, editors, Artificial Intelligence II. Methodology, Systems, Applications, pages 69-79. North-Holland, 1987.

    [387]
    J. Gittins, K. Glazebrook, and R. Weber. Multi-Armed Bandit Allocation Indices. John Wiley, Chichester, UK, 2011.

    [388]
    Mark Goadrich, Louis Oliphant, and Jude Shavlik. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction. In Inductive logic programming, pages 98-115. Springer, 2004.

    [389]
    C. Goble and R. Stevens. State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics, 41:687-693, 2008.

    [390]
    C. Goble and R. Stevens. State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics, 41(5):687-693, 2008.

    [391]
    K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter System I. Monats. Math. Phys., 32:173-198, 1931.

    [392]
    K. Gödel. On Formally Undecidable Propositions of Principia Mathematica and Related Systems. Oliver and Boyd, London, 1962.

    [393]
    Goffeau, A. et multi al. Life with 6000 genes. Science, 274:546-567, 1996.

    [394]
    C.H. Goh, S. Bressan, and M. Siegel. Context interchange: New features and formalisms for the intelligent integration of information. ACM Transactions on Information Systems, 17(3):270-293, 1999.

    [395]
    E.M. Gold. Language identification in the limit. Information and Control, 10:447-474, 1967.

    [396]
    E.M. Gold. Complexity of automaton identification from given data. Information and Control, 37:302-320, 1978.

    [397]
    David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, December 1992. Special Issue on Information Filtering.

    [398]
    D.E. Goldberg. Genetic and evolutionary algorithms come of age. Communications of the ACM, 37(3):113-119, 1994.

    [399]
    J. Good, D. Michie, and T. Geoffrey. General report on Tunny: with emphasis on statistical methods. Bletchley Park Report HW 25/4, HW 25/5, UK Public Records Office, London, 1945.

    [400]
    I.J. Good. Analysis of the machine chess game. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 267-270. Edinburgh University Press, 1969.

    [401]
    S. Goto, Y. Okuno, M. Hattori, T. Nishioka, , and M. Kanehisa. Ligand: database of chemical compounds and reactions in biological pathways. Nucleic Acids Research, 30:402-404, 2002.

    [402]
    G. Gottlob. Subsumption and implication. Information Processing Letters, 24(2):109-111, 1987.

    [403]
    Robin Goulden, Paul Nation, and John Read. How large can a receptive vocabulary be? Applied linguistics, 11(4):341-363, 1990.

    [404]
    J.H. Graham, C.D. Page, and A.H. Kamal. Accelerating the drug design process through parallel inductive logic programming data mining. In Proceedings of the IEEE Computer Society Bioinformatics Conference - CSB, pages 400-402. IEEE, 2003.

    [405]
    P.M.D. Gray and G.J.L Kemp. Federated database technology for data integration - lessons from bioinformatics. In S.H. Koskow and M.F. Huerta, editors, Progress in neuroinformatics, volume 2. Lawrence Erlbaum, 1999.

    [406]
    R.L. Gregory. Concepts and Mechanics of Perception. Duckworth, London, 1974.

    [407]
    R.L. Gregory. Eye and Brain: The Psychology of Seeing. Oxford University Press, Oxford, 1998.

    [408]
    Sheila A Greibach. A new normal-form theorem for context-free phrase structure grammars. Journal of the ACM (JACM), 12(1):42-52, 1965.

    [409]
    R. Greiner. Learning by understanding analogies. Artificial Intelligence, 35:81-125, 1988.

    [410]
    M. Grobelnik. Markus - an optimized model inference system. In Proceedings of the ECAI workshop on Logical Approaches to Machine Learning, 1992.

    [411]
    R. Grossman, S. Bailey, A. Ramu, B. Malhi, P. Hallstrom, I. Pulleyn, and X. Qin. The management and mining of multiple predictive models using the predictive modeling markup language. Information and Software Technology, 41(9):589-595, 1999.

    [412]
    P. M. Grundy. Mathematics and games. Eureka, 2:6-8, 1939.

    [413]
    A. Guessoum and J.W. Lloyd. Updating knowledge bases. New Generation Computing, 8:71-88, 1990.

    [414]
    A. Guessoum and J.W. Lloyd. Updating knowledge bases ii. Technical Report TR-90-03, University of Bristol, Department of Computer Science, 1990.

    [415]
    Sumit Gulwani, William R Harris, and Rishabh Singh. Spreadsheet data manipulation using examples. Communications of the ACM, 55(8):97-105, 2012.

    [416]
    S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S.H. Muggleton, U. Schmid, and B. Zorn. Inductive programming meets the real world. Communications of the ACM, 58(11):90-99, 2015.

    [417]
    Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM SIGPLAN Notices, 46(1):317-330, 2011.

    [418]
    Sumit Gulwani. Example-based learning in computer-aided stem education. Report, Microsoft Research, Redmond, WA, 2013.

    [419]
    Tias Guns, Anton Dries, Guido Tack, Siegfried Nijssen, and Luc De Raedt. Miningzinc: A modeling language for constraint-based mining. In Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pages 1365-1372. AAAI Press, 2013.

    [420]
    Richard K. Guy and Cedric A.B. Smith. The g-values of various games. pages 514-526, Princeton, 1956. Proceedings of the Cambridge Philosophical Society.

    [421]
    Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse reinforcement learning. In Advances in neural information processing systems, pages 3909-3917, 2016.

    [422]
    T. Hailperin. Probability logic. Notre Dame Journal of Formal Logic, (25):198-212, 1984.

    [423]
    Joseph Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence, (46):311-350, 1990.

    [424]
    J.H. Hardin and F.R. Smietana. Automating combinatorial chemistry - a primer on bench-top robotic systems. Molecular Diversity, 1(4):270-274, 1996.

    [425]
    W. Harvey and P.J. Stuckey. A unit two variable per inequality integer constraint solver for constraint logic programming. University of Melbourne, 1995.

    [426]
    M. Hasenjäger and H. Ritter. Active learning with local models. Neural Processing Letters, 7:107 -- 117, 1998.

    [427]
    AJ Haughton, GT Champion, C. Hawes, MS Heard, DR Brooks, DA Bohan, SJ Clark, AM Dewar, LG Firbank, JL Osborne, et al. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. ii. within-field epigeal and aerial arthropods. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1439):1863, 2003.

    [428]
    D. Haussler, M Kearns, and R. Shapire. Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. In COLT-91: Proceedings of the 4th Annual Workshop on Computational Learning Theory, pages 61-74, San Mateo, CA, 1991. Morgan Kauffmann.

    [429]
    D. Haussler, M Kearns, and R. Shapire. Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. Machine Learning Journal, 14(1):83-113, 1994.

    [430]
    D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial intelligence, 36:177 -- 221, 1988.

    [431]
    D. Haussler. Applying Valiant's learning framework to AI concept-learning problems. In Y. Kodratoff and R. Michalski, editors, Machine learning: an artificial intelligence approach, volume 3, pages 641-669. Morgan Kaufman, San Mateo, CA, 1990.

    [432]
    D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, University of California in Santa Cruz, Computer Science Department, July 1999.

    [433]
    Gillian M Hayes and John Demiris. A robot controller using learning by imitation. University of Edinburgh, Department of Artificial Intelligence, 1994.

    [434]
    J. Hayes-Michie. News from Brainware. Pragmatica, 1:10-11, 1990.

    [435]
    P.G.T. Healey, G.J. Mills, A. Eshghi, and C. Howes. Running repairs: Coordinating meaning in dialogue. Topics in Cognitive Science, 10:367-388, 2018.

    [436]
    D. Heath and D. Ventura. Before a computer can draw, it must first learn to see. In Proceedings of the 7th International Conference on Computational Creativity, pages 172-179, 2016.

    [437]
    J.J. Hein, J. Jensen, and C. Storm. Algorithms for multiple statistical alignment. Proceedings of the National Academy of Sciences, 100(25):14960-14965, 2003.

    [438]
    J.J. Hein, M.H. Schierup, and C. Wiuf. Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. Oxford University Press, 2005.

    [439]
    N. Helft. Learning systems of first order rules. In Proceedings of the 5th International Workshop on Machine Learning, pages 395-401. Morgan Kaufmann, 1988.

    [440]
    N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning, pages 149-156. Kaufmann, 1989.

    [441]
    R.J. Henderson and S.H. Muggleton. Automatic invention of functional abstractions. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 217-224. Imperial College Press, 2015.

    [442]
    José Hernández-Orallo. Deep knowledge: Inductive programming as an answer. Technical Report Seminar 13502, Dagstuhl, 2013.

    [443]
    G E Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.

    [444]
    G E Hinton. Learning distributed representations of concepts. Artificial Intelligence, 40:1-12, 1986.

    [445]
    C.A.R. Hoare and H. Jifeng. Unifying theories for logic programming. In C.A.R. Hoare, M. Broy, and R. Steinbruggen, editors, Engineering theories of Software Construction, pages 21-45. IOS Press, Leipzig, 2001.

    [446]
    C.A.R. Hoare. Programs are predicates. In Proceedings of the Final Fifth Generation Conference, pages 211-218, Tokyo, 1992. Ohmsha.

    [447]
    J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. Martin. Interpretation as abduction. Artificial Intelligence, 63:69-142, 1993.

    [448]
    Celine Hocquette and S.H. Muggleton. How much can experimental cost be reduced in active learning of agent strategies?. In Fabrizio Riguzzi, Elena Bellodi, and Riccardo Zese, editors, Proceedings of the 28th International Conference on Inductive Logic Programming, pages 38-53, Berlin, 2018. Springer-Verlag.

    [449]
    C. Hocquette and S.H. Muggleton. Complete bottom-up predicate invention in meta-interpretive learning. In Proceedings of the 29th International Joint Conference Artificial Intelligence (IJCAI 2020), pages 2312-2318. IJCAI, 2020.

    [450]
    A. Hodges. The enigma of intelligence. Unwin Paperbacks, Hemel Hempstead, 1985.

    [451]
    K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE database, its status in 1999. Nucleic Acids Research, 27(1):215-219, 1999.

    [452]
    D Hogg. Model-based vision: a program to see a walking person. Image and Vision Computing, 1:5-20, 1983.

    [453]
    C.J. Hogger. Essentials of logic programming. Oxford University Press, Oxford, 1990.

    [454]
    J.H. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan, 1975.

    [455]
    J.E. Hopcroft and J.D. Ullman. Introduction to Automata and Formal Languages. Addison-Wesley, Reading, MA, 1979.

    [456]
    B.K.P. Horn. Obtaining shape from shading information. MIT Press, 1989.

    [457]
    T. Horvath, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with lists and terms. Machine Learning, 43(1/2):53-80, 2001.

    [458]
    Horwitz and Kling. Chess Studies. Skeet, London, 1851.

    [459]
    J.G. Houston and M. Banks. The chemical-biological interface: Developments in automated and miniaturised screening technology. Current Opinion in Biotechnology, 8(6):734-740, 1997.

    [460]
    Christine Howes, Matthew Purver, Patrick GT Healey, Gregory Mills, and Eleni Gregoromichelaki. On incrementality in dialogue: Evidence from compound contributions. Dialogue & Discourse, 2(1):279-311, 2011.

    [461]
    Y. Hristov, D. Angelov, M. Burke, A. Lascarides, and S. Ramamoorthy. Disentangled relational representations for explaining and learning from demonstration. In Proceedings of Conference on Robot Learning, pages 870-884. 2020.

    [462]
    B. Hu, J. Du, R y. Zou, and Y j. Yuan. An environment-sensitive synthetic microbial ecosystem. PLoS ONE, 5(5):e10619, 2010.

    [463]
    Y.X. Huang, W.Z. Dai, L.W. Cai, S.H. Muggleton, and Y. Jiang. Fast abductive learning by similarity-based consistency optimization. In Advances in Neural Information Processing Systems, volume 34, pages 26574-26584, 2021.

    [464]
    B.J. Huberman. A program to play chess end-games. CS 106, Computer Science Department, Stanford, 1968.

    [465]
    G. Huet. A unification algorithm for typed lambda -calculus. Theoretical Computer Science, 1(1):27-57, 1975.

    [466]
    D.A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and D. Michie, editors, Machine Intelligence 6, pages 295-323. Edinburgh University Press, Edinburgh, 1971.

    [467]
    T.R. Hughes, M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A.Bennett, E. Coffey, H. Dai, Y.D. He, M.J. Kidd, A.M. King, M.R. Meyer, D. Slade, P.Y. Lum, S.B. Stepaniants, D.D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S.H. Friend. Functional discovery via a compendium of expression profiles. Cell, 102(1):109-126, 2000.

    [468]
    D. Hume and C.A. Sammut. Using inverse resolution to learn relations from experiments. In L. Birnbaum and G.C. Collins, editors, Proceedings of the Eighth International Workshop on Machine Learning, pages 412-416, San Mateo, 1991. Morgan Kaufmann.

    [469]
    E.B. Hunt, J. Marin, and P.T. Stone. Experiments in Induction. Academic Press, New York, 1966.

    [470]
    A. Hutchinson. Metrics on terms and clauses. In M. Someren and G. Widmer, editors, Proceedings of the Ninth European Conference on Machine Learning, pages 138-145, Berlin, 1997. Springer.

    [471]
    L. Hyafil and R. Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5(1):15-17, 1976.

    [472]
    P. Idestam-Almquist. Generalization under implication: Expansion of clauses for linear roots. Technical report, Dept. of Computer and Systems Sciences, Stockholm University, 1992.

    [473]
    P. Idestam-Almquist. Learning missing clauses by inverse resolution. In Proceedings of the International Conference on Fifth Generation Computer Systems, pages 610-617, Tokyo, 1992. ICOT.

    [474]
    P. Idestam-Almquist. Generalisation of Clauses. PhD thesis, Stockholm University, 1993.

    [475]
    P. Idestam-Almquist. Generalisation under implication by using or-introduction. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 56-64. Springer-Verlag, 1993.

    [476]
    K. Inoue, T. Sato, M. Ishihata, Y. Kameya, and H. Nabeshima. Evaluating abductive hypotheses using an em algorithm on bdds. In IJCAI-09: Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence, pages 810-815, San Mateo, CA:, 2009. Morgan-Kaufmann.

    [477]
    K. Inoue, K. Furukawa, and I. Kobayashiand H. Nabeshima. Discovering rules by meta-level abduction. In L. De Raedt, editor, Proceedings of the Nineteenth International Conference on Inductive Logic Programming (ILP09), pages 49-64, Berlin, 2010. Springer-Verlag. LNAI 5989.

    [478]
    Katsumi Inoue, Koichi Furukawa, Ikuo Kobayashi, and Hidetomo Nabeshima. Discovering rules by meta-level abduction. In Proceedings of the 19th international conference on Inductive logic programming, ILP'09, pages 49-64, 2010.

    [479]
    Katsumi Inoue, Andrei Doncescu, and Hidetomo Nabeshima. Completing causal networks by meta-level abduction. Machine Learning, 91(2):239-277, 2013.

    [480]
    K. Inoue. Linear resolution for consequence finding. Artificial Intelligence, 56:301-353, 1992.

    [481]
    K. Inoue. Induction, abduction and consequence-finding. In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh International Workshop on Inductive Logic Programming (ILP01), pages 65-79, Berlin, 2001. Springer-Verlag. LNAI 2157.

    [482]
    K. Inoue. Induction as consequence finding. Machine Learning, 55:109-135, 2004.

    [483]
    Intellicorp. The Knowledge Engineering Environment. Intellicorp, Menlo Park, CA, 1984.

    [484]
    Borland International. Turbo Prolog 2.0 Reference Guide. Borland International, Scotts Valley, CA, 1988.

    [485]
    H. Ishizaka. Learning simple deterministic languages. In Computational learning theory: proceedings of the second annual workshop, San Mateo, CA, 1989. Kaufmann.

    [486]
    K. Ito and A. Yamamoto. Finding hypotheses from examples by computing the least generlisation of bottom clauses. In S. Arikawa and H. Motoda, editors, Proceedings of Discovery Science '98, pages 303-314. Springer, Berlin, 1998. LNAI 1532.

    [487]
    J.A. Jacko and A. Sears. The human-computer interaction handbook fundamentals, evolving technologies, and emerging applications. Mahwah, New Jersey, 2003.

    [488]
    J.A. Jackson. Economics of automatic generation of rules from examples in a Chess end-game. UIUCDCS-F 85-932, Computer Science Department, Univ. of Illinois at Urbana Champaign, 1985.

    [489]
    M. Jaeger. Relational Bayesian networks. In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, 1997. Kaufmann.

    [490]
    J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of Logic Programming, 19/20:503-582, 1994.

    [491]
    Galagan JE, Calvo SE, Cuomo C, and et al. Sequencing of aspergillus nidulans and comparative analysis with a. fumigatus and a. oryzae. Nature, 438:1105-1115, 2005.

    [492]
    W.S. Jevons. On the mechanisation of deductive inference. Philosophical Transactions of the Royal Society of London, 160:497-518, 1870.

    [493]
    W.S. Jevons. The Principles of Science: a Treatise on Logic and Scientific Method. Macmillan, London, 1874.

    [494]
    A. Jezernik, S. Gorosnik, and S. Bader. Deformation and stress analysis of cylinder F30 using fem, Final report. Technical report, Faculty of Technical Sciences, Maribor, Yugoslavia, 1989.

    [495]
    D. Johnson. The NP-completeness column--an ongoing guide. Journal of Algorithms, 4:284-299, 1984.

    [496]
    S.D. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT Press, 1984.

    [497]
    Cliff B. Jones, Gudmund Grov, and Alan Bundy. Some facets of a strategy language for proofs. In 5th Automated Formal Methods workshop (AFM'10), July 2010.

    [498]
    A. C. Kakas and M. Denecker. Abduction in logic programming. In A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Beyond. Part I, number 2407, pages 402-436, 2002.

    [499]
    Antonis C. Kakas and Peter A. Flach. Abduction and induction in artificial intelligence. J. Applied Logic, 7(3):251, 2009.

    [500]
    T. Kakas and P. Mancarella. Database updates through abduction. In D. McLeod, R. Sacks-Davis, and H. Scheck, editors, Proceedings of the 16th International Conference on Very Large Databases, pages 650-661. Morgan Kaufmann, 1990.

    [501]
    A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic and Computation, 2, 1992.

    [502]
    A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. Journal of Logic and Computation, 2(6):719-770, 1993.

    [503]
    A. C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving through abduction. pages 591-596, Seattle, Washington, USA, August 2001.

    [504]
    Antonis C. Kakas, Bert Van Nuffelen, and Marc Denecker. A-system: Problem solving through abduction. In IJCAI, pages 591-596, 2001.

    [505]
    A.C. Kakas. Abduction. In C. Sammut and G. Webb, editors, Encyclopedia of Machine Learning. Springer, 2010.

    [506]
    J. Kalbfleish. Probability and Statistical Inference, volume 2. Springer-Verlag, New York, 1979.

    [507]
    T. Kaminski, T. Eiter, and K. Inoue. Exploiting answer set programming with external sources for meta-interpretive learning. Theory and Practice of Logic Programming, 18:239-277, 2018.

    [508]
    Dov Katz, Yuri Pyuro, and Oliver Brock. Learning to manipulate articulated objects in unstructured environments using a grounded relational representation. In In Robotics: Science and Systems. Citeseer, 2008.

    [509]
    T. Kawamura and K. Furukawa. Towards inductive generalization in constraint logic programs. In Proceedings of the IJCAI Workshop on Inductive Logic Programming, 1993.

    [510]
    M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite automata. In Proceedings of the 21st ACM Symposium on Theory of Computing, pages 433-444. ACM, 1989.

    [511]
    Michael J Kearns and Umesh V Vazirani. Computational learning theory. ACM SIGACT News, 26(1):43-45, 1995.

    [512]
    S.T. Kedar-Cabelli and L.T. McCarty. Explanation-based generalization as resolution theorem proving. In P. Langley, editor, Proceedings of the Fourth International Workshop on Machine Learning, pages 383-389, Los Altos, 1987. Morgan Kaufmann.

    [513]
    DB Kell, M Brown, HM Davey, WB Dunn, I Spasic, and SG Oliver. Metabolic footprinting and systems biology: the medium is the message. Nature Review Microbiology, 3:557-565, 2005.

    [514]
    Kristian Kersting and Luc De Raedt. Bayesian logic programs. In J. Cussens and A. Frisch, editors, Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming, pages 138-155, 2000.

    [515]
    K. Kersting and L. De Raedt. Towards combining inductive logic programming with bayesian networks. In Proceedings of the Eleventh International Conference on Inductive Logic Programming, LNAI 2157, pages 118-131, Berlin, 2001. Springer-Verlag.

    [516]
    K. Kersting, L. De Raedt, and T. Raiko. Logical hidden markov models. Journal of Artificial Intelligence Research, 25:425-456, 2006.

    [517]
    K. Khan, S.H. Muggleton, and R. Parson. Repeat learning using predicate invention. In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, pages 165-174, Berlin, 1998. Springer-Verlag.

    [518]
    R. Khardon. Learning first order universal Horn expressions. In Proceedings of the Eleventh Annual ACM Conference on Computational Learning Theory, pages 154-165, New York, 1998. ACM Press.

    [519]
    H. Khosravi, O. Schulte, T. Man, X. Xu, and B. Bina. Structure learning for markov logic networks with many descriptive attributes. In Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence, AAAI10, pages 488-492, 2010.

    [520]
    J-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through syntactic and task-oriented models. In S. Muggleton, editor, Inductive Logic Programming. Academic Press, 1992.

    [521]
    J.U. Kietz. Incremental and reversible acquisition of taxonomies. In M. Linster, B. Gaines, and J. Boose, editors, Proceedings of the 2nd European Knowledge Acquisition for Knowledge Based Systems Workshops, 1988.

    [522]
    J.U Kietz. Some lower bounds on the computational complexity of inductive logic programming. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 115-123. Springer-Verlag, 1993.

    [523]
    B. Kijsirikul, M. Numao, and M. Shimura. Efficient learning of logic programs with non-determinate, non-discriminating literals. In S.H. Muggleton, editor, Inductive Logic Programming. Academic Press, London, 1992.

    [524]
    R.D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives, 104(5):1031-1040, 1996.

    [525]
    R.D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives, 104(supplement 5):1031-1040, 1996.

    [526]
    R.D. King and A. Srinivasan. The discovery of indicator variables for QSAR using Inductive Logic Programming. Journal of Computer-Aided Molecular Design, 11:571-580, 1997.

    [527]
    R.D. King and M.J.E. Sternberg. A machine learning approach for the prediction of protein secondary structure. Journal of Molecular Biology, 216:441-457, 1990.

    [528]
    R.D. King and M.J.E. Sternberg. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Science, 5:2298-2310, 1996.

    [529]
    R.D. King, S.H. Muggleton, R. Lewis, and M.J.E. Sternberg. Drug design by machine learning: The use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proceedings of the National Academy of Sciences, 89(23):11322-11326, 1992.

    [530]
    R.D. King, A. Srinivasan, and M.J.E. Sternberg. Relating chemical activity to structure: an examination of ILP successes. New Generation Computing, 13:411-433, 1995.

    [531]
    R.D. King, S.H. Muggleton, A. Srinivasan, and M.J.E. Sternberg. Structure-activity relationships derived by machine learning: the use of atoms and their bond connectives to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences, 93:438-442, 1996.

    [532]
    R. D. King, N. Marchand-Geneste, and B.K. Alsberg. A quantum mechanics based representation of molecules for machine inference. Electronic Transactions in Artificial Intelligence, 6-B2(023):1-16, November 2001.

    [533]
    R.D. King, K.E. Whelan, F.M. Jones, P.K.G. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, and S.G. Oliver. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427:247-252, 2004.

    [534]
    R.D. King, J. Rowland, S.G. Oliver, M.Young, W. Aubrey, E. Byrne, M. Liakata, M. Markham, P. Pir, L.N. Soldatova, A. Aparkes, K.E. Whelan, and A. Clare. The automation of science. Science, 324(5923):85-89, April 2009.

    [535]
    R.D. King. PROMIS: Experiments in machine learning and protein folding. In D. Michie, editor, Machine Intelligence 12. Oxford University Press, 1991.

    [536]
    M. Kirschenbaum and L. Sterling. Refinement strategies for inductive learning of simple Prolog programs. In Proceedings of the 12th International Joint Conference on Artificial Intelligence. Kaufmann, 1991.

    [537]
    H. Kitano. Computational systems biology. Nature, 420:206-210, 2002.

    [538]
    H. Kitano. Systems biology: a brief overview. Science, 295:1662-1664, 2002.

    [539]
    R. Kitney. Synthetic biology: scope, applications and implications. Report, Royal Academy of Engineering, London, UK, 2009.

    [540]
    Emanuel Kitzelmann. Inductive programming: A survey of program synthesis techniques. In Approaches and Applications of Inductive Programming, pages 50-73. Springer, 2010.

    [541]
    S. Kleene. Finite axiomatizability of theories in the predicate calculus using additional predicate symbols. In S. Kleene, editor, Two papers on the predicate calculus, Memoirs of the American Mathematical Society No. 10. American Mathematical Society, Providence, RI, 1952.

    [542]
    N. Klitgord and D. Segrè. Environments that induce synthetic microbial ecosystems. PLoS Computational Biology, 6(11):e1001002, 2010.

    [543]
    B. Knudsen and J.J. Hein. Using stochastic context free grammars and molecular evolution to predict rna secondary structure. Bioinformatics, 15(6):446-454, 1999.

    [544]
    D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–--297. Pergamon, Oxford, 1970.

    [545]
    D.E. Knuth. The art of computer programming, volume 1. Addison-Wesley, 1997.

    [546]
    I. Kobayashi, K. Furukawa, T. Ozaki, and M. Imai. A computational model for children's language acquisition using inductive logic programming. Electronic Transactions in Artificial Intelligence, 6-B1(018):47-71, November 2001.

    [547]
    R. Kohavi and F. Provost. Special issue on applications and the knowledge discovery process. Machine Learning, 30(2-3), 1998.

    [548]
    J. Kohler, J. Baumbach, J. Taubert, M. Specht, and A. Skusa. Graph-based analysis and visualization of experimental results with ondex. Bioinformatics, 22:1383-1390, 2006.

    [549]
    J. Kohler, J. Baumbach, J. Taubert, M. Specht, A. Skusa, A. Ruegg, C. Rawlings, P. Verrier, and S. Philippi. Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics, 22(11):1383-1390, 2006.

    [550]
    D. Koller and A. Pfeffer. Learning probabilities for noisy first-order rules. In IJCAI-97: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pages 1316-1321, San Mateo, CA:, 1997. Morgan-Kaufmann.

    [551]
    D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, AAAI98, pages 157-164. AAAI Press / The MIT Press, 1998.

    [552]
    D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic programs. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI97, pages 740-747. AAAI Press / The MIT Press, 1997.

    [553]
    A.N. Kolmogorov. Three approaches to the quantitative definition of information. Prob. Inf. Trans., 1:1-7, 1965.

    [554]
    R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML, 2002.

    [555]
    K. Konolige. A first-order formalisation of knowledge and action for a multi-agent planning system. In J.E. Hayes, D. Michie, and Y-H Pao, editors, Machine Intelligence 10, pages 41-72. Ellis Horwood, Chichester, UK, 1982.

    [556]
    K. Konolige. Partial models and non-monotonic inference. In J.E. Hayes, D. Michie, and J. Richard, editors, Machine Intelligence 11, pages 3-19. Oxford University Press, Oxford, 1988.

    [557]
    I. Kononenko, I. Bratko, and R. Roskar. Experiments in automatic learning of medical diagnostic rules. Technical report, Faculty of Electircal Engineering, E. Kardelj University, Ljubljana, 1984.

    [558]
    M. Koster. World wide web wanderers, spiders and robots. WWW, 1994.

    [559]
    M. Kovacic. Stochastic Inductive Logic Programming. PhD thesis, University of Ljubljana, Ljubljana, Slovenia, 1994.

    [560]
    R.A. Kowalski. Logic for Problem Solving. North Holland, 1980.

    [561]
    John R Koza and James P Rice. Genetic programming II: automatic discovery of reusable programs, volume 40. MIT press Cambridge, 1994.

    [562]
    S. Kramer and Frank E. Bottom-up propositionalisation. In Proceedings of the ILP-2000 Work-In-Progress Track, pages 156-162. Imperial College, London, 2000.

    [563]
    S. Kramer, B. Pfahringer, and C. Helma. Stochastic propositionalisation of non-determinate background knowledge. In Proceedings of the Eighth International Conference on Inductive Logic Programming, pages 80-94, Berlin, 1998. Springer-Verlag.

    [564]
    S. Kramer, N. Lavrac, and P. Flach. Propositionalisation approaches to Relational Data Mining. In S. Dzeroski and N. Larac, editors, Relational Data Mining, pages 262-291. Springer, Berlin, 2001.

    [565]
    V. Krishnamurthy. Combinatorics: theory and applications. Ellis Horwood, Chichester, England, 1986.

    [566]
    M-A. Krogel and S. Wrobel. Transformation-based learning using multirelational aggregation. In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh International Workshop on Inductive Logic Programming (ILP01), pages 142-155, Berlin, 2001. Springer-Verlag. LNAI 2157.

    [567]
    A. Krogh, M. Brown, I.S. Mian, K. Sjolander, and D. Haussler. Hidden Markov Models in Computational Biology: applications to protein modelling. Journal of Molecular Biology, 235:1501-1531, 1994.

    [568]
    A. Krotov, R. Gaizauskas, and Y. Wilks. Acquiring a stochastic context-free grammar from the Penn Treebank. In Proc. of the Third Conference on the Cognitive Science of Natural Language Processing, 1994.

    [569]
    A. Krotov, R. Gaizauskas, M. Hepple, and Y. Wilks. Compacting the Penn Treebank Grammar. In Proceedings of the COLING-ACL'98 Joint Conference, pages 699-703, MONTREAL, 1998. ACL.

    [570]
    B. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338, 1986.

    [571]
    S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22:76-86, 1951.

    [572]
    P.R. van der Laag and S.H. Nienhuys-Cheng. Subsumption and refinement in model inference. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 95-114. Springer-Verlag, 1993.

    [573]
    P.R. van der Laag and S.H. Nienhuys-Cheng. Existence and nonexistence of complete refinement operators. In Bergadano F. and De Raedt L., editors, Proceedings of the 7th European Conference on Machine Learning, volume 784 of Lecture Notes in Artificial Intelligence, pages 307-322. Springer-Verlag, 1994.

    [574]
    Philip D. Laird. Learning from good data and bad. PhD thesis, Yale University, 1987.

    [575]
    J. E. Laird. Extending the soar cognitive architecture. Frontiers in Artificial Intelligence and Applications, pages 224-235, 2008.

    [576]
    B.M Lake, R. Salakhutdinov, J. Gross, and J.B. Tenenbaum. One shot learning of simple visual concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pages 2568-2573, 2011.

    [577]
    B.M Lake, R. Salakhutdinov, and J.B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350:1332-1338, 2015.

    [578]
    G. Lakoff and M. Turner. More than cool reason: A field guide to poetic metaphor. University of Chicago Press, Chicago, 1989.

    [579]
    P. Langley and H. Simon. Applications of machine learning and rule induction. Communications of the ACM, 38(11):54-64, 1995.

    [580]
    P. Langley and S. Stromsten. Learning context-free grammars with a simplicity bias. In Ramon López de Mántaras and Enric Plaza, editors, Machine Learning: ECML 2000, volume 1810 of Lecture Notes in Computer Science, pages 220-228. Springer Berlin / Heidelberg, 2000.

    [581]
    P. Langley, G.L Bradshaw, and H. Simon. Rediscovering chemistry with the Bacon system. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 307-330. Tioga, Palo Alto, CA, 1983.

    [582]
    N. Lanwehr, K. Kersting, and L. De Raedt. Integrating naïve bayes and foil. Journal of Machine Learning Research, 8:481-507, 2007.

    [583]
    N. Lao, T. Mitchell, and W.W. Cohen. Random walk inference and learning in a large scale knowledge base. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 529-539, 2011.

    [584]
    S. Lapointe and S. Matwin. Sub-unification: a tool for efficient induction of recursive programs. In Proceedings of the Ninth International Machine Learning Conference, Los Altos, 1992. Morgan Kaufmann.

    [585]
    S. Lapointe, C. Ling, and S. Matwin. Constructive inductive logic programming. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, 1993.

    [586]
    K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-outside algorithm. Computer Speech and Language, 4:35-56, 1990.

    [587]
    J. Larson and R.S. Michalski. Inductive inference of VL decision rules. ACM SIGART Bulletin, 63:38-44, 1977.

    [588]
    Y. Lashkari, M. Metral, and P. Maes. Collaborative interface agents. In Proceedings of AAAI'94, 1994. to appear.

    [589]
    J-L Lassez, M. Maher, and K. Marriot. Unification revisited. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, Los Altos,CA, 1986.

    [590]
    K. K. Lau and T. Clement, editors. Logic Program Synthesis and Transformation. Workshops in Computing. Springer-Verlag, 1993.

    [591]
    N. Lavrac and S. Dzeroski. Inductive Logic Programming : Techniques and Applications. Ellis Horwood, 1993.

    [592]
    N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning non-recursive definitions of relations with LINUS. In Yves Kodratoff, editor, Proceedings of the 5th European Working Session on Learning, volume 482 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1991.

    [593]
    N. Lavrac, S. Dzeroski, V. Pirnat, and V. Krizman. The use of background knowledge in learning medical diagnostic rules. Applied Artificial Intelligence, 7:273 -- 293, 1993.

    [594]
    N. Lavrac, D. Gamberger, and S. Dzeroski. An approach to dimensionality reduction in learning from deductive databases. In L. De Raedt, editor, Proceedings of the Fifth Inductive Logic Programming Workshop (ILP95), pages 337-354, Leuven, Belgium, 1995. KU Leuven.

    [595]
    T. Lawson. The context of prediction and the paradox of confirmation. British Journal for the Philosophy of Science, 36:393-407, 1985.

    [596]
    M.H. Lee and J.J. Rowland. Intelligent Assembly Systems. World Scientific, 1995.

    [597]
    C. Lee. A completeness theorem and a computer program for finding theorems derivable from given axioms. PhD thesis, University of California, Berkeley, 1967.

    [598]
    W.J. Leech. A rule based process control method with feedback. In Proceedings of the ISA/86, pages 169-175, Research Triangle Park, NC 27709, 1986. The Instrumentation Society of America.

    [599]
    D.B. Lenat. On automated scientific theory formation: a case study using the AM program. In J.E. Hayes and D. Michie, editors, Machine Intelligence 9. Horwood, New York, 1981.

    [600]
    D.B. Lenat. EURISKO: A program that learns new heuristics and domain concepts: the nature of heuristics iii: Program design and results. Artificial Intelligence, 21(1 & 2):61-98, 1983.

    [601]
    D.B. Lenat. CYC: a large-scale investment in knowledge infrastructure. Communications of the ACM, 38(11):33-38, 1995.

    [602]
    V. Lesk, J. Taubert, C. Rawlings, and S. Dunbarand S.H. Muggleton. WIBL: Workbench for integrative biological learning. Journal of Integrative Bioinformatics, 8(2), 2011.

    [603]
    B. Levine. The use of tree derivatives and a sample support parameter for inferring tree systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4:25-34, 1982.

    [604]
    L.G.Roberts. Machine Perception of Three-Dimensional Solids. Garland Publishing, New York, 1963.

    [605]
    M. Li and P.M.B. Vitanyi. Inductive reasoning and Kolmogorov complexity. In Proceedings of the Fourth Annual IEEE Structure in Complexity Theory Conference, pages 165-185, 1989.

    [606]
    M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer-Verlag, Berlin, 1993.

    [607]
    Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence, 28(4):594-611, 2006.

    [608]
    Heng Li. Machine Learning of Design Concepts. Elsevier, Oxford, 1994.

    [609]
    V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-2):39-54, 2002.

    [610]
    F-R. Lin and M. J. Shaw. Active training of backpropagation neural networks using the learning by experimentation methodology. Annals of Operations Research, 75:129-145, 1997.

    [611]
    D. Lin, J. Chen, H. Watanabe, S.H. Muggleton, P. Jain, M. Sternberg, C. Baxter, R. Currie, S. Dunbar, M. Earll, and D. Salazar. Does multi-clause learning help in real-world applications?. In Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, and Francesca A. Lisi, editors, Proceedings of the 21st International Conference on Inductive Logic Programming (ILP 2011), LNAI 7207, pages 221-237, Berlin, 2012. Springer-Verlag.

    [612]
    D. Lin, E. Dechter, K. Ellis, J.B. Tenenbaum, and S.H. Muggleton. Bias reformulation for one-shot function induction. In Proceedings of the 23rd European Conference on Artificial Intelligence (ECAI 2014), pages 525-530, Amsterdam, 2014. IOS Press.

    [613]
    D.V. Lindley. Scoring rules and the inevitability of probability. International Statistics Review, 50:1-26, 1982.

    [614]
    J.C. Lindon, J.K.Nicholson, and E. Holmes et al. Contemporary issues in toxicology: The role of metabonomics in toxicology and its evaluation by the comet project. Toxicology and Applied Pharmacology, 187:137-146, 2003.

    [615]
    X. Ling and M. Dawes. Theory reduction with uncertainty: A reason for theoretical terms. Technical Report 271, University of Western Ontario, 1990.

    [616]
    C. Ling. Inventing necessary theoretical terms in scientific discovery and inductive logic programming. Technical Report 302, Dept. of Comp. Sci., Univ. of Western Ontario, 1991.

    [617]
    C.X. Ling. Learning the past tense of english verbs: the symbolic pattern associators vs. connectionist models. Journal of Artificial Intelligence Research, 1:209-229, 1994.

    [618]
    F.A. Lisi and D. Malerba. Bridging the gap between horn clausal logic and description logics in inductive learning. In AI*IA 2003: Advances in Artificial Intelligence. Springer, Berlin, 2003. LNCS 2829.

    [619]
    J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.

    [620]
    J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.

    [621]
    H. Lodhi and S.H. Muggleton. Modelling metabolic pathways using stochastic logic programs-based ensemble methods. In Proceedings of the 2nd International Conference on Computational Methods in System Biology. Springer-Verlag, 2004.

    [622]
    H.M. Lodhi and S.H. Muggleton, editors. Elements of Computational Systems Biology. Wiley, New Jersey, 2010.

    [623]
    H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels. Journal of Machine Learning Research, 2002, (to appear).

    [624]
    H. Lodhi, S.H. Muggleton, and M.J.E. Sternberg. Learning large margin first order decision lists for multi-class classification. In Proceedings of the 12th International Conference on Discovery Science, LNAI 5808, pages 163-183. Springer-Verlag, 2009.

    [625]
    H. Lodhi, S.H. Muggleton, and M.J.E. Sternberg. Multi-class mode of action classification of toxic compounds using logic based kernel methods. Molecular Informatics, pages 655-664, 2010.

    [626]
    H. Lodhi, S.H. Muggleton, and M.J.E. Sternberg. Multi-class protein fold recognition using large margin logic based divide and conquer learning. SIGKDD Exploration, 11(2):117-122, 2010.

    [627]
    D. Luckham. The resolution principle in theorem-proving. In N.L. Collins and D. Michie, editors, Machine Intelligence 1, pages 47-61. Oliver and Boyd, Edinburgh, 1967.

    [628]
    J. Lukasiewicz. Logical foundations of probability theory. In L. Berkowski, editor, Selected works of Jan Lukasiewicz. North Holland, Amsterdam, 1970.

    [629]
    Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. J. ACM, 41(5):960-981, 1994.

    [630]
    G. Lunter, I. Miklos, A.J. Drummond, J.L. Jensen, and J.J. Hein. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics, 6:83, 2005.

    [631]
    LycoCyc. Solanum lycopersicum database. http://solcyc.solgenomics.net//LYCO/.

    [632]
    Pattie Maes. Artificial life meets entertainment: lifelike autonomous agents. Communications of the ACM, 38(11):108-114, 1995.

    [633]
    D.M. Magerman. Statistical decision-tree models for parsing. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages 276-283, Cambridge, MA, 1995.

    [634]
    L. Magnani. Abduction, Reason and Science. Kluwer Academic/Plenum Publishers, 2001.

    [635]
    M.J. Maher. Equivalences of logic programs. In Proceedings of Third International Conference on Logic Programming, Berlin, 1986. Springer.

    [636]
    D. Malerba and F.A. Lisi. Discovering associations between spatial objects: an ilp application. In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh International Workshop on Inductive Logic Programming (ILP01), pages 156-163, Berlin, 2001. Springer-Verlag. LNAI 2157.

    [637]
    T. Mantadelis and G. Janssens. Nesting probabilistic inference. In Proceedings of the International Colloquium on Implementation of Constraint and LOgic Programming Systems (CICLOPS), pages 1-16, Lexington, Kentucky, 2011. Springer-Verlag.

    [638]
    J. Marcinkowski and L. Pacholski. Undecidability of the Horn-clause implication problem. In Proceedings of the 33rd IEEE Annual Symposium on Foundations of Computer Science, pages 354-362. IEEE, 1992.

    [639]
    D. Mavroeidis and P.A. Flach. Improved distances for structured data. In T. Horváth and A. Yamamoto, editors, Proceedings of the Thirteenth International Conference on Inductive Logic Programming, LNAI 2835, pages 251-268, Berlin, 2003. Springer-Verlag.

    [640]
    G.K. Mazandu and N.J. Mulder. Using the underlying biological organization of the mycobacterium tuberculosis functional network for protein function prediction. Infection, Genetics and Evolution, 12:922-932, 2012.

    [641]
    J.D. Mcbride, H.N. Freeman, and R.J. Leatherbarrow. Identification of chymotrypsin inhibitors from a second-generation template assisted combinatorial peptide library. Journal of Peptide Science, 6(9):446-452, 2000.

    [642]
    J. McCarthy. Programs with commonsense. In Proceedings of the Teddington Conference on the Mechanization of Thought Processes, pages 75-91. Her Majesty's Stationery Office, London, 1959. Reprinted (with an added section on `Situations, Actions and Causal Laws') in Semantic Information Processing, ed. M. Minsky (Cambridge, MA: MIT Press (1963)).

    [643]
    J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, part i. CACM, 3(4):184-195, 1960.

    [644]
    J. McCarthy. Making robots conscious. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 15: intelligent agents. Oxford University Press, Oxford, 1999.

    [645]
    G. McCloskey. Circuit design using Inductive Logic Programming. Master's thesis, Oxford University Computing Laboratory, Oxford, 1996.

    [646]
    E. McCreath and A. Sharma. ILP with noise and fixed example size: A Bayesian approach. In IJCAI-97: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pages 1310-1315, San Mateo, CA:, 1997. Morgan-Kaufmann.

    [647]
    R.S. McGregor. The Oxford Hindi-English Dictionary. Oxford University Press, 1993.

    [648]
    R. McLaren. Expert Ease User Manual. ITL-KnowledgeLink, Glasgow, 1984.

    [649]
    David McNeill. Developmental psycholinguistics. In George Miller and David McNeill, editors, Handbook of Social Psychology. 1966.

    [650]
    W.J. Van Melle. System Aids in Constructing Programs. PhD thesis, University of Michigan, 1980.

    [651]
    Chris S. Mellish. Some global optimizations for a Prolog compiler. Journal of Logic Programming, 2:43-66, 1985.

    [652]
    B. Meltzer. Power amplification for automatic theorem proving. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 165-179. Edinburgh University Press, Edinburgh, 1969.

    [653]
    J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society London (A), 209:415-446, 1909.

    [654]
    R.S Michalski and R.L. Chilausky. Learning by being told and learning from examples: an experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4(2):125-161, 1980.

    [655]
    R. Michalski and J. Larson. Selection of most representative training examples and incremental generation of vl1 hypotheses: the underlying methodology and the description of programs ESEL and AQ11. UIUCDCS-R 78-867, Computer Science Department, Univ. of Illinois at Urbana-Champaign, 1978.

    [656]
    R. Michalski and J. Larson. Incremental generation of vl1 hypotheses: the underlying methodology and the description of program AQ11. ISG 83-5, Computer Science Department, Univ. of Illinois at Urbana-Champaign, 1980.

    [657]
    R.S. Michalski and P. Negri. An experiment on inductive learning in chess end games. In E.W. Elcock and D. Michie, editors, Machine Intelligence 8, pages 175-192. Horwood, New York, 1977.

    [658]
    R.S. Michalski and R. Stepp. Revealing conceptual structure in data by inductive inference. In J.E. Hayes, D. Michie, and Y.H. Pao, editors, Machine Intelligence 10, pages 173-196. Ellis Horwood, Chichester, UK, 1982.

    [659]
    R.S. Michalski and R. Stepp. Learning from observation: conceptual clustering. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 331-364. Tioga, Palo Alto, CA, 1983.

    [660]
    R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The AQ15 inductive learning system: an overview and experiments. In Proceedings of IMAL 1986, Orsay, 1986. Université de Paris-Sud.

    [661]
    R.S. Michalski. A theory and methodology of inductive learning. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 83-134. Tioga, Palo Alto, CA, 1983.

    [662]
    R.S. Michalski. Understanding the nature of learning: issues and research directions. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, volume 2, pages 3-25. Kaufmann, Los Altos, CA, 1986.

    [663]
    D. Michie and M. Bain. Machine acquisition of concepts from sample data. In R.B. Thomson and D. Kopec, editors, 1989 Spring Symposium on Artificial Intelligence and Intelligent Tutoring Systems, pages 1-27, University of Maine, 1989.

    [664]
    D. Michie and M. Bain. Machines that learn and machines that teach. In H. Jaakkola and S. Linnainmaa, editors, Scandinavian Conference on Artificial Intelligence, pages 1-25, Amsterdam, 1989.

    [665]
    D. Michie and R.A. Chambers. BOXES: An experiment in adaptive control. In E. Dale and D. Michie, editors, Machine Intelligence 2, pages 137-152. Oliver and Boyd, Edinburgh, 1968.

    [666]
    D. Michie and C. Sammut. Behavioural clones and cognitive skill models. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 14: applied machine intelligence. Oxford University Press, Oxford, 1995.

    [667]
    D. Michie, S.H. Muggleton, C. Riese, and S. Zubrick. Rulemaster: a second-generation knowledge-engineering facility. In Proceedings of the First Conference on Artificial Intelligence Applications, pages 591-597. IEEE Computer Soc., 1984.

    [668]
    D. Michie, M. Bain, and J. Hayes-Michie. Cognitive models from subcognitive skills. In M.J. Grimble J. McGhee and P. Mowforth, editors, Knowledge-Based Systems for Industrial Control, pages 71-99. Peter Peregrinus for IEE, London, UK, 1990.

    [669]
    D. Michie, S.H. Muggleton, C.D. Page, D. Page, and A. Srinivasan. To the international computing community: a new east-west challenge, 1994. Distributed email document available from http://www.doc.ic.ac.uk/~shm/Papers/ml-chall.pdf.

    [670]
    D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine learning, neural and statistical classification. Ellis Horwood, London, 1994.

    [671]
    D. Michie. Strategy-building with the graph traverser. In N.L. Collins and D. Michie, editors, Machine Intelligence 1, pages 135-152. Oliver and Boyd, Edinburgh, 1967.

    [672]
    D. Michie. A theory of advice. In E. Elcock and D. Michie, editors, Machine Intelligence 8, pages 151-168. Horwood, 1977.

    [673]
    D. Michie. Computer chess and the humanisation of technology. Nature, 299:391-394, 1982.

    [674]
    D. Michie. Measuring the knowledge content of expert programs. The Bulletin of the Institute of Mathematics and its Application, 18:216-220, November 1982.

    [675]
    D. Michie. Quality control of induced rule-based programs. In The Fifth Generation. GS Institute, London, 1984.

    [676]
    D. Michie. Expert systems and robotics. In D. Nof, editor, Handbook of Industrial Robotics, pages 419-436. Wiley, New York, 1985.

    [677]
    D. Michie. The superarticulacy phenomenon in the context of software manufacture. Proceedings of the Royal Society of London, A 405:185-212, 1986.

    [678]
    D. Michie. The Fifth Generation's unbridged gap. In Rolf Herken, editor, The Universal Turing machine : a half-century survey, pages 467-489. Oxford University Press, Oxford, 1988.

    [679]
    D. Michie. Machine learning in the next five years. In Proceedings of the Third European Working Session on Learning, pages 107-122. Pitman, 1988.

    [680]
    D. Michie. Personal models of rationality. Journal of Statistical Planning and Inference, 1988.

    [681]
    D. Michie. Applications of machine learning to recognition and control. University of Wales Review, Science and Technology, (5):23-28, 1989.

    [682]
    D. Michie. Machine executable skills from silent brains. In T.R. Addis and R.M. Muir, editors, Research and Development in Expert Systems VII, pages 1-24. Cambridge University Press, Cambridge, UK, 1990.

    [683]
    D. Michie. Consciousness as an engineering issue, part 1. Journal of Consciousness Studies, 1(2):182-195, 1994.

    [684]
    D. Michie. On the rails. Computing Magazine, 1994. Magzine article text available from http://www.doc.ic.ac.uk/~shm/Papers/computing.pdf.

    [685]
    D. Michie. Consciousness as an engineering issue, part 2. Journal of Consciousness Studies, 2(1):52-66, 1995.

    [686]
    D. Michie. Scan, annotate and pass on ... New Scientist, 149(2013):48-49, 1996.

    [687]
    D. Michie. Return of the imitation game. Electronic Transactions in Artificial Intelligence, 6-B2(028), November 2001.

    [688]
    L. Miclet. Regular inference with a tail clustering method. IEEE Transactions on Systems, Man, Cybernetics, 10:737-743, 1980.

    [689]
    L. Mihalkova and R.J. Mooney. Transfer learning from minimal target data by mapping across relational domains. In IJCAI-09: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pages 1163-1168, San Mateo, CA:, 2009. Morgan-Kaufmann.

    [690]
    B. Milch and S. Russell. First-order probabilistic languages: into the unknown. In Stephen Muggleton Ramon Otero and Alireza Tamaddoni-Nezhad, editors, Proceedings of the 16th International Conference on Inductive Logic Programming, volume 4455, pages 10-24, 2006.

    [691]
    D. Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. Journal of Logic and Computation, 1(4):497-536, 1991.

    [692]
    M. Minsky and S. Papert. Perceptrons. MIT Press, MA, 1969.

    [693]
    M. Minsky. A framework for representing knowledge. In P. Winston, editor, The Psychology of Computer Vision, pages 211-277. Mcgraw-Hill, New York, 1975.

    [694]
    Prateek Mishra. Towards a theory of types in Prolog. In Proceedings of the 1984 International Symposium on Logic Programming, pages 289-298, Atlantic City, 1984. IEEE Computer Society Press.

    [695]
    J.B. Misyak and N. Chater. Virtual bargaining: a theory of social decision-making. Philosophical Transactions of the Royal Society B, 369:512-519, 2014.

    [696]
    J.B. Misyak, T. Noguchi, and N. Chater. Instantaneous conventions: The emergence of flexible communicative signals. Psychological Science, 27:1550-1561, 2016.

    [697]
    T. Mitchell, P. Utgoff, and R. Banerji. Learning by experimentation: Acquiring and refining problem-solving heuristics. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach. Tioga, Palo Alto, CA, 1983.

    [698]
    T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based generalization: A unifying view. Machine Learning, 1(1):47-80, 1986.

    [699]
    T.M. Mitchell. The need for biases in learning generalizations. Technical Report CBM-TR-117, Department of Computer Science, Rutgers University, 1980.

    [700]
    T.M. Mitchell. Generalisation as search. Artificial Intelligence, 18:203-226, 1982.

    [701]
    T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

    [702]
    F. Mizoguchi and H. Ohwada. Constraint-directed generalization for learning spatial relations. In Proceedings of the Second Inductive Logic Programming Workshop, Tokyo, 1992. ICOT TM-1182.

    [703]
    R.J. Mooney and M.E. Califf. Induction of first-order decision lists: Results on learning the past tense of english verbs. Journal of Artificial Intelligence Research, 3:1-24, 1995.

    [704]
    R.J. Mooney. Inductive logic programming for natural language processing. In S.H. Muggleton, editor, Proceedings of the Sixth International Workshop on Inductive Logic Programming, pages 3-21. Springer-Verlag, Berlin, 1997. LNAI 1314.

    [705]
    E.F. Moore. Gedanken-experiments on sequential machines. In C.E. Shannon and J. McCarthy, editors, Automata Studies, pages 129-153. Princeton University Press, Princeton, NJ, 1956.

    [706]
    E. Morales. Inductive learning of first-order Horn clauses. TIRM 89-038, The Turing Institute, 1989.

    [707]
    E. Morales. Some experiments with macro-operators in the 8-puzzle. TIRM 90-042, The Turing Institute, 1990.

    [708]
    E. Morales. Learning chess patterns. In First International Workshop on Inductive Logic Programming, pages 291-307, Porto, Portugal, 1991.

    [709]
    E. Morales. Learning features by experimentation in chess. In Y. KODRATOFF, editor, EWSL '91, pages 494-511, Berlin, 1991. Springer-Verlag.

    [710]
    K. Morik, S. Wrobel, J. Kietz, and W. Emde. Knowledge Acquisition and Machine Learning: Theory, Methods and Applications. Academic Press, London, 1993.

    [711]
    Katharina Morik. Sloppy modeling. In Katharina Morik, editor, Knowledge Representation and Organization in Machine Learning, volume 347 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1989.

    [712]
    H. Mortimer. The Logic of Induction. Ellis Horwood, Chichester, England, 1988.

    [713]
    J. Moses. A macsyma primer. Technical Report Mathlab Memo No. 2, Computer Science Laboratory, MIT, 1975.

    [714]
    S. Moyle and S.H. Muggleton. Learning programs in the event calculus. In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh Inductive Logic Programming Workshop (ILP97), LNAI 1297, pages 205-212, Berlin, 1997. Springer-Verlag.

    [715]
    I. Mozetic, I. Bratko, and N. Lavrac. The derivation of medical knowledge from a qualitative model of the heart. Technical report, Josef Stefan Institute, Ljubljana, Yugoslavia, 1984.

    [716]
    M.R.Genesereth and N.J. Nilsson. Logical foundations of artificial intelligence. Morgan Kaufmann, Los Altos, 1987.

    [717]
    S.H. Muggleton and M. Bain. Analogical prediction. In Proc. of the 9th International Workshop on Inductive Logic Programming (ILP-99), pages 234-244, Berlin, 1999. Springer-Verlag.

    [718]
    S.H. Muggleton and C.H. Bryant. Theory completion using inverse entailment. In Proc. of the 10th International Workshop on Inductive Logic Programming (ILP-00), pages 130-146, Berlin, 2000. Springer-Verlag.

    [719]
    S.H. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th International Conference on Machine Learning, pages 339-352. Kaufmann, 1988.

    [720]
    S.H. Muggleton and W. Buntine. Towards constructive induction in first-order predicate calculus. TIRM 88-03, The Turing Institute, Glasgow, 1988.

    [721]
    S.H. Muggleton and N. Chater, editors. Human-Like Machine Intelligence. Oxford University Press, Oxford, 2021.

    [722]
    S.H. Muggleton and J. Chen. Comparison of some probabilistic logic models. In L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors, Probabilistic Inductive Logic Programming, pages 305-324. Springer-Verlag, 2007.

    [723]
    S.H. Muggleton and W-Z. Dai. Human-like computer vision. In S.H. Muggleton and N. Chater, editors, Human-Like Machine Intelligence, pages 199-217. Oxford University Press, 2021.

    [724]
    S.H. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the First Conference on Algorithmic Learning Theory, pages 368-381, Tokyo, 1990. Ohmsha.

    [725]
    S.H. Muggleton and C. Feng. Efficient induction of logic programs. In S.H. Muggleton, editor, Inductive Logic Programming, pages 281-298. Academic Press, London, 1992.

    [726]
    S.H. Muggleton and J. Firth. CProgol4.4: a tutorial introduction. In S. Dzeroski and N. Lavrac, editors, Relational Data Mining, pages 160-188. Springer-Verlag, 2001.

    [727]
    S.H. Muggleton and C. Hocquette. Machine discovery of comprehensible strategies for simple games using meta-interpretive learning. New Generation Computing, 37:203-217, 2019.

    [728]
    S.H. Muggleton and D. Lin. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. In Proceedings of the 23rd International Joint Conference Artificial Intelligence (IJCAI 2013), pages 1551-1557, 2013.

    [729]
    S.H. Muggleton and F. Marginean. Logic-based machine learning. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 315-330. Kluwer, 2000.

    [730]
    S.H. Muggleton and D. Michie. Machine intelligibility and the duality principle. British Telecom Technology Journal, 14(4):15-23, 1996.

    [731]
    S.H. Muggleton and C.D. Page. A learnability model for universal representations. Technical Report PRG-TR-3-94, Oxford University Computing Laboratory, Oxford, 1994.

    [732]
    S.H. Muggleton and C.D. Page. Self-saturation of definite clauses. In S. Wrobel, editor, Proceedings of the Fourth International Inductive Logic Programming Workshop, pages 161-174. Gesellschaft fur Mathematik und Datenverarbeitung MBH, 1994. GMD-Studien Nr 237.

    [733]
    S.H. Muggleton and D. Page. Beyond first-order learning: inductive learning with higher-order logic. Technical Report PRG-TR-13-94, Oxford University Computing Laboratory, Oxford, 1994.

    [734]
    S.H. Muggleton and C.D. Page. Special issue on inductive logic programming. Machine Learning, 26(2-3), 1997.

    [735]
    S.H. Muggleton and D. Page. A learnability model for universal representations and its application to top-down induction of decision trees. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 15. Oxford University Press, 1999.

    [736]
    S.H. Muggleton and N. Pahlavi. The complexity of translating blps to rmms. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [737]
    S.H. Muggleton and N. Pahlavi. Stochastic logic programs: A tutorial. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning, pages 323-338. MIT Press, 2007.

    [738]
    S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19,20:629-679, 1994.

    [739]
    S.H. Muggleton and A. Tamaddoni-Nezhad. QG/GA: A stochastic search approach for Progol. In Proceedings of the 16th International Conference on Inductive Logic Programming, LNAI 4455, pages 37-39. Springer-Verlag, 2006.

    [740]
    S.H. Muggleton and A. Tamaddoni-Nezhad. QG/GA: A stochastic search for Progol. Machine Learning, 70(2-3):123-133, 2007.

    [741]
    S.H. Muggleton and H. Watanabe, editors. Latest Adavances in Inductive Logic Programming. Imperial College Press, London, 2015.

    [742]
    S.H. Muggleton and C. Xu. Can ILP learn complete and correct game strategies?. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 3-10. Imperial College Press, 2015.

    [743]
    S.H. Muggleton, M.E. Bain, J. Hayes-Michie, and D. Michie. An experimental comparison of human and machine learning formalisms. In Proceedings of the Sixth International Workshop on Machine Learning, Los Altos, CA, 1989. Kaufmann.

    [744]
    S.H. Muggleton, A. Srinivasan, and M. Bain. Mdl codes for non-monotonic learning. TIRM 91-049, The Turing Institute, Glasgow, 1991.

    [745]
    S.H. Muggleton, R.D. King, and M.J.E. Sternberg. Protein secondary structure prediction using logic-based machine learning. Protein Engineering, 5(7):647-657, 1992.

    [746]
    S.H. Muggleton, A. Srinivasan, and M. Bain. Compression, significance and accuracy. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Machine Learning Conference, pages 338-347, San Mateo, CA, 1992. Morgan-Kaufmann.

    [747]
    S.H. Muggleton, C.D. Page, and A. Srinivasan. An initial experiment into stereochemistry-based drug design using ILP. In S.H. Muggleton, editor, Proceedings of the Sixth Inductive Logic Programming Workshop (ILP96), LNAI 1314, pages 25-40, Berlin, 1996. Springer-Verlag.

    [748]
    S.H. Muggleton, A. Srinivasan, R.D. King, and M.J.E. Sternberg. Biochemical knowledge discovery using Inductive Logic Programming. In H. Motoda, editor, Proc. of the first Conference on Discovery Science, Berlin, 1998. Springer-Verlag.

    [749]
    S.H. Muggleton, C.H. Bryant, A.Srinivasan, A. Whittaker, S. Topp, and C. Rawlings. Are grammatical representations useful for learning from biological sequence data? -- a case study. Technical Report YCS 328, University of York, Department of Computer Science, Heslington, York, YO10 5DD, UK., 2000.

    [750]
    S.H. Muggleton, C.H. Bryant, and A. Srinivasan. Learning Chomsky-like grammars for biological sequence families. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 631-638, Stanford University, USA, 2000. San Francisco, CA: Morgan Kaufmann.

    [751]
    S.H. Muggleton, C.H.Bryant, and A.Srinivasan. Measuring performance when positives are rare: Relative advantage versus predictive accuracy - a biological case-study. In R.Lopez de Mantaras and E.Plaza, editors, Proceedings of the 11th European Conference on Machine Learning, Lecture Notes in Computer Science, http://www.springer.de/comp/lncs/index.html, 2000. copyright Springer Verlag.

    [752]
    S.H. Muggleton, C.H. Bryant, A. Srinivasan, A. Whittaker, S. Topp, and C. Rawlings. Are grammatical representations useful for learning from biological sequence data? - a case study. Journal of Computational Biology, 8(5):493-521, 2001.

    [753]
    S.H. Muggleton, A. Tamaddoni-Nezhad, and H. Watanabe. Induction of enzyme classes from biological databases. In Proceedings of the 13th International Conference on Inductive Logic Programming, LNAI 2835, pages 269-280. Springer-Verlag, 2003.

    [754]
    S.H. Muggleton, H. Lodhi, A. Amini, and M.J.E. Sternberg. Support Vector Inductive Logic Programming. In Proceedings of the 8th International Conference on Discovery Science, LNAI 3735, pages 163-175. Springer-Verlag, 2005.

    [755]
    S.H. Muggleton, H. Lodhi, A. Amini, and M.J.E. Sternberg. Support Vector Inductive Logic Programming. In D.E. Holmes and L.C. Jain, editors, Innovations in Machine Learning, pages 113-135. Springer-Verlag, 2006.

    [756]
    S.H. Muggleton, R. Otero, and A. Tamadonni-Nezhad, editors. Proceedings of the 16th International Workshop on Inductive Logic Programming. Springer-Verlag, Berlin, 2007. LNAI 4455.

    [757]
    S.H. Muggleton, A. Paes, V. Santos Costa, and G. Zaverucha. Chess revision: acquiring the rules of chess variants through FOL theory revision from examples. In Luc De Raedt, editor, Proceedings of the 19th International Conference on Inductive Logic Programming (ILP 2009), LNCS 5989, pages 123-130, Berlin, 2010. Springer-Verlag.

    [758]
    S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. ProGolem: a system based on relative minimal generalisation. In Proceedings of the 19th International Conference on Inductive Logic Programming, LNCS 5989, pages 131-148. Springer-Verlag, 2010.

    [759]
    S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. TopLog: ILP using a logic program declarative bias. In Proceedings of the International Conference on Logic Programming 2008, LNCS 5366, pages 687-692. Springer-Verlag, 2010.

    [760]
    S.H. Muggleton, J. Chen, H. Watanabe, S. Dunbar, C. Baxter, R. Currie, J.D. Salazar, J. Taubert, and M.J.E. Sternberg. Variation of background knowledge in an industrial application of ILP. In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th International Conference on Inductive Logic Programming (ILP 2011), LNAI 6489, pages 158-170, Berlin, 2011. Springer-Verlag.

    [761]
    S.H. Muggleton, L. De Raedt, D. Poole, I. Bratko, P. Flach, and K. Inoue. ILP turns 20: biography and future challenges. Machine Learning, 86(1):3-23, 2011.

    [762]
    S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. MC-Toplog: Complete multi-clause learning guided by a top theory. In Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, and Francesca A. Lisi, editors, Proceedings of the 21st International Conference on Inductive Logic Programming (ILP 2011), LNAI 7207, pages 238-254, Berlin, 2012. Springer-Verlag.

    [763]
    S.H. Muggleton, A. Tamaddoni-Nezhad, and F.A. Lisi, editors. Proceedings of the 21st International Conference on Inductive Logic Programming. LNAI 7207. Spring-Verlag, Berlin, 2012.

    [764]
    S.H. Muggleton, D. Lin, J. Chen, and A. Tamaddoni-Nezhad. Metabayes: Bayesian meta-interpretative learning using higher-order stochastic refinement. In Gerson Zaverucha, Vitor Santos Costa, and Aline Marins Paes, editors, Proceedings of the 23rd International Conference on Inductive Logic Programming (ILP 2013), pages 1-17, Berlin, 2014. Springer-Verlag. LNAI 8812.

    [765]
    S.H. Muggleton, D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad. Meta-interpretive learning: application to grammatical inference. Machine Learning, 94:25-49, 2014.

    [766]
    S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 100(1):49-73, 2015.

    [767]
    S.H. Muggleton, W-Z. Dai, C. Sammut, A. Tamaddoni-Nezhad, J. Wen, and Z-H. Zhou. Meta-interpretive learning from noisy images. Machine Learning, 107:1097-1118, 2018.

    [768]
    S.H. Muggleton, U. Schmid, C. Zeller, A. Tamaddoni-Nezhad, and T. Besold. Ultra-strong machine learning - comprehensibility of programs learned with ILP. Machine Learning, 107:1119-1140, 2018.

    [769]
    S.H. Muggleton. Duce, an oracle based approach to constructive induction. In IJCAI-87, pages 287-292. Kaufmann, 1987.

    [770]
    S.H. Muggleton. Inductive Acquisition of Expert Knowledge. PhD thesis, Edinburgh University, 1987.

    [771]
    S.H. Muggleton. Inductive acquisition of chess strategies. In Machine Intellience 11, pages 375-390. Oxford University Press, 1988.

    [772]
    S.H. Muggleton. A strategy for constructing new predicates in first order logic. In Proceedings of the Third European Working Session on Learning, pages 123-130. Pitman, 1988.

    [773]
    S.H. Muggleton. Inductive Acquisition of Expert Knowledge. Addision-Wesley, Wokingham, England, 1990.

    [774]
    S.H. Muggleton. Inductive Logic Programming. New Generation Computing, 8(4):295-318, 1991.

    [775]
    S.H. Muggleton. Inverting the resolution principle. In Machine Intellience 12, pages 93-104. Oxford University Press, 1991.

    [776]
    S.H. Muggleton, editor. Proceedings of the First International Workshop on Inductive Logic Programming. University of Porto, Porto, Portugal, 1991.

    [777]
    S.H. Muggleton. Developments in Inductive Logic Programming. In Proceedings of the International Conference on Fifth Generation Computer Systems 1992, pages 1071-1073, Tokyo, 1992. Ohmsha.

    [778]
    S.H. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.

    [779]
    S.H. Muggleton. Inverting implication. In Proceedings of the Second Inductive Logic Programming Workshop, pages 19-39, Tokyo, 1992. ICOT (Technical report TM-1182).

    [780]
    S.H. Muggleton, editor. Proceedings of the Second International Workshop on Inductive Logic Programming. ICOT, Tokyo, Japan, 1992.

    [781]
    S.H. Muggleton. Optimal layered learning: A PAC approach to incremental sampling. In K. Jantke, S. Kobayashi, E. Tomita, and T. Yokomori, editors, Proceedings of the 4th Conference on Algorithmic Learning Theory, LNAI 744, pages 37-44. Springer-Verlag, 1993.

    [782]
    S.H. Muggleton, editor. Proceedings of the Third International Workshop on Inductive Logic Programming. Jozef Stefan Institute, Bled, Slovenia, 1993.

    [783]
    S.H. Muggleton. Bayesian Inductive Logic Programming. In W. Cohen and H. Hirsh, editors, Proceedings of the Eleventh International Machine Learning Conference, pages 371-379, San Mateo, CA, 1994. Morgan-Kaufmann. Keynote presentation.

    [784]
    S.H. Muggleton. Bayesian Inductive Logic Programming. In M. Warmuth, editor, Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, pages 3-11, New York, 1994. ACM Press. Keynote presentation.

    [785]
    S.H. Muggleton. Inductive logic programming: derivations, successes and shortcomings. SIGART Bulletin, 5(1):5-11, 1994.

    [786]
    S.H. Muggleton. Logic and learning: Turing's legacy. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 13, pages 37-56. Oxford University Press, 1994.

    [787]
    S.H. Muggleton. Predicate invention and utilisation. Journal of Experimental and Theoretical Artificial Intelligence, 6(1):127-130, 1994.

    [788]
    S.H. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245-286, 1995.

    [789]
    S.H. Muggleton. Inverting entailment and Progol. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 14. Oxford University Press, 1995.

    [790]
    S.H. Muggleton. Experimental acquisition of grammar from early reader books. PRG-TR 18-96, Oxford University Computing Laboratory, Oxford, 1996.

    [791]
    S.H. Muggleton. Learning from positive data. In S.H. Muggleton, editor, Proceedings of the Sixth International Workshop on Inductive Logic Programming (Workshop-96), LNAI 1314, pages 358-376, Berlin, 1996. Springer-Verlag.

    [792]
    S.H. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in Inductive Logic Programming, pages 254-264. IOS Press, 1996.

    [793]
    S.H. Muggleton. Declarative knowledge discovery in industrial databases. In H.F. Arner, editor, Proceedings of the First International Conference and Exhibition on The Practical Application of Knowledge Discovery and Data Mining (PADD-97), pages 9-24. Practical Application Company Ltd., 1997.

    [794]
    S.H. Muggleton, editor. Proceedings of the Sixth International Workshop on Inductive Logic Programming. Springer-Verlag, Berlin, 1997. LNAI 1314.

    [795]
    S.H. Muggleton. Advances in ILP theory and implementations. In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, page 9, Berlin, 1998. Springer-Verlag. Abstract of keynote presentation.

    [796]
    S.H. Muggleton. Completing inverse entailment. In C.D. Page, editor, Proceedings of the Eighth International Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, pages 245-249. Springer-Verlag, Berlin, 1998.

    [797]
    S.H. Muggleton. Inductive logic programming: issues, results and the LLL challenge. In H. Prade, editor, Proceedings of ECAI98, page 697. John Wiley, 1998. Abstract of keynote talk.

    [798]
    S.H. Muggleton. Knowledge discovery in biological and chemical domains. In H. Motoda, editor, Proc. of the first Conference on Discovery Science, Berlin, 1998. Springer-Verlag. Abstract of keynote talk.

    [799]
    S.H. Muggleton. Inductive Logic Programming. In Robert A. Wilson and Frank C. Keil, editors, The MIT Encyclopedia of the Cognitive Sciences (MITECS). MIT Press, 1999.

    [800]
    S.H. Muggleton. Inductive logic programming: issues, results and the LLL challenge. Artificial Intelligence, 114(1-2):283-296, December 1999.

    [801]
    S.H. Muggleton. Scientific knowledge discovery using Inductive Logic Programming. Communications of the ACM, 42(11):42-46, November 1999.

    [802]
    S.H. Muggleton. Learning stochastic logic programs. Electronic Transactions in Artificial Intelligence, 4(041), 2000.

    [803]
    S.H. Muggleton. Learning stochastic logic programs. In Lise Getoor and David Jensen, editors, Proceedings of the AAAI2000 workshop on Learning Statistical Models from Relational Data. AAAI, 2000.

    [804]
    S.H. Muggleton. Semantics and derivation for stochastic logic programs. In Richard Dybowski, editor, Proceedings of the UAI2000 workshop on Knowledge-Data Fusion. UAI, 2000.

    [805]
    S.H. Muggleton. Statistical aspects of logic-based machine learning. ACM Transactions on Computational Logic, 2001. Under revision.

    [806]
    S.H. Muggleton. Stochastic logic programs. Journal of Logic Programming, 2001. Accepted subject to revision.

    [807]
    S.H. Muggleton. Learning structure and parameters of stochastic logic programs. Electronic Transactions in Artificial Intelligence, 6, 2002.

    [808]
    S.H. Muggleton. Learning structure and parameters of stochastic logic programs. In Proceedings of the 12th International Conference on Inductive Logic Programming, pages 198-206. Springer-Verlag, 2002.

    [809]
    S.H. Muggleton. Progol version 5.0, 2002. http://www.doc.ic.ac.uk/~shm/Software/progol5.0/.

    [810]
    S.H. Muggleton. Machine learning for systems biology. In Proceedings of the 15th International Conference on Inductive Logic Programming, LNAI 3625, pages 416-423. Springer-Verlag, 2005.

    [811]
    S.H. Muggleton. Exceeding human limits. Nature, 440(7083):409-410, 2006.

    [812]
    S.H. Muggleton. Towards Universal Chemical Turing Machines. In Proceedings of the Twenty-First National Conference on Artificial Intelligence, AAAI-06, pages 1527-1529. AAAI Press, 2006.

    [813]
    J. Chen S.H. Muggleton. Decision-theoretic logic programs. 2010. 19th International Conference on Inductive Logic Programming, Poster presentation.

    [814]
    S. H. Muggleton. Alan Turing and the development of Artificial Intelligence. AI Communications, 27(1):3-10, 2014.

    [815]
    S.H. Muggleton. Meta-interpretive learning: achievements and challenges. In Roman Kontchakov and Fariba Sadri, editors, Proceedings of the 11th International Symposium on Rule Technologies, RuleML+RR 2017, pages 1-7, Berlin, 2017. Springer-Verlag. LNCS 10364.

    [816]
    S.H. Muggleton. Hypothesising an algorithm from one example: the role of specificity. Philosophical Transaction of the Royal Society A, 381:20220046, 2023.

    [817]
    Toshinori Munakata. Special issue on knowledge discovery. Communications of the Association of Computing Machinery, 42(11), 1999.

    [818]
    Corby J. Murray W. and Russell C. Book 1, Read with me: Let's play. Laybird, Loughborough, UK, 1993.

    [819]
    Corby J. Murray W. and Russell C. Book 2, Read with me: the dragon den. Laybird, Loughborough, UK, 1993.

    [820]
    I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from expression data. In Proceedings Twelfth International Conference on Intelligent Systems for Molecular Biology, pages 248-256, Oxford, 2004. Oxford University Press.

    [821]
    B. K. Natarajan. Learning from exercises. In Proceedings of the 1989 Workshop on Computational Learning Theory, pages 72-86, San Mateo, CA, 1989. Morgan Kaufmann.

    [822]
    M.J. Neal, J.J. Rowland, and M.H Lee. A behaviour-based approach to robotic grasp formulation: experimental evaluation in a food product handling application. In Proceedings of the IEEE International Conference on Robotics & Automation, pages 304-309, Albuquerque, USA, April 1997.

    [823]
    C.J. Needham, P.E. Santos, D.R. Magee, V. Devin, D.C. Hogg, and A.G. Cohn. Protocols from perceptual observations. Artificial Intelligence, 167:103-136, 2005.

    [824]
    A. Newell and H.A. Simon. Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3):113-126, 1976.

    [825]
    A. Newell, J.C Shaw, and H.A. Simon. Report on a general problem-solving program. In Proceedings of the International Conference on Information Processing, pages 256-264, 1959.

    [826]
    R. Ng and V.S. Subrahmanian. Probabilistic logic programming. Information and Computation, 101(2):150-201, 1992.

    [827]
    L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171(1-2):147-177, 1997.

    [828]
    T. Niblett and I Bratko. Learning decision rules in noisy domains. TIRM 86-018, The Turing Institute, Glasgow, 1986.

    [829]
    T. Niblett. YAPES: Yet Another Prolog Expert System. CC-AI: the journal for integrated study of artificial intelligence, cognitive science and applied epistemology, 2(2):3-30, 1985.

    [830]
    T. Niblett. A study of generalisation in logic programs. In EWSL-88, London, 1988. Pitman.

    [831]
    A.W. Nicholls, E. Holmes, J.C. Lindon, R.D. Farrant, J.N. Haselden, S.J.P. Damment, C.J. Waterfield, and J.K. Nicholson. Metabonomic investigations into hydrazine toxicity in the rat. Chemical Research in Toxicology, 14(8):975-987, 2001.

    [832]
    J.K. Nicholson, J. Connelly, J.C. Lindon, and E. Holmes. Metabonomics: a platform for studying drug toxicity and gene function. Nature Drug Discovery, 1:153-161, 2002.

    [833]
    J Nielsen and S Oliver. The next wave in metabolome analysis. Trends in Biotechnology, 23:544-546, 2005.

    [834]
    S-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming. Springer-Verlag, Berlin, 1997. LNAI 1228.

    [835]
    S.H. Nienhuys-Cheng. Distance between Herbrand interpretations: a measure for approximations to a target concept. In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic Programming (ILP97), pages 321-226, Berlin, 1997. Springer-Verlag. LNAI 1297.

    [836]
    S.H. Nienhuys-Cheng. Distances and limits on Herbrand interpretations. In C.D. Page, editor, Proceedings of the Eighth International Conference on Inductive Logic Programming (ILP98), pages 250-260, Berlin, 1998. Springer. LNAI 1446.

    [837]
    U. Nilsson and J. Maluszynski. Logic, Programming and Prolog. Wiley, New York, 1995. Second edition.

    [838]
    N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

    [839]
    N.J. Nilsson. Shakey the robot. Technical Note 323, SRI International, 1984.

    [840]
    N. Nilsson. Probabilistic logic. Artificial Intelligence Journal, 28:71-87, 1986.

    [841]
    N.J. Nilsson. Teleo-reactive programs and the triple-tower architecture. Electronic Transactions in Artificial Intelligence, 6-B1(014), November 2001.

    [842]
    R. Nock and P. Jappy. Function-free Horn clauses are hard to approximate. In Daid Page, editor, Proceedings of the Eighth Inductive Logic Programming Workshop (ILP98), Berlin, 1998. Springer-Verlag. LNAI 1446.

    [843]
    NTIS. Use of the skew t, log p diagram in analysis and forecasting. air weather service manual awsm. Technical Report NTIS AD695603, National Technical Information Service, Springfield, VA, 1969.

    [844]
    D. Nute. Ldr: A logic for defeasible reasoning. Technical Report 01-0013, ACMC, 1986.

    [845]
    Hyacinth Nwana. `Smart' software agents: an overview. Knowledge Engineering Review, 11(3), 1996.

    [846]
    M. Oblak, A. Jezernik, and J. Ducep. Deformation and stress analysis of paper mill for the Sladogorska Company, Final report. Technical report, Faculty of Technical Scineces, Maribor, Yuoslavia, 1986.

    [847]
    International Union of Biochemistry and Molecular Biology. Enzyme Nomenclature: Recommendations (1992) of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. Academic Press, New York, 1992.

    [848]
    International Union of Biochemistry and Molecular Biology. Enzyme Nomenclature: Recommendations (1992) of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. Academic Press, New York, 1992.

    [849]
    H Ogata, S Goto, K Sato, W Fujibuchi, H Bono, and M Kanehisa. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucl. Acids Res., 27(1):29-34, 1999.

    [850]
    G.R. Olhoeft. Maximizing the information return from ground penetrating radar. Journal of Applied Geophysics, 43:175-187, 2000.

    [851]
    L. Oliphant and J. Shavlik. Using bayesian networks to direct search in inductive logic programming. In Proceedings of the 17th International Conference on Inductive Logic Programming, pages 191-199, Berlin, 2007. Springer-Verlag. LNAI 4894.

    [852]
    SG Oliver, MK Winson, DB Kell, and F Baganz. Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16:373-378, 1998.

    [853]
    S.G. Oliver. From DNA sequence to biological function. Nature, 379:597-600, 1996.

    [854]
    SG Oliver. From genomes to systems: the path with yeast. Philosophical Transactions of the Royal Society of London B, 361:477-482, 2006.

    [855]
    Mihai Oltean. Evolving winning strategies for nim-like games. World Computer Congress, 9(2):353-364, August 2004.

    [856]
    J.E. Omrod and K.M. Davis. Human learning. Merrill, 2004.

    [857]
    P. O'Rorke. A comparative study of inductive learning systems AQ11P and ID3 using a chess end-game test problem. ISG 82-2, Computer Science Department, Univ. of Illinois at Urbana-Champaign, 1982.

    [858]
    R. Otero and S.H. Muggleton. On McCarthy's appearance and reality problem. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [859]
    R. Otero. Induction of the indirect effects of actions by monotonic methods. In Proceedings of the Fifteenth International Conference on Inductive Logic Programming (ILP05), volume 3625, pages 279-294. Springer, 2005.

    [860]
    A. J. Owens and D. L. Filkin. Efficient training of the back-propagation network by solving a system ofstiff ordinary differential equations. In Proceedings IEEE/INNS International Joint Conference of Neural Networks, pages 381-386, Washington DC, 1989.

    [861]
    A. Paes, K. Revoredo, G. Zaverucha, and V. Santos Costa. Probabilistic first-order theory revision from examples. In Stefan Kramer and Bernhard Pfahringer, editors, Proceedings of the 15th International Conference on Inductive Logic Programming, volume 3625, pages 295-311, 2005.

    [862]
    A. Paes, F. Zelezny, G. Zaverucha, D. Page, and A. Srinivasan. Ilp through propositionalization and stochastic k-term dnf learning. In Short papers Proceedings of the 16th International Conference on Inductive Logic Programming, 2006.

    [863]
    A. Paes, G. Zaverucha, and V. Santos Costa. Revising first-order logic theories from examples through stochastic local search. In Proceedings of the 17th International Conference on Inductive Logic Programming, pages 201-210, Berlin, 2007. Springer-Verlag. LNAI 4894.

    [864]
    D. Page and A. Frisch. Generalization and learnability: A study of constrained atoms. In S.H. Muggleton, editor, Inductive Logic Programming. Academic Press, London, 1992.

    [865]
    David Page and Ashwin Srinivasan. Ilp: a short look back and a longer look forward. J. Mach. Learn. Res., 4:415-430, 2003.

    [866]
    C. D. Page. Anti-unification in constraint logics: foundations and applications to learnability in first-order logic, to speed-up learning, and to deduction. PhD thesis, University of Illinois at Urbana-Champaign, 1993.

    [867]
    D. Page. British Telecom short-term research fellowship: Applying Inductive Logic Programming to fraud detection. British Telecom internal report subject to confidentiality restrictions, 1996.

    [868]
    N. Pahlavi and S.H. Muggleton. Can HOLL outperform FOLL? In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th International Conference on Inductive Logic Programming (ILP 2010), LNAI 6489, pages 198-205, Berlin, 2011. Springer-Verlag.

    [869]
    N. Pahlavi and S.H. Muggleton. Towards efficient higher-order logic learning in a first-order datalog framework. In Latest Advances in Inductive Logic Programming, pages 209-216. Imperial College Press, 2012.

    [870]
    N. Pahlavi and S.H. Muggleton. Towards efficient higher-order logic learning in a first-order datalog framework. In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in Inductive Logic Programming, pages 207-215. Imperial College Press, 2015.

    [871]
    T.W. Pao and J.W. Carr III. A solution of the syntactical induction-inference problem for regular languages. Computer Languages, 3:53-64, 1978.

    [872]
    I. Papatheodorou, A. Kakas, and M. Sergot. Inference of gene relations from microarray data by abduction. In Proceedings of the Eighth International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR'05), volume 3662, pages 389-393. Springer, 2005.

    [873]
    R. Parson and S.H. Muggleton. An experiment with browsers that learn. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 15. Oxford University Press, 1998.

    [874]
    R. Parson, K. Khan, and S.H. Muggleton. Theory recovery. In Proc. of the 9th International Workshop on Inductive Logic Programming (ILP-99), Berlin, 1999. Springer-Verlag.

    [875]
    R. Parson. Intelligent agents for the WWW. Master's thesis, Oxford University Computing Laboratory, Oxford, 1995.

    [876]
    A. Passerini, P. Frasconi, and L. De Raedt. Kernels on prolog proof trees: Statistical learning in the ilp setting. Journal of Machine Learning Research, 7:307-342, 2006.

    [877]
    Hanna Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning probabilistic relational planning rules. In ICAPS, pages 73-82, 2004.

    [878]
    A. Paterson and T. Niblett. ACLS Manual. ITL-KnowledgeLink, Glasgow, 1982.

    [879]
    A. Paterson. An attempt to use cluster to synthesise humanly intelligible subproblems for the kpk chess endgame. Technical Report UIUCDCS-R-83-1156, Univ. Illinois, Urbana, IL, 1983.

    [880]
    A. Paterson. Computer Induction in a Tutorial Context. University of Edinburgh, (M.Phil. Thesis), Edinburgh, 1984.

    [881]
    S. Patsantzis and S.H. Muggleton. Which background knowledge is relevant?. In Late Breaking Paper Proceedings of the 28th International Conference on Inductive Logic Programming. CEUR, 2018.

    [882]
    S. Patsantzis and S.H. Muggleton. Top program construction and reduction for polynomial time meta-interpretive learning. Machine Learning, 110:755-778, 2021.

    [883]
    S. Patsantzis and S.H. Muggleton. Meta-interpretive learning as metarule specialisation. Machine Learning, 111:3703-3731, 2022.

    [884]
    M. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Machine Learning, 9, 1992.

    [885]
    J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Los Altos, 1988.

    [886]
    R. S. Pearlman. Concord User's Manual. Tripos, Inc, St Louis, Missouri, 2000.

    [887]
    J.S. Pedersen and J.J. Hein. Gene finding with as hidden markov model of genome structure and evolution. Bioinformatics, 19(2):219-227, 2003.

    [888]
    C.S. Peirce. Elements of logic. In C. Hartshorne and P. Weiss, editors, Collected Papers of Charles Sanders Peirce, volume 2. Harvard University Press, Cambridge, MA, 1932.

    [889]
    L.M. Pereira, M. Calejo, and J.N. Aparicio. Refining knowledge base updates. Technical report, AI Center/UNINOVA, Portugal, 7 November 1989.

    [890]
    G. Piatetsky-Shapiro and W. Frawley, editors. Knowledge discovery in databases. The MIT press, 1991.

    [891]
    Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Policy-contingent abstraction for robust robot control. In Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages 477-484. Morgan Kaufmann Publishers Inc., 2002.

    [892]
    S. Pinker. Language learnability and language development. Harvard University Press, Cambridge, Mass., 1984.

    [893]
    L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Journal of the ACM, 35(4):965-984, 1988.

    [894]
    G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 153-163. Edinburgh University Press, Edinburgh, 1969.

    [895]
    G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh University, August 1971.

    [896]
    G.D. Plotkin. A further note on inductive generalization. In Machine Intelligence, volume 6. Edinburgh University Press, 1971.

    [897]
    G. Polya. Induction and analogy in mathematics. In Mathematics and Plausible Reasoning, volume 1. Princeton University Press, Princeton, 1954.

    [898]
    G. Polya. Patterns of plausible inference. In Mathematics and Plausible Reasoning, volume 2. Princeton University Press, Princeton, 1954.

    [899]
    D.L. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1):81-129, 1993.

    [900]
    D.L. Poole. Abducing through negation as failure: stable models within the independent choice logic. Journal of Logic Programming, 44(1-3):5-35, 2000.

    [901]
    R. Poppe. A survey on vision-based human action recognition. Image and vision computing, 28(6):976-990, 2010.

    [902]
    K. Popper. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge and Kegan Paul, London, 1972.

    [903]
    R.J. Popplestone. An experiment in automatic induction. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 203-215. Edinburgh University Press, Edinburgh, 1969.

    [904]
    S. Potter, M.J. Darlington, S.J. Culley, and P.K. Chawdhry. Design synthesis knowledge and inductive machine learning. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 15(3):233-249, 2001.

    [905]
    R.S. Pressman. Software Engineering: a practitioner's approach. McGraw-Hill, New York, 1994. (3rd edition).

    [906]
    A. Puech and S.H. Muggleton. A comparison of stochastic logic programs and Bayesian logic programs. In IJCAI03 Workshop on Learning Statistical Models from Relational Data. IJCAI, 2003.

    [907]
    SG Pulman. Statistical and logical reasoning in disambiguation. Philosophical Transactions of the Royal Society of London A, 358:1267-1280, 2000.

    [908]
    Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

    [909]
    J.R. Quinlan and R.M Cameron-Jones. FOIL: a midterm report. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 3-20. Springer-Verlag, 1993.

    [910]
    J.R. Quinlan and R.M. Cameron. Induction of logic programs: FOIL and related systems. New Generation Computing, 13:287-312, 1995.

    [911]
    J.R. Quinlan and R.L. Rivest. Inferring decision trees using the Minimum Description Length principle. Information and Computation, 80:227-248, 1989.

    [912]
    J.R. Quinlan, K.A. Horn, and L. Lazarus. Inductive knowledge acquisition: A case study. In Proceedings of the Second Australian Conference on the Applications of Expert Systems, pages 183-204, Sydney, 1986. New South Wales Institute of Technology.

    [913]
    J.R. Quinlan. Discovering rules from large collections of examples: a case study. In D. Michie, editor, Expert Systems in the Micro-electronic Age, pages 168-201. Edinburgh University Press, Edinburgh, 1979.

    [914]
    J.R. Quinlan. Semi-autonomous acquisition of pattern-based knowledge. In D. Michie, editor, Introductory readings in expert systems, pages 192-207. Gordon and Breach, New York, 1982.

    [915]
    J.R. Quinlan. Learning efficient classification procedures and their application to chess end games. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach. Tioga, Palo Alto, CA, 1983.

    [916]
    J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

    [917]
    J.R. Quinlan. Learning from noisy data. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning Volume 2. Kaufmann, Palo Alto, CA, 1986.

    [918]
    J.R. Quinlan. Generating production rules from decision trees. In Proceedings of the Tenth International Conference on Artificial Intelligence, pages 304-307, Los Altos, CA:, 1987. Kaufmann.

    [919]
    J.R. Quinlan. Learning relations: comparison of a symbolic and a connectionist approach. Technical Report 346, University of Sydney, 1989.

    [920]
    J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-266, 1990.

    [921]
    J.R. Quinlan. Determinate literals in inductive logic programming. In IJCAI-91: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, pages 746-750, San Mateo, CA:, 1991. Morgan-Kaufmann.

    [922]
    J.R. Quinlan. Past tenses of verbs and first-order learning. In Zhang C., J. Debenham, and Lukose D., editors, Proceedings of the 7th Australian Joint Conference on Artificial Intelligence, pages 13-20, Singapore, 1993. World Scientific.

    [923]
    E. Grefenstette R. Evans. Learning explanatory rules from noisy data. Journal of Artificial Intelligence Research, 61:1-64, 2018.

    [924]
    LM Raamsdonk, B Teusink, D Broadhurst, N Zhang, A Hayes, MC Walsh, JA Berden, KM Brindle, DB Kell, JJ Rowland, HV Westerhoff, K van Dam, and SG Oliver. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19:45-50, 2001.

    [925]
    L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

    [926]
    L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors. Probabilistic Inductive Logic Programming. Springer-Verlag, Berlin, 2008. LNAI 4911.

    [927]
    J. Ramon and M. Bruynooghe. A framework for defining distances between first-order logic objects. In D. Page, editor, Proceedings of the Eighth International Workshop on Inductive Logic Programming (ILP98), pages 271-280, Berlin, 1998. Springer-Verlag. LNAI 1446.

    [928]
    O. Ray and C. Bryant. Inferring the function of genes from synthetic lethal mutations. In Proc. 2nd Int. Conf. on Complex, Intelligent and Software Intensive Systems, pages 667-671. IEEE, 2008.

    [929]
    O. Ray and K. Inoue. Evaluating abductive hypotheses using an em algorithm on bdds. In Proceedings of the Seventeenth International Workshop on Inductive Logic Programming (ILP07), pages 225-238. Springer-Verlag, 2008. LNAI 4894.

    [930]
    Oliver Ray and Antonis Kakas. Prologica: a practical system for abductive logic programming. In J. Dix and A. Hunter, editors, 11th International Workshop on Non-monotonic Reasoning, pages 304-312, 2006.

    [931]
    O. Ray, K. Broda, and A. Russo. Hybrid Abductive Inductive Learning: a Generalisation of Progol. In 13th International Conference on Inductive Logic Programming, volume 2835 of LNAI, pages 311-328. Springer Verlag, 2003.

    [932]
    O. Ray, A. Antoniades, A. Kakas, and I. Demetriades. Abductive Logic Programming in the Clinical Management of HIV/AIDS. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, Proceedings of the 17th European Conference on Artificial Intelligence, volume 141 of Frontiers in Artificial Intelligence and Applications, pages 437-441. IOS Press, 2006.

    [933]
    J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779-788, 2016.

    [934]
    M.D. Reid. Improving rule evaluation using multi-task learning. In Rui Camacho, Ross King, and Ashwin Srinivasan, editors, Proceedings of the 14th International Conference on Inductive Logic Programming, volume 3194, pages 252-269, 2004.

    [935]
    R.E. Reinke. Knowledge acquisition and refinement tools for the ADVISE meta-expert system. UIUCDCS-F 84-921, Computer Science Department, Univ. of Illinois at Urbana-Champaign, 1984.

    [936]
    P.G.K. Reiser, R.D. King, D.B. Kell, S.H. Muggleton, C.H. Bryant, and S.G. Oliver. Developing a logical model of yeast metabolism. Electronic Transactions in Artificial Intelligence, 5-B2(024):223-244, November 2001.

    [937]
    L. Rendell. Substantial constructive induction using layered information compression: tractable feature formation in search. In IJCAI-85, pages 650-658. Kaufmann, 1985.

    [938]
    L. Rendell. A general framework for induction and a study of selective induction. Machine Learning, 1(2):177-226, 1986.

    [939]
    C.R. Reynolds, S.H. Muggleton, and M.J.E. Sternberg. Assessment of a rule-based virtual screening technology (inddex) on a benchmark data set. The Journal of Physical Chemistry B, 116(23), 2012.

    [940]
    C.R. Reynolds, S.H. Muggleton, and M.J.E. Sternberg. Incorporating virtual reactions into a logic-based ligand-based virtual screening method to discover new leads. Molecular Informatics, 2015. DOI: 10.1002/minf.201400162.

    [941]
    J.C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 135-151. Edinburgh University Press, Edinburgh, 1969.

    [942]
    Z. Reznikova and B. Ryabko. How to study ants. numerical competence using their own communicative means and applying ideas of information theory. Electronic Transactions in Artificial Intelligence, 6-B1(015), November 2001.

    [943]
    H. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 83, 1953.

    [944]
    A.M. Richard and C.R. Williams. Distributed structure-searchable toxicity (DSSTox) public database network: A proposal. Mutation Research, 499:27-52, 2000.

    [945]
    B.L. Richards and R.J. Mooney. First order theory revision. In Proceedings of the 8th International Workshop on Machine Learning, pages 447-451. Morgan Kaufmann, 1991.

    [946]
    B. L. Richards and R. J. Mooney. Automated refinement of first-order Horn-clause domain theories. Machine Learning, 19(2):95-131, 1995.

    [947]
    M Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107-136, 2006.

    [948]
    C. Riese. Transformer fault detection and diagnosis using rulemaster by radian. Technical report, Radian Corporation, Austin, Texas, 1984.

    [949]
    M.C. Rinard. Example-driven program synthesis for end-user programming: technical perspective. Communications of the ACM, 55(8):96-96, 2012.

    [950]
    J. Rissanen. Modeling by Shortest Data Description. Automatica, 14:465-471, 1978.

    [951]
    J. Rissanen. A universal prior for integers and estimation by Minimum Description Length. Annals of Statistics, 11:416-431, 1982.

    [952]
    G.D. Ritchie and F.K. Hanna. AM: a case study in Ai methodology. Artificial Intelligence, 23(3):249-268, 1984.

    [953]
    R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signature and public key cryptosystems. Communications of the ACM, 21:120-126, 1978.

    [954]
    R.J. Robbins. Bioinformatics: Essential infrastructure for global biology. Journal of Computational Biology, 3(3):465-478, 1996.

    [955]
    S. Roberts, W. Van Laerand, N. Jacobs, S.H. Muggleton, and J. Broughton. A comparison of ILP and propositional systems on propositional data. In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, pages 291-299, Berlin, 1998. Springer-Verlag.

    [956]
    J.A. Robinson. Automatic deduction with hyper-resolution. International Jounal of Computer Mathematics, 1:227-234, 1965.

    [957]
    J.A. Robinson. A machine-oriented logic based on the resolution principle. JACM, 12(1):23-41, January 1965.

    [958]
    E. Rosch. Principles of categorization. In E. Rosch and B. Lloyd, editors, Cognition and Categorization. Lawrence Erlbaum Associates, Hillsdale, NJ, 1978.

    [959]
    Michael T Rosenstein, Zvika Marx, Leslie Pack Kaelbling, and Thomas G Dietterich. To transfer or not to transfer. In NIPS 2005 Workshop on Transfer Learning, volume 898, 2005.

    [960]
    C. Rouveirol and J-F. Puget. A simple and general solution for inverting resolution. In EWSL-89, pages 201-210, London, 1989. Pitman.

    [961]
    C. Rouveirol. Extensions of inversion of resolution applied to theory completion. In S.H. Muggleton, editor, Inductive Logic Programming. Academic Press, London, 1992.

    [962]
    J. Roycroft. A prophesy fulfilled. EG magazine, November 1983.

    [963]
    U. Ruckert and S. Kramer. Stochastic local search in k-term dnf learning. In Proc. 20th International Conf. on Machine Learning, pages 648-655, 2003.

    [964]
    D.E. Rumelhart and J.L. McClelland. Learning internal representations by error propogation. In Explorations in the Micro-Structure of Cognition Vol. 1 : Foundations, pages 318-362. MIT Press, Cambridge, MA, 1986.

    [965]
    D.E. Rumelhart and J.L. McClelland. On learning the past tense of english verbs. In Explorations in the Micro-Structure of Cognition Vol. II, pages 216-271. MIT Press, Cambridge, MA, 1986.

    [966]
    S. Russell and B. Grosof. A sketch of autonomous learning using declarative bias. In P.B. Brazdil and K. Konolige, editors, Machine Learning, Meta-Reasoning and Logics, pages 19-54. Kluwer Academic Publishers, 1990.

    [967]
    S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, New Jersey, 2010. Third Edition.

    [968]
    S.J. Russell. The use of knowledge in analogy and induction. Pitman, 1989.

    [969]
    S.J. Russell. Human-compatible artificial intelligence. In Human-Like Machine Intelligence, pages 5-25. Oxford University Press, Oxford, UK, 2020. In Press.

    [970]
    C. L. Russom, S. P. Bradbury, S. J. Brodrius, D. E. Hammermeister, and R. A. Drummond. Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (oimephales promelas). Environmental Toxicology and Chemistry, 16(5):948-967, 1997.

    [971]
    B. Ryabko. The nonprobabilistic approach to learning the best prediction. Electronic Transactions in Artificial Intelligence, 6-B1(016):37-45, November 2001.

    [972]
    G. Ryle. The Concept of Mind. Hutchinson, 1949.

    [973]
    Isard S. and Longuet-Higgins H.C. Question-answering in english. In B. Meltzer and D. Michie, editors, Machine Intelligence 6, pages 243-254. Edinburgh University Press, 1971.

    [974]
    s. Bell and S. Weber. On the close relationship between FOIL and the frameworks of helft and plotkin. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 1-10, 1993.

    [975]
    M. Kanehisa S. Goto, T. Nishioka. Ligand: chemical database of enzyme reactions. Nucleic Acids Research, 28:380-382, 2000.

    [976]
    Y. Sakakibara, M. Brown, R. Hughey, I.S. Mian, K. Sjolander, R.C. Underwood, and D. Haussler. Stochastic context-free grammars for trna modelling. Nucleic Acids Research, 22(23):5112-5120, 1994.

    [977]
    Y. Sakakibara. Efficient learning of context-freegrammars from positive structural examples. Information and Computation, 97(1):23-60, 1992.

    [978]
    I. Salvador and J.M. Benedi. Rna modeling by combining stochastic context-free grammars and n-gram models. International Journal of Pattern Recognition and Artificial Intelligence, 16(3):309-316, 2002.

    [979]
    C. Sammut and R.B Banerji. Learning concepts by asking questions. In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach. Vol. 2, pages 167-192. Kaufmann, Los Altos, CA, 1986.

    [980]
    C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Workshop on Machine Learning, pages 385-393, San Mateo, CA, 1992. Morgan Kaufmann.

    [981]
    C. Sammut. Learning concepts by performing experiments. PhD thesis, Department of Computer Science, University of New South Wales, Australia, 1981.

    [982]
    C. Sammut. The origins of inductive logic programming: a prehistoric tale. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 127-147, 1993.

    [983]
    C. Sammut. Managing context in a conversational agent. Electronic Transactions in Artificial Intelligence, 6-B2(027):61-73, November 2001.

    [984]
    A.L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal on Research and Development, pages 210-229, 1959.

    [985]
    E. Sandewall. Representing natural language information in predicate calculus. In B. Meltzer and D. Michie, editors, Machine Intelligence 6, pages 255-280. Edinburgh University Press, 1971.

    [986]
    E. Sandewall. On the design of software individuals. Electronic Transactions in Artificial Intelligence, 6-B2(022):17-34, November 2001.

    [987]
    J. Santos, A. Tamaddoni-Nezhad, and S.H. Muggleton. An ILP system for learning head output connected predicates. In Proceedings of the 14th Portuguese Conference on Artificial Intelligence, LNAI 5816, pages 150-159. Springer-Verlag, 2009.

    [988]
    J.C.A. Santos, H. Nassif, and S.H. Muggleton M.J.E. Sternberg C.D. Page. Automated identification of protein-ligand interaction features using inductive logic programming: A hexose binding case study. BMC Bioinformatics, 13(162), 2012.

    [989]
    T. Sato. A statistical learning method for logic programs with distributional semantics. In L. Sterling, editor, Proceedings of the Twelth International conference on logic programming, pages 715-729, Cambridge, Massachusetts, 1995. MIT Press.

    [990]
    T. Sato. Generative modeling with failure in prism. In International Joint Conference on Artificial Intelligence, pages 847-852. Morgan Kaufmann, 2005.

    [991]
    R.C. Schank and G. Dejong. Purposive understanding. In J.E. Hayes, D. Michie, and L.I. Mikulich, editors, Machine Intelligence 9, pages 459-465. Ellis Horwood, 1979.

    [992]
    M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science, 270:467-470, 1995.

    [993]
    J.C. Schlimmer and D.H. Fisher. A case study of incremental concept induction. In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 496-501, Philadelphia, PA:, 1986. Kaufmann.

    [994]
    U. Schmid, C. Zeller, T. Besold, A. Tamaddoni-Nezhad, and S.H. Muggleton. How does predicate invention affect human comprehensibility?. In Alessandra Russo and James Cussens, editors, Proceedings of the 26th International Conference on Inductive Logic Programming, pages 52-67, Berlin, 2017. Springer-Verlag.

    [995]
    B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Doktorarbeit, Technische Universität Berlin. Available from http://www.kyb.tuebingen.mpg.de/ simbs .

    [996]
    S. Schulze-Kremer. Ontologies for molecular biology. Electronic Transactions in Artificial Intelligence, 6-B1(021):85-97, November 2001.

    [997]
    J.J. Scott. A chess-playing program. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 255-266. Edinburgh University Press, Edinburgh, 1969.

    [998]
    D.B. Searls. The linguistics of DNA. American Scientist, 80:579-591, 1992.

    [999]
    D.B. Searls. Linguistic approaches to biological sequences (review). Computer applications in the Biosceinces, 13:333-344, 1997.

    [1000]
    M. Sebag and C. Rouveirol. Resource-bounded relational reasoning: Induction and deduction through stochastic matching. Machine Learning Journal, 38:43-65, 2000.

    [1001]
    Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots. One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410, 2017.

    [1002]
    G. Shafer. A mathematical theory of evidence. Princeton University Press, Princeton, NJ, 1976.

    [1003]
    C.E. Shannon and W. Weaver. The Mathematical Theory of Communication. University of Illinois Press, Urbana, 1963.

    [1004]
    C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 1948.

    [1005]
    C.E. Shannon. Programming a computer for playing chess. Phil. Mag., 41:256-275, 1950.

    [1006]
    A.D. Shapiro and D. Michie. A self-commenting facility for inductively synthesised endgame expertise. In D.F. Beal, editor, Advances in Computer Chess, volume 4, pages 147-165. Pergammon, Oxford, 1986.

    [1007]
    A. Shapiro and T. Niblett. Automatic induction of classification rules for a chess endgame. In M.R.B. Clarke, editor, Advances in Computer Chess, volume 3, pages 73-91. Pergammon, Oxford, 1982.

    [1008]
    E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

    [1009]
    A.D. Shapiro. Structured Induction in Expert Systems. Adison-Wesley, Wokingham, 1987.

    [1010]
    E.Y. Shapiro. Inductive inference of theories from facts. In J-L. Lassez and G.D. Plotkin, editors, Computational logic: essays in honor of Alan Robinson. The MIT Press, 1991.

    [1011]
    T.B. Sheridan. Human–robot interaction: Status and challenges. Human Factors, 58(4):525-532, 2016.

    [1012]
    T. Shinohara. Inductive inference of monotonic formal systems from positive data. In Proceedings of the first international workshop on algorithmic learning theory, Tokyo, 1990. Ohmsha.

    [1013]
    Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge, 2009.

    [1014]
    E.H. Shortliffe and B. Buchanan. A model of inexact reasoning in medicine. Mathematical Biosciences, 23:351-379, 1975.

    [1015]
    D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, Graepel, T. Lillicrap, K. Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362:1140-1144, 2018.

    [1016]
    B. Silver. Learning equation solving methods from examples. In IJCAI-83, pages 429-431, Los Angeles, CA, 1983. Kaufmann.

    [1017]
    B. Silver. Meta-level inference: Representing and Learning Control Information in Artificial Intelligence. North Holland, 1985. Revised version of the author's PhD thesis, Department of Artificial Intelligence, U. of Edinburgh, 1984.

    [1018]
    G. Silverstein and M. Pazzani. Relational cliches: constraining constructive induction during relational learning. In Proceedings of the Sixth International Workshop on Machine Learning, Los Altos, CA, 1989. Kaufmann.

    [1019]
    H.A. Simon. Why should machines learn? In R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 25-37. Tioga, Palo Alto, CA, 1983.

    [1020]
    D. Sleeman. Pixie: A shell for developing intelligent tutoring systems. Artificial Intelligence in Education, 1:239-265, 1987.

    [1021]
    S. Slocombe, K. Moore, and M. Zelonf. Engineering expert systems applications. In Proceedings of the Annual Conference of the BCS Specialist Group on Expert Systems. British Computer Society, London, 1986.

    [1022]
    R. Smith, J. Callaghan, and B. Azvine. Development of a Machine Intelligence capability in BT. Techical feasibility report, British Telecom Research Laboratories, Ipswich, 1995.

    [1023]
    R.J. Solomonoff. A formal theory of inductive inference. Information and Control, 7:376-388, 1964.

    [1024]
    Mohammad S Sorower, Janardhan R Doppa, Walker Orr, Prasad Tadepalli, Thomas G Dietterich, and Xiaoli Z Fern. Inverting grice's maxims to learn rules from natural language extractions. In Advances in Neural Information Processing Systems, pages 1053-1061, 2011.

    [1025]
    J.M. Spivey. The Z notation : a reference manual. Prentice-Hall, New York, 1992. (2nd edition).

    [1026]
    R. P. Sprague. Über mathematische kampfspiele. Tohoku Mathematical Journal, 41:438-444, June 1936.

    [1027]
    A. Srinivasan and R.D. King. Feature construction with inductive logic programming: a study of quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowledge Discovery, 3(1):35-57, 1999.

    [1028]
    A. Srinivasan and J.A. Richards. Knowledge based multi-source analysis. In Fifth Australasian Remote Sensing Conference, 1990.

    [1029]
    A. Srinivasan and J.A. Richards. Rule-based techniques for multi-source classification. International Journal of Remote Sensing, 11:502-525, 1990.

    [1030]
    A. Srinivasan and J.A. Richards. Analysis of GIS spatial data, 1991. submitted to International Journal of Remote Sensing.

    [1031]
    A. Srinivasan, C.A. Sammut, and J.A. Richards. A knowledge-based system for multi-source classification in remote sensing. In Fifth Australian Conference on the Application of Expert Systems, pages 102-119, 1989.

    [1032]
    A. Srinivasan, P. Compton, et al. Knowledge acquisition in context for a complex domain. In Fourth European Knowledge Acquisition Workshop. Springer-Verlag, 1991.

    [1033]
    A. Srinivasan, S.H. Muggleton, and M. Bain. Distinguishing exceptions from noise in non-monotonic learning. In Proceedings of the Second Inductive Logic Programming Workshop, pages 97-107, Tokyo, 1992. ICOT (Technical report TM-1182).

    [1034]
    A. Srinivasan, S.H. Muggleton, and M. Bain. The justification of logical theories based on data compression. In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine Intelligence 13, pages 87-121. Oxford University Press, 1994.

    [1035]
    A. Srinivasan, S.H. Muggleton, R.D. King, and M.J.E. Sternberg. Mutagenesis: ILP experiments in a non-determinate biological domain. In S. Wrobel, editor, Proceedings of the Fourth International Inductive Logic Programming Workshop. Gesellschaft fur Mathematik und Datenverarbeitung MBH, 1994. GMD-Studien Nr 237.

    [1036]
    A. Srinivasan, S.H. Muggleton, , and R.D. King. Comparing the use of background knowledge by inductive logic programming systems. In L. De Raedt, editor, Proceedings of the Fifth International Inductive Logic Programming Workshop. Katholieke Universteit Leuven, 1995.

    [1037]
    A. Srinivasan, S.H. Muggleton, R.D. King, and M.J.E. Sternberg. The effect of background knowledge in inductive logic programming: a case study. Technical Report PRG-TR-9-95, Oxford University Computing Laboratory, Oxford, 1995.

    [1038]
    A. Srinivasan, S.H. Muggleton, R.D. King, and M.J.E. Sternberg. Theories for mutagenicity: a study of first-order and feature based induction. Artificial Intelligence, 85(1,2):277-299, 1996.

    [1039]
    A. Srinivasan, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: a study of first-order and feature based induction. Artificial Intelligence, 85:277-299, 1996.

    [1040]
    A. Srinivasan, , R.D. King S.H. Muggleton, and M.J.E. Sternberg. Carcinogenesis predictions using ILP. In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic Programming, pages 273-287. Springer-Verlag, Berlin, 1997. LNAI 1297.

    [1041]
    A. Srinivasan, , R.D. King S.H. Muggleton, and M.J.E. Sternberg. The predictive toxicology evaluation challenge. In Proceedings of the Fifteenth International Joint Conference Artificial Intelligence (IJCAI-97), pages 1-6. Morgan-Kaufmann, 1997.

    [1042]
    A. Srinivasan. A study of two sampling methods for analyzing large datasets with ilp. Data Min. Knowl. Discov., 3(1):95-123, 1999.

    [1043]
    A. Srinivasan. A study of two probabilistic methods for searching large spaces with ilp. Technical Report PRG-TR-16-00, Oxford University Computing Laboratory, Oxford, 2000.

    [1044]
    A. Srinivasan. The ALEPH manual. Machine Learning at the Computing Laboratory, Oxford University, 2001.

    [1045]
    A. Srinivasan. Five problems in five areas for five years. In Stefan Kramer and Bernhard Pfahringer, editors, Proceedings of the 15th International Conference on Inductive Logic Programming, volume 3625, page 424, 2005.

    [1046]
    Ashwin Srinivasan. The Aleph Manual. University of Oxford, 2007.

    [1047]
    I. Stahl, B. Tausend, and R. Wirth. Two methods for improving inductive logic programming systems. In P. Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, 1993.

    [1048]
    I. Stahl. Constructive induction in inductive logic programming: an overview. Technical report, Fakultat Informatik, Universitat Stuttgart, 1992.

    [1049]
    I. Stahl. Predicate invention in inductive logic programming. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 34-47. IOS Press, Ohmsha, Amsterdam, 1996.

    [1050]
    L. Sterling and E. Shapiro. The art of Prolog: advanced programming techniques. MIT-Press, Cambridge, MA, 1986.

    [1051]
    M.J.E. Sternberg and S.H. Muggleton. Structure activity relationships (SAR) and pharmacophore discovery using inductive logic programming (ILP). QSAR and Combinatorial Science, 22(5):527-532, 2003.

    [1052]
    M.J.E. Sternberg, R. Lewis, R.D. King, and S.H. Muggleton. Modelling the structure and function of enzymes by machine learning. Proceedings of the Royal Society of Chemistry: Faraday Discussions, 93:269-280, 1992.

    [1053]
    M.J.E. Sternberg, J. Hirst, R. Lewis, R.D. King, A. Srinivasan, and S.H. Muggleton. Application of machine learning to protein structure prediction and drug design. In S. Schulze-Kremer, editor, Advances in Molecular Bioinformatics, pages 1-8. IOS Press, 1994.

    [1054]
    M.J.E. Sternberg, R.D. King, R. Lewis, and S.H. Muggleton. Application of machine learning to structural molecular biology. Philosophical Transactions of the Royal Society B, 344:365-371, 1994.

    [1055]
    M.J.E. Sternberg, A. Tamaddoni-Nezhad, V.I.. Lesk, , E. Kay, P.G. Hitchen, A. Cootes, L.B. Alphen, M.P. Lamoureux, H.C. Jarrell, C.J. Rawlings, E.C. Soo, C.M. Szymanski, A. Dell, B.W. Wren, and S.H. Muggleton. Gene function hypotheses for the campylobacter jejuni glycome generated by a logic-based approach. Journal of Moleular Biology, 425(1):186-197, 2013.

    [1056]
    M. Stickel. A Prolog technology theorem prover: implementation by an extended Prolog compiler. Journal of Automated Reasoning, 4(4):353-380, 1988.

    [1057]
    A. Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Computational Linguistics, 21(2):165-201, 1995.

    [1058]
    P.D. Summers. Program construction from examples. PhD thesis, Yale University, New Haven, CT, 1975.

    [1059]
    R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1. Cambridge Univ Press, 1998.

    [1060]
    R.S. Sutton. Temporal credit assignment in reinforcement learning. COINS Technical report 84-02, Department of Computer and Information Science, University of Massachusetts, Amherst, 1984.

    [1061]
    Syngenta Ltd. http://www.syngenta.com/en/index.html.

    [1062]
    K. Takahashi, N Ishikawa, Y Sadamoto, H Sasamoto, S. Ohta, A. Shiozawa, F. Miyoshi, Y. Naito, Y. Nakayama, and M. Tomita. On computable numbers, with an application to the entscheidungsproblem. E-Cell 2: Multi-platform E-Cell simulation system, 19(13):1727-1729, 2003.

    [1063]
    A. Tamaddoni-Nezhad and S.H. Muggleton. Searching the subsumption lattice by a genetic algorithm. In J. Cussens and A. Frisch, editors, Proceedings of the 10th International Conference on Inductive Logic Programming, pages 243-252. Springer-Verlag, 2000.

    [1064]
    A. Tamaddoni-Nezhad and S.H. Muggleton. Using genetic algorithms for learning clauses in first-order logic. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001, pages 639-646, San Francisco, CA, 2001. Morgan Kaufmann Publishers.

    [1065]
    A Tamaddoni-Nezhad and S Muggleton. Closed loop machine learning: Complexity of ASE-progol. Technical Report 2002/8, Department of Computing, Imperial College London, 2002.

    [1066]
    A Tamaddoni-Nezhad and S Muggleton. Closed loop machine learning: Reproduction and evaluation of phase A results. Technical Report 2002/7, Department of Computing, Imperial College London, 2002.

    [1067]
    A. Tamaddoni-Nezhad and S.H. Muggleton. A genetic algorithms approach to ILP. In Proceedings of the 12th International Conference on Inductive Logic Programming, pages 285-300. Springer-Verlag, 2002.

    [1068]
    A. Tamaddoni-Nezhad and S.H. Muggleton. A note on refinement operators for IE-based ILP systems. In Proceedings of the 18th International Conference on Inductive Logic Programming, LNAI 5194, pages 297-314. Springer-Verlag, 2008. DOI: 10.1007/978-3-540-85928-4_23.

    [1069]
    A. Tamaddoni-Nezhad and S.H. Muggleton. The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause. Machine Learning, 76(1):37-72, 2009. 10.1007/s10994-009-5117-7.

    [1070]
    A. Tamaddoni-Nezhad and S.H. Muggleton. Stochastic refinement. In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th International Conference on Inductive Logic Programming (ILP 2010), LNAI 6489, pages 222-237, Berlin, 2011. Springer-Verlag.

    [1071]
    A. Tamaddoni-Nezhad, S.H. Muggleton, and J. Bang. A Bayesian model for metabolic pathways. In International Joint Conference on Artificial Intelligence (IJCAI03) Workshop on Learning Statistical Models from Relational Data, pages 50-57. IJCAI, 2003.

    [1072]
    A. Tamaddoni-Nezhad, A. Kakas, S.H. Muggleton, and F. Pazos. Modelling inhibition in metabolic pathways through abduction and induction. In Proceedings of the 14th International Conference on Inductive Logic Programming, LNAI 3194, pages 305-322. Springer-Verlag, 2004.

    [1073]
    A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, and S.H. Muggleton. Abduction and induction for learning models of inhibition in metabolic networks. In Proceedings of the Fourth International Conference on Machine Learning and Applications, ICMLA'05. IEEE Computer Society, 2005.

    [1074]
    A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, and S.H. Muggleton. Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning, 64:209-230, 2006.

    [1075]
    A. Tamaddoni-Nezhad, R. Greaves, and S.H. Muggleton. Large-scale online learning using analogical prediction. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [1076]
    A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, M.J.E. Sternberg, J. Nicholson, and S.H. Muggleton. Modeling the effects of toxins in metabolic networks. IEEE Engineering in Medicine and Biology, 26:37-46, 2007.

    [1077]
    A. Tamaddoni-Nezhad, D. Bohan, A. Raybould, and S.H. Muggleton. Machine learning a probabilistic network of ecological interactions. In Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, and Francesca A. Lisi, editors, Proceedings of the 21st International Conference on Inductive Logic Programming (ILP 2011), LNAI 7207, pages 332-346, Berlin, 2012. Springer-Verlag.

    [1078]
    A. Tamaddoni-Nezhad, G. Milani, A. Raybould, S.H. Muggleton, and D. Bohan. Construction and validation of food webs using logic-based machine learning and text mining. In G. Woodward and D.A. Bohan, editors, Advances in Ecological Research, Vol. 49, pages 224-290. Academic Press, Amsterdam, 2013.

    [1079]
    A. Tamaddoni-Nezhad, G. Afroozi Milani, A. Raybould, S. Muggleton, and D.Bohan. Construction and validation of food-webs using logic-based machine learning and text-mining. Advances in Ecological Research, 49:225-289, 2013.

    [1080]
    A. Tamaddoni-Nezhad, D. Bohan, A. Raybould, and S.H. Muggleton. Towards machine learning of predictive models from ecological data. In Proceedings of the 24th International Conference on Inductive Logic Programming, pages 159-173. Springer-Verlag, 2015. LNAI 9046.

    [1081]
    T. Tana, N. Kamikawaji, C.J. Savoie, T. Sudo, Y. Kinoshita, and T. Sasazuki. An hla-binding-motif-aided peptide epitope library: A novel library design for the screening of hla-dr4-restricted antigenic peptides recognized by cd4+t cells. Biomedical and Life Sciences, 43(1):1434-5161, 2004.

    [1082]
    Lap Poon Rupert Tang. Integrating Top-down and Bottom-up Approaches in Inductive Logic Programming: Applications in Natural Language Processing and Relational Data Mining. PhD thesis, The University of Texas at Austin, 2003.

    [1083]
    S. Tankitvanitch and M. Shimura. Refining a relational theory with multiple faults in the concept and subconcepts. In Proceedings of the 9th International Workshop on Machine Learning, pages 436-444. Morgan Kaufmann, 1992.

    [1084]
    S-A Tärnlund. Horn clause computability. BIT Numerical Mathematics, 17(2):215-226, 1977.

    [1085]
    B. Tausend. A unifying representation for language restrictions. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, 1993.

    [1086]
    K. Taylor. Inverse resolution of normal clauses. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming, pages 165-178, 1993.

    [1087]
    J.B. Tenenbaum, C. Kemp, T.L. Griffiths, and N.D. Goodman. How to grow a mind: Statistics, structure, and abstraction. Science, 331:1279-1285, 2011.

    [1088]
    J.B. Tenenbaum. A Bayesian Framework for Concept Learning. PhD thesis, Massachusetts Institute of Technology, 1999.

    [1089]
    G.J. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play. Neural Computation, 6(2):215-219, 1994.

    [1090]
    S. Thieme. The acquisition of model-knowledge for a model-driven machine learning approach. In K. Morik, editor, Knowledge Representation and Organization in Machine Learning. Springer-Verlag, 1989.

    [1091]
    Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

    [1092]
    C.A. Thompson, R.J. Mooney, and L.R. Tang. Learning to parse natural language database queries into logical form. In Workshop on Automata Induction, Grammatical Inference and Language Acquisition, 1997. Paper accessible from www-univ-st-etienne.fr/eurise/pdupont.html.

    [1093]
    K. Thompson. Private letter to j. roycroft. EG magazine, January 1986.

    [1094]
    A. Tomasic. View update translation via deduction and annotation. In Proceedings 2nd International Conference on Database Theory, volume 326 of Lecture Notes in Computer Science, pages 338-351. Springer-Verlag, 1988.

    [1095]
    L. Torrey and J.W. Shavlik. Policy transfer via markov logic networks. In L. De Raedt, editor, Proceedings of the Nineteenth International Conference on Inductive Logic Programming (ILP09), pages 234-248, Berlin, 2010. Springer-Verlag. LNAI 5989.

    [1096]
    Nam Tran and Chitta Baral. Hypothesizing about signaling networks. J. Applied Logic, 7(3):253-274, 2009.

    [1097]
    J.M. Trent, M.H. Bittner, J. Zhang, R. Wiltshire, M. Ray, Y. Su, E. Gracia, P. Meltzer, J. DeRisi, L. Penland, and P. Brown. Use of microgenomic technology for analysis of alterations in DNA copy number and gene expression in malignant melanoma. Clinical and Experimental Immunology, 107(S1):33-40, 1997.

    [1098]
    K. Tsunoyama, A. Amini, M.J.E. Sternberg, and S.H. Muggleton. Scaffold hopping in drug discovery using inductive logic programming. Journal of Chemical Information and Modelling, 48(5):949-957, 2008.

    [1099]
    M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg. Protein fold recognition. In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, pages 53-64, Berlin, 1998. Springer-Verlag.

    [1100]
    M. Turcotte, S.H. Muggleton, and M.J. Sternberg. Generating protein three-dimensional fold signatures using inductive logic programming. Computational Chemistry, 26:57-64, 2001.

    [1101]
    M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg. Automated discovery of structural signatures of protein fold and function. Journal of Molecular Biology, 306:591-605, 2001.

    [1102]
    M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg. The effect of relational background knowledge on learning of protein three-dimensional fold signatures. Machine Learning, 1,2:81-96, April-May 2001.

    [1103]
    A.M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230-265, 1936.

    [1104]
    A.M. Turing. Systems of logic based on ordinals. Proceedings of the London Mathematical Society, pages 161-228, 1939.

    [1105]
    A. Turing. The automatic computing engine. Lecture to the London Mathematical Society, 1947.

    [1106]
    A. Turing. Computing machinery and intelligence. Mind, 59(236):435-460, 1950.

    [1107]
    A.M. Turing. Intelligent machinery. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 3-23. Edinburgh University Press, Edinburgh, 1969. Written in September 1947 and submitted in 1948 to the National Physical Laboratory.

    [1108]
    P. Turney. Low size-complexity inductive logic programming: The east-west challenge considered as a problem in cost-sensitive classification. NRC report cs/0212039, National Research Council of Canada, 1995.

    [1109]
    Syngenta University Innovation Centre. http://www3.imperial.ac.uk/syngenta-uic.

    [1110]
    P.E. Utgoff and T.M. Mitchell. Acquisition of appropriate bias for concept learning. In Proceedings of the 2nd National Conference On Artificial Intelligence, pages 414-418. Kaufmann, 1982.

    [1111]
    P.E. Utgoff. Adjusting bias in concept learning. In IJCAI-83, pages 447-449, Los Angeles, CA, 1983. Kaufmann.

    [1112]
    P.E. Utgoff. Machine Learning of Inductive Bias. Kluwer, Boston, MA, 1986.

    [1113]
    L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.

    [1114]
    W. Van Laer. Inductief afleiden van logische regels. Master's thesis, Katholieke Universiteit Leuven, Dept. of Computing Science, 1993. (in Dutch).

    [1115]
    Martijn van Otterlo and Marco Wiering. Reinforcement learning and markov decision processes. In Reinforcement Learning, pages 3-42. Springer, 2012.

    [1116]
    K. Vanlehn and W. Ball. A version space approach to learning context-free grammars. Machine Learning, 2:39-74, 1987.

    [1117]
    V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

    [1118]
    J.C. Venter, M.D. Adams, and E.W. Myers et al. The sequence of the human genome. Science, 291(5507):1304-1351, 16th February 2001.

    [1119]
    S.A. Vere. Induction of concepts in the predicate calculus. In Proceedings of the 4th International Joint Conference on Artificial Intelligence, pages 282-287. Morgan Kaufmann, 1975.

    [1120]
    Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18(2):77-95, 2002.

    [1121]
    D. Villemin, D. Cherqaoui, and J.M. Cense. Neural network studies: quantitative structure-activity relationship of mutagenic aromatic nitro compounds. J. Chim. Phys, 90:1505-1519, 1993.

    [1122]
    Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. Advances in neural information processing systems, 29, 2016.

    [1123]
    H. von Helmholtz. Treatise on Physiological Optics Volume 3. Dover Publications, New York, 1962. Originally published in German in 1825.

    [1124]
    A. Wald. Sequential Analysis. John Wiley, New York, 1947.

    [1125]
    C. Walsh. Enzymatic Reaction Mechanisms. W. H. Freeman and Company, 1979.

    [1126]
    D.L. Waltz. Understanding scene descriptions as event simulations. In Proceedings of the 18th annual meeting on Association for Computational Linguistics, pages 7-11. Association for Computational Linguistics, 1980.

    [1127]
    William Yang Wang, Kathryn Mazaitis, and William W. Cohen. Programming with personalized pagerank: A locally groundable first-order probabilistic logic. In Proceedings of the 22Nd ACM International Conference on Conference on Information & Knowledge Management, CIKM '13, pages 2129-2138, New York, NY, USA, 2013. ACM.

    [1128]
    M.K. Warmuth, J. Liao, G. Ratsch, M. Mathieson, S. Putta, and C. Lemman. Active learning with support vector machines in the drug discovery process. Journal of Chemical Information Sciences, 43:667-673, 2003.

    [1129]
    D.H.D Warren, L.M. Pereira, and F. Pereira. Prolog - the language and its implementation compared with lisp. ACM SIGART Bulletin, 64:109-115, 1977.

    [1130]
    H. Watanabe and S.H. Muggleton. First-order stochastic action languages. Electronic Transactions in Artificial Intelligence, 6, 2002.

    [1131]
    H. Watanabe and S.H. Muggleton. Learning Stochastic Logical Automaton. In Proceedings of the 19th Annual Conferences of JSAI, LNCS 4012, pages 201-211. Springer-Verlag, 2005.

    [1132]
    H. Watanabe and S.H. Muggleton. Can ILP be applied to large datasets?. In Luc De Raedt, editor, Proceedings of the 19th International Conference on Inductive Logic Programming (ILP 2009), LNAI 5989, pages 249-256, Berlin, 2010. Springer-Verlag.

    [1133]
    H. Watanabe, K. Inoue, and Stephen Muggleton. Complexity analysis of abductive action theory. In Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming. University of Corunna, 2006.

    [1134]
    C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39-50, Cambridge, MA, 2000. MIT Press.

    [1135]
    A. Webster. Bioinformatics: A technology assessment of recent developments in bioinformatics and related areas. Report to stoa, European Parliament, 1989.

    [1136]
    B. Widrow, D.E. Rumelhart, and M.A. Lehr. Neural networks: applications in industry, business and science. Communications of the ACM, 37(3):93-105, 1994.

    [1137]
    M. R. Wilkins, K. L. Williams, R. D. Appel, and D.F. Hochstrasser. Proteome Research : New Frontiers in Functional Genomics (Principles and Practice). Springer Verlag, Berlin, 1997.

    [1138]
    M.R. Wilkins, K.L. Williams, R.D. Appel, and D.F. Hochstrasser, editors. Proteome research: New Frontiers in functional Genomics. Springer, Berlin, 1997.

    [1139]
    M.S. Wilson. Reliability and flexibility - A mutually exclusive problem for robotic assembly? IEEE Transactions on Robotics and Automation, 12:343-347, 1996.

    [1140]
    P.H. Winston. Learning new principles from precedents and exercises. Artificial Intelligence, 19:321-350, 1982.

    [1141]
    R. Wirth and P. O'Rorke. Constraints on predicate invention. In Proceedings of the 8th International Workshop on Machine Learning, pages 457-461. Kaufmann, 1991.

    [1142]
    R. Wirth. Completing proofs by inverting resolution. Technical report, University of Tuebingen, Tuebingen, West Germany, 1988.

    [1143]
    R. Wirth. Learning by failure to prove. In EWSL-88, pages 237-251, London, 1988. Pitman.

    [1144]
    R. Wirth. Completing logic programs by inverse resolution. In EWSL-89, pages 239-250, London, 1989. Pitman.

    [1145]
    I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Oxford, 2005.

    [1146]
    J. Wogulis. Revising relational theories. In Proceedings of the 8th International Workshop on Machine Learning, pages 462-466. Morgan Kaufmann, 1991.

    [1147]
    M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice. Available by FTP, 1994. Submitted to The Knowledge Engineering Review, 1995.

    [1148]
    M. Workman. Performance and perceived effectiveness in computer-based and computer-aided education: do cognitive styles make a difference? Computer in Human Behaviour, 20(4):517-534, 2004.

    [1149]
    S. Wrobel. Automatic representation adjustment in an observational discovery system. In EWSL-88, pages 253-262, London, 1988. Pitman.

    [1150]
    S. Wrobel. On the proper definition of minimality in specialisation and theory revision. In Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 65-82. Springer-Verlag, 1993.

    [1151]
    S. Wrobel. Concept formation during iterative theory revision. Machine Learning, 14:169-191, 1994.

    [1152]
    S. Wrobel. First-order theory refinement. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 14-33. IOS Press, Ohmsha, Amsterdam, 1995.

    [1153]
    Bo Wu and Craig A. Knoblock. An iterative approach to synthesize data transformation programs. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

    [1154]
    P.J. Wyard, A.D. Simons, S. Appleby, E. Kaneen, S.H. Williams, and K.R. Preston. Spoken language systems - beyond prompt and response. BT Technology Journal, 14(1):187-205, 1996.

    [1155]
    Zhao Xing, Yixin Chen, and Weixiong Zhang. Optimal strips planning by maximum satisfiability and accumulative learning. In Proceedings of the International Conference on Autonomous Planning and Scheduling (ICAPS), pages 442-446, 2006.

    [1156]
    J. Xiong, S. Rayner, K. Luo, Y. Li, and S. Chen. Genome wide prediction of protein function via a generic knowledge discovery approach based on evidence integration. BMC Bioinformatics, 7(1):268, 2006.

    [1157]
    Li Xue, Alan Bundy, and Alan Smaill. ABC repair system for datalog-like theories. In Jorge Bernardino, Ana Salgado, and Joaquim Filipe, editors, Proceedings of 10th International Conference on Knowledge Engineering and Ontology Development, pages 333-340. SCITEPRESS, 2018.

    [1158]
    Y. Yamamoto, K. Inoue, and K. Iwanuma. Inverse subsumption for complete explanatory induction. Machine Learning, 2011. to appear.

    [1159]
    A. Yamamoto. Which hypotheses can be found with inverse entailment? In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic Programming, pages 296-308. Springer-Verlag, Berlin, 1997. LNAI 1297.

    [1160]
    Fangkai Yang, Piyush Khandelwal, Matteo Leonetti, and Peter Stone. Planning in answer set programming while learning action costs for mobile robots. AAAI Spring 2014 Symposium on Knowledge Representation and Reasoning in Robotics (AAAI-SSS), 2014.

    [1161]
    F. Yang, Z. Yang, and W. Cohen. Differentiable learning of logical rules for knowledge base reasoning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30 (NIPS 2017), pages 2319-2328. Curran Associates, Inc., 2017.

    [1162]
    T. Yokomori. Logic program forms. New Generation Computing, 4, 1986.

    [1163]
    F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may be heavy-tailed. In S. Matwin and C. Sammut, editors, Proceedings of the 12th International Conference on Inductive Logic Programming, volume 2583, pages 333-345, 2003.

    [1164]
    F. Zelezny, A. Srinivasan, and D. Page. A monte carlo study of randomised restarted search in ilp, 2004.

    [1165]
    J. Zelle and R. Mooney. Learning semantic grammars with constructive inductive logic programming. In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages 817-822, San Mateo, CA, 1993. Morgan Kaufmann.

    [1166]
    J. Zelle and R. Mooney. Learning to parse database queries using Inductive Logic Programming. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 1050-1055, Portland, Oregon, 1996. AAAI Press/MIT Press.

    [1167]
    J.M. Zelle and R.J. Mooney. Comparative results on using inductive logic programming for corpus-based parser construction. In Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing, pages 355-369. Springer, Berlin, 1996.

    [1168]
    J.M. Zelle. Using Inductive Logic Programming to Automate the Construction of Natural Language Parsers. PhD thesis, University of Texas, Austin, TX, 1995.

    [1169]
    R. Zhang, P.S. Tai, J.E. Cryer, and M. Shah. Shape-from-shading: a survey. IEEE transactions on pattern analysis and machine intelligence, 21(8):670-706, 1999.

    [1170]
    T. Zhang, H. Sipma, and Z. Manna. The decidability of the first-order theory of Knuth-Bendix order. In Automated Deduction-CADE-20, pages 738-738. Springer, 2005.

    [1171]
    Zhi-Hua Zhou. Abductive learning: towards bridging machine learning and logical reasoning. Science China Information Sciences, 62(7), 2019.

    [1172]
    J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class adaboost. Statistics and its Interface, 2:349-360, 2009.

    [1173]
    X. Zhu. Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In Proceedings of the Tenty-Ninth Conference on Artificial Intelligence, pages 4083-4087. AAAI Press, 2015.

    [1174]
    O.C. Zienkiewicz and R.L. Taylor. Basic formulation and linear problems. In The Finite Element Method, volume 1. McGraw-Hill, London, 1988.

    [1175]
    S. Zubrick. Willard: a severe thunderstorm forecasting system using rulemaster by radian. Technical report, Radian Corporation, Austin, Texas, 1984.

    [1176]
    S. Zubrick. Validation of a weather forecasting expert system. In J.E. Hayes, D. Michie, and J. Richard, editors, Machine Intelligence 11, pages 391-422. Oxford University Press, Oxford, 1988.

    [1177]
    C. Zuidema. Chess, how to program the exceptions? Afdeling informatica, IW21/74, 1974.

    [1178]
    B. Zupan, I. Bratko, J. Demsar, J. R. Beck, A. Kuspa, and G. Shaulsky. Abductive inference of genetic networks. AIME, pages 304-313, 2001.