Stephen Muggleton's Publications
- [1]
- L. Ai, J. Langer, S.H.
Muggleton, and U. Schmid.
Explanatory
machine learning for sequential human teaching.
Machine Learning, 112:3591-3632, 2023.
- [2]
- S.H. Muggleton.
Hypothesising
an algorithm from one example: the role of specificity.
Philosophical Transaction of the Royal Society A, 381:20220046,
2023.
- [3]
- S. Patsantzis and S.H. Muggleton.
Meta-interpretive
learning as metarule specialisation.
Machine Learning, 111:3703-3731, 2022.
- [4]
- L. Ai, S.H. Muggleton,
C. Hocquette, M. Gromowski, and U. Schmid.
Beneficial
and harmful explanatory machine learning.
Machine Learning, 110:695-721, 2021.
- [5]
- L.W. Cai, W.Z. Dai,
Y.X. Huang, Y.F. Li7, S.H. Muggleton, and Y. Jiang.
Abductive
learning with ground knowledge base.
In Proceedings of the 30th Conference on Artificial Intelligence (IJCAI
2021), pages 1815-1821, 2021.
- [6]
- A. Cropper,
S. Dumancic, Richard Evans, and S.H. Muggleton.
Inductive Logic
Programming at 30.
Machine Learning, 111:147-172, 2021.
- [7]
- W-Z. Dai and
S.H. Muggleton.
Abductive
knowledge induction from raw data.
In Proceedings of the 30th Conference on Artificial Intelligence (IJCAI
2021), pages 1845-1851. IJCAI, 2021.
- [8]
- Y.X. Huang, W.Z.
Dai, L.W. Cai, S.H. Muggleton, and Y. Jiang.
Fast abductive
learning by similarity-based consistency optimization.
In Advances in Neural Information Processing Systems, volume 34,
pages 26574-26584, 2021.
- [9]
- S.H. Muggleton and
N. Chater, editors.
Human-Like
Machine Intelligence.
Oxford University Press, Oxford, 2021.
- [10]
- S.H. Muggleton and
W-Z. Dai.
Human-like computer vision.
In S.H. Muggleton and N. Chater, editors, Human-Like Machine
Intelligence, pages 199-217. Oxford University Press, 2021.
- [11]
- S. Patsantzis and S.H. Muggleton.
Top
program construction and reduction for polynomial time meta-interpretive
learning.
Machine Learning, 110:755-778, 2021.
- [12]
- A. Cropper,
S. Dumancic, and S.H. Muggleton.
Turning 30: New ideas
in inductive logic programming.
In Proceedings of the 29th International Joint Conference Artificial
Intelligence (IJCAI 2020), pages 4833-4839. IJCAI, 2020.
- [13]
- A. Cropper,
R. Morel, and S.H. Muggleton.
Learning
higher-order logic programs.
Machine Learning, 109:1289-1322, 2020.
- [14]
- A. Cropper, R. Morel, and S.H. Muggleton.
Learning
higher-order programs through predicate invention.
In Proceedings of the 34th Conference on Artificial Intelligence (AAAI
2020), pages 13655-13658. AAAI, 2020.
- [15]
- C. Hocquette and S.H. Muggleton.
Complete bottom-up
predicate invention in meta-interpretive learning.
In Proceedings of the 29th International Joint Conference Artificial
Intelligence (IJCAI 2020), pages 2312-2318. IJCAI, 2020.
- [16]
- A. Cropper
and S.H. Muggleton.
Learning
efficient logic programs.
Machine Learning, 108:1063-1083, 2019.
- [17]
- S.H. Muggleton and C. Hocquette.
Machine discovery of
comprehensible strategies for simple games using meta-interpretive
learning.
New Generation Computing, 37:203-217, 2019.
- [18]
- Celine
Hocquette and S.H. Muggleton.
How much can
experimental cost be reduced in active learning of agent strategies?.
In Fabrizio Riguzzi, Elena Bellodi, and Riccardo Zese, editors,
Proceedings of the 28th International Conference on Inductive Logic
Programming, pages 38-53, Berlin, 2018. Springer-Verlag.
- [19]
- S.H. Muggleton,
W-Z. Dai, C. Sammut, A. Tamaddoni-Nezhad, J. Wen, and Z-H. Zhou.
Meta-interpretive
learning from noisy images.
Machine Learning, 107:1097-1118, 2018.
- [20]
- S.H. Muggleton,
U. Schmid, C. Zeller, A. Tamaddoni-Nezhad, and T. Besold.
Ultra-strong
machine learning - comprehensibility of programs learned with ILP.
Machine Learning, 107:1119-1140, 2018.
- [21]
- S. Patsantzis and S.H. Muggleton.
Which background
knowledge is relevant?.
In Late Breaking Paper Proceedings of the 28th International Conference
on Inductive Logic Programming. CEUR, 2018.
- [22]
- H. Conn and
S.H. Muggleton.
The effect of predicate order on
curriculum learning in ILP.
In Late Breaking Paper Proceedings of the 27th International Conference
on Inductive Logic Programming, pages 17-21. CEUR, 2017.
- [23]
- W-Z Dai, S.H.
Muggleton, J. Wen, A. Tamaddoni-Nezhad, and Z-H. Zhou.
Logical vision:
One-shot meta-interpretive learning from real images.
In Nicholas Lachiche and Christel Vrain, editors, Proceedings of the 27th
International Conference on Inductive Logic Programming, pages 46-62,
Berlin, 2017. Springer-Verlag.
- [24]
- S.H. Muggleton.
Meta-interpretive
learning: achievements and challenges.
In Roman Kontchakov and Fariba Sadri, editors, Proceedings of the 11th
International Symposium on Rule Technologies, RuleML+RR 2017, pages
1-7, Berlin, 2017. Springer-Verlag.
LNCS 10364.
- [25]
- U. Schmid, C. Zeller,
T. Besold, A. Tamaddoni-Nezhad, and S.H. Muggleton.
How does predicate
invention affect human comprehensibility?.
In Alessandra Russo and James Cussens, editors, Proceedings of the 26th
International Conference on Inductive Logic Programming, pages 52-67,
Berlin, 2017. Springer-Verlag.
- [26]
- A. Cropper
and S.H. Muggleton.
Learning
higher-order logic programs through abstraction and invention.
In Proceedings of the 25th International Joint Conference Artificial
Intelligence (IJCAI 2016), pages 1418-1424. IJCAI, 2016.
- [27]
- A. Cropper,
A. Tamaddoni-Nezhad, , and S.H. Muggleton.
Meta-interpretive
learning of data transformation programs.
In Proceedings of the 25th International Conference on Inductive Logic
Programming, pages 46-59. Springer-Verlag, 2016.
- [28]
- A. Cropper
and S.H. Muggleton.
Can predicate
invention compensate for incomplete background knowledge?.
In Thirteenth Scandinavian Conference on Artificial Intelligence (SCAI
2015), pages 27-36. IOS Press, 2015.
- [29]
- A. Cropper
and S.H. Muggleton.
Learning efficient
logical robot strategies involving composable objects.
In Proceedings of the 24th International Joint Conference Artificial
Intelligence (IJCAI 2015), pages 3423-3429. IJCAI, 2015.
- [30]
- A. Cropper and
S.H. Muggleton.
Logical minimisation
of meta-rules within meta-interpretive learning.
In Proceedings of the 24th International Conference on Inductive Logic
Programming, pages 65-78. Springer-Verlag, 2015.
LNAI 9046.
- [31]
- W-Z Dai, S.H. Muggleton,
and Z-H Zhou.
Logical Vision: Meta-interpretive
learning for simple geometrical concepts.
In Late Breaking Paper Proceedings of the 25th International Conference
on Inductive Logic Programming, pages 1-16. CEUR, 2015.
- [32]
- C. Farquhar,
G. Grov A. Cropper, S.H. Muggleton, and A. Bundy.
Typed
meta-interpretive learning for proof strategies.
In Short Paper Proceedings of the 25th International Conference on
Inductive Logic Programming. National Institute of Informatics, Tokyo,
2015.
- [33]
- A.K.
Fidjeland, W. Luk, and S.H. Muggleton.
Customisable
multi-processor acceleration of inductive logic programming.
In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in
Inductive Logic Programming, pages 123-139. Imperial College Press,
2015.
- [34]
- S. Gulwani,
J. Hernandez-Orallo, E. Kitzelmann, S.H. Muggleton, U. Schmid, and B. Zorn.
Inductive
programming meets the real world.
Communications of the ACM, 58(11):90-99, 2015.
- [35]
- R.J. Henderson and S.H. Muggleton.
Automatic
invention of functional abstractions.
In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in
Inductive Logic Programming, pages 217-224. Imperial College Press,
2015.
- [36]
- S.H. Muggleton
and H. Watanabe, editors.
Latest
Adavances in Inductive Logic Programming.
Imperial College Press, London, 2015.
- [37]
- S.H. Muggleton
and C. Xu.
Can ILP learn
complete and correct game strategies?.
In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in
Inductive Logic Programming, pages 3-10. Imperial College Press,
2015.
- [38]
- S.H. Muggleton,
D. Lin, and A. Tamaddoni-Nezhad.
Meta-interpretive
learning of higher-order dyadic datalog: Predicate invention revisited.
Machine Learning, 100(1):49-73, 2015.
- [39]
- N. Pahlavi and S.H. Muggleton.
Towards efficient
higher-order logic learning in a first-order datalog framework.
In Stephen H. Muggleton and H. Watanabe, editors, Latest Advances in
Inductive Logic Programming, pages 207-215. Imperial College Press,
2015.
- [40]
- C.R. Reynolds,
S.H. Muggleton, and M.J.E. Sternberg.
Incorporating
virtual reactions into a logic-based ligand-based virtual screening method to
discover new leads.
Molecular Informatics, 2015.
DOI: 10.1002/minf.201400162.
- [41]
- A. Tamaddoni-Nezhad, D. Bohan, A. Raybould, and S.H. Muggleton.
Towards machine
learning of predictive models from ecological data.
In Proceedings of the 24th International Conference on Inductive Logic
Programming, pages 159-173. Springer-Verlag, 2015.
LNAI 9046.
- [42]
- D. Lin, E. Dechter,
K. Ellis, J.B. Tenenbaum, and S.H. Muggleton.
Bias reformulation
for one-shot function induction.
In Proceedings of the 23rd European Conference on Artificial Intelligence
(ECAI 2014), pages 525-530, Amsterdam, 2014. IOS Press.
- [43]
- S. H. Muggleton.
Alan Turing and
the development of Artificial Intelligence.
AI Communications, 27(1):3-10, 2014.
- [44]
- S.H. Muggleton,
D. Lin, J. Chen, and A. Tamaddoni-Nezhad.
Metabayes:
Bayesian meta-interpretative learning using higher-order stochastic
refinement.
In Gerson Zaverucha, Vitor Santos Costa, and Aline Marins Paes, editors,
Proceedings of the 23rd International Conference on Inductive Logic
Programming (ILP 2013), pages 1-17, Berlin, 2014. Springer-Verlag.
LNAI 8812.
- [45]
- S.H. Muggleton,
D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad.
Meta-interpretive
learning: application to grammatical inference.
Machine Learning, 94:25-49, 2014.
- [46]
- D. Bohan, A. Raybould,
C. Mulder, G. Woodward, A. Tamaddoni-Nezhad, N. Bluthgen, M.J.O Pocock, S.H.
Muggleton, D.M. Evans, J. Astegiano, F. Massol, N. Loeuille, S. Petit, and
S. Macfadyen.
Networking
agroecology: Integrating the diversity of agroecosystem interactions.
In G. Woodward and D.A. Bohan, editors, Advances in Ecological Research,
Vol. 49, pages 2-67. Academic Press, Amsterdam, 2013.
- [47]
- S.H. Muggleton and
D. Lin.
Meta-interpretive
learning of higher-order dyadic datalog: Predicate invention revisited.
In Proceedings of the 23rd International Joint Conference Artificial
Intelligence (IJCAI 2013), pages 1551-1557, 2013.
- [48]
- M.J.E. Sternberg,
A. Tamaddoni-Nezhad, V.I.. Lesk, , E. Kay, P.G. Hitchen, A. Cootes, L.B.
Alphen, M.P. Lamoureux, H.C. Jarrell, C.J. Rawlings, E.C. Soo, C.M.
Szymanski, A. Dell, B.W. Wren, and S.H. Muggleton.
Gene function
hypotheses for the campylobacter jejuni glycome generated by a logic-based
approach.
Journal of Moleular Biology, 425(1):186-197, 2013.
- [49]
- A. Tamaddoni-Nezhad, G. Milani, A. Raybould, S.H. Muggleton,
and D. Bohan.
Construction
and validation of food webs using logic-based machine learning and text
mining.
In G. Woodward and D.A. Bohan, editors, Advances in Ecological Research,
Vol. 49, pages 224-290. Academic Press, Amsterdam, 2013.
- [50]
- A. Tamaddoni-Nezhad, G. Afroozi Milani, A. Raybould,
S. Muggleton, and D.Bohan.
Construction and validation of food-webs using logic-based machine learning and
text-mining.
Advances in Ecological Research, 49:225-289, 2013.
- [51]
- D. Lin, J. Chen, H. Watanabe, S.H.
Muggleton, P. Jain, M. Sternberg, C. Baxter, R. Currie, S. Dunbar, M. Earll,
and D. Salazar.
Does
multi-clause learning help in real-world applications?.
In Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, and Francesca A. Lisi,
editors, Proceedings of the 21st International Conference on Inductive
Logic Programming (ILP 2011), LNAI 7207, pages 221-237, Berlin, 2012.
Springer-Verlag.
- [52]
- S.H. Muggleton,
D. Lin, and A. Tamaddoni-Nezhad.
MC-Toplog:
Complete multi-clause learning guided by a top theory.
In Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, and Francesca A. Lisi,
editors, Proceedings of the 21st International Conference on Inductive
Logic Programming (ILP 2011), LNAI 7207, pages 238-254, Berlin, 2012.
Springer-Verlag.
- [53]
- S.H. Muggleton,
A. Tamaddoni-Nezhad, and F.A. Lisi, editors.
Proceedings of the 21st International Conference on Inductive Logic
Programming.
LNAI 7207. Spring-Verlag, Berlin, 2012.
- [54]
- N. Pahlavi and S.H. Muggleton.
Towards
efficient higher-order logic learning in a first-order datalog framework.
In Latest Advances in Inductive Logic Programming, pages 209-216.
Imperial College Press, 2012.
- [55]
- C.R. Reynolds,
S.H. Muggleton, and M.J.E. Sternberg.
Assessment of a
rule-based virtual screening technology (inddex) on a benchmark data set.
The Journal of Physical Chemistry B, 116(23), 2012.
- [56]
- J.C.A. Santos,
H. Nassif, and S.H. Muggleton M.J.E. Sternberg C.D. Page.
Automated
identification of protein-ligand interaction features using inductive logic
programming: A hexose binding case study.
BMC Bioinformatics, 13(162), 2012.
- [57]
- A. Tamaddoni-Nezhad, D. Bohan, A. Raybould, and S.H. Muggleton.
Machine learning a probabilistic network of ecological interactions.
In Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, and Francesca A. Lisi,
editors, Proceedings of the 21st International Conference on Inductive
Logic Programming (ILP 2011), LNAI 7207, pages 332-346, Berlin, 2012.
Springer-Verlag.
- [58]
- D.A. Bohan,
G. Caron-Lormier, S.H. Muggleton, A. Raybould, and A. Tamaddoni-Nezhad.
Automated
discovery of food webs from ecological data using logic-based machine
learning.
PloS ONE, 6(12), 2011.
- [59]
- V. Lesk, J. Taubert,
C. Rawlings, and S. Dunbarand S.H. Muggleton.
WIBL: Workbench
for integrative biological learning.
Journal of Integrative Bioinformatics, 8(2), 2011.
- [60]
- S.H. Muggleton,
J. Chen, H. Watanabe, S. Dunbar, C. Baxter, R. Currie, J.D. Salazar,
J. Taubert, and M.J.E. Sternberg.
Variation of background
knowledge in an industrial application of ILP.
In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th
International Conference on Inductive Logic Programming (ILP 2011),
LNAI 6489, pages 158-170, Berlin, 2011. Springer-Verlag.
- [61]
- S.H. Muggleton,
L. De Raedt, D. Poole, I. Bratko, P. Flach, and K. Inoue.
ILP turns 20:
biography and future challenges.
Machine Learning, 86(1):3-23, 2011.
- [62]
- N. Pahlavi
and S.H. Muggleton.
Can HOLL outperform FOLL?
In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th
International Conference on Inductive Logic Programming (ILP 2010),
LNAI 6489, pages 198-205, Berlin, 2011. Springer-Verlag.
- [63]
- A. Tamaddoni-Nezhad and S.H. Muggleton.
Stochastic
refinement.
In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th
International Conference on Inductive Logic Programming (ILP 2010),
LNAI 6489, pages 222-237, Berlin, 2011. Springer-Verlag.
- [64]
- H.M. Lodhi and
S.H. Muggleton, editors.
Elements of Computational Systems Biology.
Wiley, New Jersey, 2010.
- [65]
- H. Lodhi, S.H.
Muggleton, and M.J.E. Sternberg.
Multi-class mode of action classification of toxic compounds using logic based
kernel methods.
Molecular Informatics, pages 655-664, 2010.
- [66]
- H. Lodhi, S.H.
Muggleton, and M.J.E. Sternberg.
Multi-class
protein fold recognition using large margin logic based divide and conquer
learning.
SIGKDD Exploration, 11(2):117-122, 2010.
- [67]
- J. Chen S.H. Muggleton.
Decision-theoretic
logic programs.
2010.
19th International Conference on Inductive Logic Programming, Poster
presentation.
- [68]
- S.H. Muggleton,
A. Paes, V. Santos Costa, and G. Zaverucha.
Chess revision:
acquiring the rules of chess variants through FOL theory revision from
examples.
In Luc De Raedt, editor, Proceedings of the 19th International Conference
on Inductive Logic Programming (ILP 2009), LNCS 5989, pages 123-130,
Berlin, 2010. Springer-Verlag.
- [69]
- S.H.
Muggleton, J. Santos, and A. Tamaddoni-Nezhad.
ProGolem: a
system based on relative minimal generalisation.
In Proceedings of the 19th International Conference on Inductive Logic
Programming, LNCS 5989, pages 131-148. Springer-Verlag, 2010.
- [70]
- S.H. Muggleton,
J. Santos, and A. Tamaddoni-Nezhad.
TopLog: ILP using
a logic program declarative bias.
In Proceedings of the International Conference on Logic Programming
2008, LNCS 5366, pages 687-692. Springer-Verlag, 2010.
- [71]
- H. Watanabe
and S.H. Muggleton.
Can ILP be
applied to large datasets?.
In Luc De Raedt, editor, Proceedings of the 19th International Conference
on Inductive Logic Programming (ILP 2009), LNAI 5989, pages 249-256,
Berlin, 2010. Springer-Verlag.
- [72]
- H. Lodhi, S.H.
Muggleton, and M.J.E. Sternberg.
Learning large margin
first order decision lists for multi-class classification.
In Proceedings of the 12th International Conference on Discovery
Science, LNAI 5808, pages 163-183. Springer-Verlag, 2009.
- [73]
- J. Santos,
A. Tamaddoni-Nezhad, and S.H. Muggleton.
An ILP system for
learning head output connected predicates.
In Proceedings of the 14th Portuguese Conference on Artificial
Intelligence, LNAI 5816, pages 150-159. Springer-Verlag, 2009.
- [74]
- A. Tamaddoni-Nezhad and S.H. Muggleton.
The lattice
structure and refinement operators for the hypothesis space bounded by a
bottom clause.
Machine Learning, 76(1):37-72, 2009.
10.1007/s10994-009-5117-7.
- [75]
- J-W. Bang, D.J.
Crockford, E. Holmes, F. Pazos, M.J.E. Sternberg, S.H. Muggleton, and J.K.
Nicholson.
Integrative
top-down system metabolic modeling in experimental disease states via
data-driven bayesian methods.
Journal of Proteome Research, 7(2):497-503, 2008.
- [76]
- J. Chen, S.H.
Muggleton, and J. Santos.
Learning
probabilistic logic models from probabilistic examples.
Machine Learning, 73(1):55-85, 2008.
- [77]
- T. Dietterich,
P. Domingos, L. Getoor, S.H. Muggleton, and P. Tadepalli.
Structured machine
learning: the next ten years.
Machine Learning, 73(1):3-23, 2008.
- [78]
- A. Fidjeland,
W. Luk, and S.H. Muggleton.
A customisable
multiprocessor for application-optimised inductive logic programming.
In Proceedings of Visions of Computer Science - BCS International
Academic Conference, LNAI 5816. British Computer Society, 2008.
- [79]
- L. De Raedt,
P. Frasconi, K. Kersting, and S.H. Muggleton, editors.
Probabilistic Inductive Logic Programming.
Springer-Verlag, Berlin, 2008.
LNAI 4911.
- [80]
- A. Tamaddoni-Nezhad and S.H. Muggleton.
A note on
refinement operators for IE-based ILP systems.
In Proceedings of the 18th International Conference on Inductive Logic
Programming, LNAI 5194, pages 297-314. Springer-Verlag, 2008.
DOI: 10.1007/978-3-540-85928-4_23.
- [81]
- K. Tsunoyama,
A. Amini, M.J.E. Sternberg, and S.H. Muggleton.
Scaffold hopping
in drug discovery using inductive logic programming.
Journal of Chemical Information and Modelling, 48(5):949-957,
2008.
- [82]
- A. Amini, H. Lodhi
S.H. Muggleton, and M.J.E. Sternberg.
A novel
logic-based approach for quantitative toxicology prediction.
Journal of Chemical Information and Modelling, 47(3):998-1006,
2007.
- [83]
- A. Amini, P.J.
Shrimpton, S.H. Muggleton, and M.J.E. Sternberg.
A general
approach for developing system-specific functions to score protein-ligand
docked complexes using support vector inductive logic programming.
Proteins, 69(4):823-831, 2007.
DOI: 10.1002/prot.21782.
- [84]
- E.O. Cannon,
A. Amini, A. Bender, M. J. E. Sternberg, S.H. Muggleton, R.C. Glen, and
J.B.O. Mitchell.
Support vector
inductive logic programming outperforms the naive Bayes classifier and
inductive logic programming for the classification of bioactive chemical
compounds.
Journal of Computer Aided Molecular Design, 21:269-280, 2007.
- [85]
- J. Chen, L. Kelley,
S.H. Muggleton, and M.J.E. Sternberg.
Protein fold discovery using Stochastic Logic Programs.
In L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors,
Probabilistic Inductive Logic Programming, pages 244-262.
Springer-Verlag, 2007.
- [86]
- J. Chen, S.H.
Muggleton, and J. Santos.
Learning probabilistic learning models from examples (extended abstract).
In Proceedings of the 17th International Conference on Inductive Logic
Programming, LNAI 4894, pages 22-23. Springer-Verlag, 2007.
- [87]
- A.P. Cootes, S.H.
Muggleton, and M.J.E. Sternberg.
The identification
of similarities between biological networks: Application to the metabolome
and interactome prediction.
Journal of Molecular Biology, 369(4):1126-1139, 2007.
DOI: 10.1016/j.jmb.2007.03.013.
- [88]
- S.H. Muggleton
and J. Chen.
Comparison of some probabilistic logic models.
In L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors,
Probabilistic Inductive Logic Programming, pages 305-324.
Springer-Verlag, 2007.
- [89]
- S.H. Muggleton
and N. Pahlavi.
Stochastic logic programs: A tutorial.
In L. Getoor and B. Taskar, editors, Introduction to Statistical
Relational Learning, pages 323-338. MIT Press, 2007.
- [90]
- S.H.
Muggleton and A. Tamaddoni-Nezhad.
QG/GA: A
stochastic search for Progol.
Machine Learning, 70(2-3):123-133, 2007.
- [91]
- S.H. Muggleton,
R. Otero, and A. Tamadonni-Nezhad, editors.
Proceedings of the 16th International Workshop on Inductive Logic
Programming.
Springer-Verlag, Berlin, 2007.
LNAI 4455.
- [92]
- A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, M.J.E. Sternberg,
J. Nicholson, and S.H. Muggleton.
Modeling the
effects of toxins in metabolic networks.
IEEE Engineering in Medicine and Biology, 26:37-46, 2007.
- [93]
- A. Arvanitis,
S.H. Muggleton, J. Chen, and H. Watanabe.
Abduction with stochastic logic programs based on a possible worlds semantics.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [94]
- J. Chen and
S.H. Muggleton.
Multi-class protein fold prediction using stochastic logic programs.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [95]
- J. Chen and
S.H. Muggleton.
A revised comparison of Bayesian logic programs and stochastic logic
programs.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [96]
- S. Colton and
S.H. Muggleton.
Mathematical
applications of inductive logic programming.
Machine Learning, 64:25-64, 2006.
DOI: 10.1007/s10994-006-8259-x.
- [97]
- S.H. Muggleton.
Exceeding
human limits.
Nature, 440(7083):409-410, 2006.
- [98]
- S.H. Muggleton.
Towards
Universal Chemical Turing Machines.
In Proceedings of the Twenty-First National Conference on Artificial
Intelligence, AAAI-06, pages 1527-1529. AAAI Press, 2006.
- [99]
- S.H.
Muggleton and N. Pahlavi.
The complexity of translating blps to rmms.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [100]
- S.H.
Muggleton and A. Tamaddoni-Nezhad.
QG/GA: A stochastic search approach for Progol.
In Proceedings of the 16th International Conference on Inductive Logic
Programming, LNAI 4455, pages 37-39. Springer-Verlag, 2006.
- [101]
- S.H. Muggleton,
H. Lodhi, A. Amini, and M.J.E. Sternberg.
Support Vector
Inductive Logic Programming.
In D.E. Holmes and L.C. Jain, editors, Innovations in Machine
Learning, pages 113-135. Springer-Verlag, 2006.
- [102]
- R. Otero
and S.H. Muggleton.
On McCarthy's appearance and reality problem.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [103]
- A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, and S.H. Muggleton.
Application of
abductive ILP to learning metabolic network inhibition from temporal
data.
Machine Learning, 64:209-230, 2006.
- [104]
- A. Tamaddoni-Nezhad, R. Greaves, and S.H. Muggleton.
Large-scale online learning using analogical prediction.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [105]
- H. Watanabe,
K. Inoue, and Stephen Muggleton.
Complexity analysis of abductive action theory.
In Short Paper Proceedings of the 16th International Conference on
Inductive Logic Programming. University of Corunna, 2006.
- [106]
- S.H. Muggleton.
Machine learning
for systems biology.
In Proceedings of the 15th International Conference on Inductive Logic
Programming, LNAI 3625, pages 416-423. Springer-Verlag, 2005.
- [107]
- S.H. Muggleton,
H. Lodhi, A. Amini, and M.J.E. Sternberg.
Support Vector
Inductive Logic Programming.
In Proceedings of the 8th International Conference on Discovery
Science, LNAI 3735, pages 163-175. Springer-Verlag, 2005.
- [108]
- A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, and S.H. Muggleton.
Abduction and
induction for learning models of inhibition in metabolic networks.
In Proceedings of the Fourth International Conference on Machine Learning
and Applications, ICMLA'05. IEEE Computer Society, 2005.
- [109]
- H. Watanabe
and S.H. Muggleton.
Learning
Stochastic Logical Automaton.
In Proceedings of the 19th Annual Conferences of JSAI, LNCS 4012,
pages 201-211. Springer-Verlag, 2005.
- [110]
- R.D. King, K.E. Whelan,
F.M. Jones, P.K.G. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, and S.G.
Oliver.
Functional
genomic hypothesis generation and experimentation by a robot scientist.
Nature, 427:247-252, 2004.
- [111]
- H. Lodhi
and S.H. Muggleton.
Modelling metabolic
pathways using stochastic logic programs-based ensemble methods.
In Proceedings of the 2nd International Conference on Computational
Methods in System Biology. Springer-Verlag, 2004.
- [112]
- A. Tamaddoni-Nezhad, A. Kakas, S.H. Muggleton, and F. Pazos.
Modelling
inhibition in metabolic pathways through abduction and induction.
In Proceedings of the 14th International Conference on Inductive Logic
Programming, LNAI 3194, pages 305-322. Springer-Verlag, 2004.
- [113]
- S. Colton
and S.H. Muggleton.
ILP for
mathematical discovery.
In Proceedings of the 13th International Conference on Inductive Logic
Programming, LNAI 2835, pages 93-111. Springer-Verlag, 2003.
- [114]
- A. Cootes, S.H.
Muggleton, and M.J.E. Sternberg.
The automatic
discovery of structural principles describing protein fold space.
Journal of Molecular Biology, 330(4):839-850, 2003.
- [115]
- A. Cootes, S.H.
Muggleton, and M.J.E. Sternberg.
The
identification of similarities between biological networks: Application to
the metabolome and interactome.
Journal of Molecular Biology, 369:1126-1139, 2003.
- [116]
- S.H.
Muggleton, A. Tamaddoni-Nezhad, and H. Watanabe.
Induction of
enzyme classes from biological databases.
In Proceedings of the 13th International Conference on Inductive Logic
Programming, LNAI 2835, pages 269-280. Springer-Verlag, 2003.
- [117]
- A. Puech
and S.H. Muggleton.
A comparison of
stochastic logic programs and Bayesian logic programs.
In IJCAI03 Workshop on Learning Statistical Models from Relational
Data. IJCAI, 2003.
- [118]
- M.J.E.
Sternberg and S.H. Muggleton.
Structure activity
relationships (SAR) and pharmacophore discovery using inductive logic
programming (ILP).
QSAR and Combinatorial Science, 22(5):527-532, 2003.
- [119]
- A. Tamaddoni-Nezhad, S.H. Muggleton, and J. Bang.
A Bayesian model
for metabolic pathways.
In International Joint Conference on Artificial Intelligence (IJCAI03)
Workshop on Learning Statistical Models from Relational Data, pages
50-57. IJCAI, 2003.
- [120]
- S.H. Muggleton
A. Fidjeland, W. Luk.
Scalable
acceleration of inductive logic programs.
In IEEE international conference on field-programmable technology,
pages 252 -- 259. IEEE, 2002.
- [121]
- N. Angelopoulos and S.H. Muggleton.
Machine
learning metabolic pathway descriptions using a probabilistic relational
representation.
Electronic Transactions in Artificial Intelligence, 6, 2002.
- [122]
- S.H. Muggleton.
Learning
structure and parameters of stochastic logic programs.
Electronic Transactions in Artificial Intelligence, 6, 2002.
- [123]
- S.H. Muggleton.
Learning structure
and parameters of stochastic logic programs.
In Proceedings of the 12th International Conference on Inductive Logic
Programming, pages 198-206. Springer-Verlag, 2002.
- [124]
- A Tamaddoni-Nezhad and S Muggleton.
Closed loop machine learning: Complexity of ASE-progol.
Technical Report 2002/8, Department of Computing, Imperial College London,
2002.
- [125]
- A Tamaddoni-Nezhad and S Muggleton.
Closed loop machine learning: Reproduction and evaluation of phase A results.
Technical Report 2002/7, Department of Computing, Imperial College London,
2002.
- [126]
- A. Tamaddoni-Nezhad and S.H. Muggleton.
A genetic algorithms
approach to ILP.
In Proceedings of the 12th International Conference on Inductive Logic
Programming, pages 285-300. Springer-Verlag, 2002.
- [127]
- H. Watanabe and S.H. Muggleton.
First-order
stochastic action languages.
Electronic Transactions in Artificial Intelligence, 6, 2002.
- [128]
- C.H. Bryant, S.H.
Muggleton, S.G. Oliver, D.B. Kell, P. Reiser, and R.D. King.
Combining
inductive logic programming, active learning and robotics to discover the
function of genes.
Electronic Transactions in Artificial Intelligence,
5-B1(012):1-36, November 2001.
- [129]
- A.P. Cootes, S.H.
Muggleton, R.B. Greaves, and M.J. Sternberg.
Automatic
determination of protein fold signatures from structured superposition.
Electronic Transactions in Artificial Intelligence,
6-B2(026):245-274, November 2001.
- [130]
- S.H. Muggleton.
Statistical aspects
of logic-based machine learning.
ACM Transactions on Computational Logic, 2001.
Under revision.
- [131]
- S.H. Muggleton.
Stochastic logic
programs.
Journal of Logic Programming, 2001.
Accepted subject to revision.
- [132]
- S.H.
Muggleton and J. Firth.
CProgol4.4: a
tutorial introduction.
In S. Dzeroski and N. Lavrac, editors, Relational Data Mining,
pages 160-188. Springer-Verlag, 2001.
- [133]
- S.H. Muggleton, C.H.
Bryant, A. Srinivasan, A. Whittaker, S. Topp, and C. Rawlings.
Are grammatical
representations useful for learning from biological sequence data? - a case
study.
Journal of Computational Biology, 8(5):493-521, 2001.
- [134]
- P.G.K. Reiser, R.D.
King, D.B. Kell, S.H. Muggleton, C.H. Bryant, and S.G. Oliver.
Developing a
logical model of yeast metabolism.
Electronic Transactions in Artificial Intelligence,
5-B2(024):223-244, November 2001.
- [135]
- A. Tamaddoni-Nezhad and S.H. Muggleton.
Using genetic
algorithms for learning clauses in first-order logic.
In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, pages 639-646, San Francisco, CA, 2001. Morgan Kaufmann
Publishers.
- [136]
- M. Turcotte,
S.H. Muggleton, and M.J. Sternberg.
Generating protein three-dimensional fold signatures using inductive logic
programming.
Computational Chemistry, 26:57-64, 2001.
- [137]
- M. Turcotte, S.H.
Muggleton, and M.J.E. Sternberg.
Automated discovery
of structural signatures of protein fold and function.
Journal of Molecular Biology, 306:591-605, 2001.
- [138]
- M. Turcotte, S.H.
Muggleton, and M.J.E. Sternberg.
The effect of
relational background knowledge on learning of protein three-dimensional fold
signatures.
Machine Learning, 1,2:81-96, April-May 2001.
- [139]
- C. H.
Bryant and S. H. Muggleton.
Closed loop machine
learning.
Technical Report YCS 330, University of York, Department of Computer Science,
Heslington, York, YO10 5DD, UK., 2000.
- [140]
- S.H. Muggleton.
Learning
stochastic logic programs.
Electronic Transactions in Artificial Intelligence, 4(041),
2000.
- [141]
- S.H. Muggleton.
Learning stochastic
logic programs.
In Lise Getoor and David Jensen, editors, Proceedings of the AAAI2000
workshop on Learning Statistical Models from Relational Data. AAAI,
2000.
- [142]
- S.H. Muggleton.
Semantics and
derivation for stochastic logic programs.
In Richard Dybowski, editor, Proceedings of the UAI2000 workshop on
Knowledge-Data Fusion. UAI, 2000.
- [143]
- S.H.
Muggleton and C.H. Bryant.
Theory completion
using inverse entailment.
In Proc. of the 10th International Workshop on Inductive Logic
Programming (ILP-00), pages 130-146, Berlin, 2000.
Springer-Verlag.
- [144]
- S.H.
Muggleton and F. Marginean.
Logic-based machine
learning.
In J. Minker, editor, Logic-Based Artificial Intelligence, pages
315-330. Kluwer, 2000.
- [145]
- S.H. Muggleton,
C.H. Bryant, A.Srinivasan, A. Whittaker, S. Topp, and C. Rawlings.
Are grammatical
representations useful for learning from biological sequence data? -- a case
study.
Technical Report YCS 328, University of York, Department of Computer Science,
Heslington, York, YO10 5DD, UK., 2000.
- [146]
- S.H. Muggleton, C.H.
Bryant, and A. Srinivasan.
Learning
Chomsky-like grammars for biological sequence families.
In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 631-638, Stanford University, USA, 2000. San
Francisco, CA: Morgan Kaufmann.
- [147]
- S.H. Muggleton,
C.H.Bryant, and A.Srinivasan.
Measuring
performance when positives are rare: Relative advantage versus predictive
accuracy - a biological case-study.
In R.Lopez de Mantaras and E.Plaza, editors, Proceedings of the 11th
European Conference on Machine Learning, Lecture Notes in Computer
Science, http://www.springer.de/comp/lncs/index.html, 2000. copyright
Springer Verlag.
- [148]
- A. Tamaddoni-Nezhad and S.H. Muggleton.
Searching the
subsumption lattice by a genetic algorithm.
In J. Cussens and A. Frisch, editors, Proceedings of the 10th
International Conference on Inductive Logic Programming, pages
243-252. Springer-Verlag, 2000.
- [149]
- C.H.Bryant, S.H.
Muggleton, C.D.Page, and M.J.E.Sternberg.
Combining
Active Learning with Inductive Logic Programming to close the loop
in Machine Learning.
In S. Colton, editor, Proceedings of AISB'99 Symposium on AI and
Scientific Creativity, pages 59-64, http://www.cogs.susx.ac.uk/aisb/,
1999. The Society for the Study of Artificial Intelligence and Simulation of
Behaviour (AISB).
- [150]
- K. Furukawa, D. Michie, and
S.H. Muggleton.
Machine Intelligence 15: machine intelligence and inductive
learning.
Oxford University Press, Oxford, 1999.
- [151]
- S.H. Muggleton.
Inductive Logic
Programming.
In Robert A. Wilson and Frank C. Keil, editors, The MIT Encyclopedia of
the Cognitive Sciences (MITECS). MIT Press, 1999.
- [152]
- S.H. Muggleton.
Inductive logic
programming: issues, results and the LLL challenge.
Artificial Intelligence, 114(1-2):283-296, December 1999.
- [153]
- S.H. Muggleton.
Scientific knowledge
discovery using Inductive Logic Programming.
Communications of the ACM, 42(11):42-46, November 1999.
- [154]
- S.H. Muggleton and
M. Bain.
Analogical
prediction.
In Proc. of the 9th International Workshop on Inductive Logic
Programming (ILP-99), pages 234-244, Berlin, 1999.
Springer-Verlag.
- [155]
- S.H. Muggleton
and D. Page.
A learnability model
for universal representations and its application to top-down induction of
decision trees.
In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine
Intelligence 15. Oxford University Press, 1999.
- [156]
- R. Parson, K. Khan,
and S.H. Muggleton.
Theory recovery.
In Proc. of the 9th International Workshop on Inductive Logic
Programming (ILP-99), Berlin, 1999. Springer-Verlag.
- [157]
- I. Bratko, S.H.
Muggleton, and A. Karalic.
Applications of Inductive Logic Programming.
In R.S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and
Data Mining. John Wiley and Sons Ltd., Chichester, 1998.
- [158]
- S. Dzeroski,
N. Jacobs, M. Molina, C. Moure, S.H. Muggleton, and W. Van Laer.
Detecting traffic
problems with ILP.
In C.D. Page, editor, Proc. of the 8th International Workshop on
Inductive Logic Programming (ILP-98), LNAI 1446, pages 281-290,
Berlin, 1998. Springer-Verlag.
- [159]
- P. Finn, S.H. Muggleton, D. Page, and A. Srinivasan.
Pharmacophore
discovery using the Inductive Logic Programming system Progol.
Machine Learning, 30:241-271, 1998.
- [160]
- K. Khan, S.H.
Muggleton, and R. Parson.
Repeat learning using
predicate invention.
In C.D. Page, editor, Proc. of the 8th International Workshop on
Inductive Logic Programming (ILP-98), LNAI 1446, pages 165-174,
Berlin, 1998. Springer-Verlag.
- [161]
- S.H. Muggleton.
Advances in
ILP theory and implementations.
In C.D. Page, editor, Proc. of the 8th International Workshop on
Inductive Logic Programming (ILP-98), LNAI 1446, page 9, Berlin, 1998.
Springer-Verlag.
Abstract of keynote presentation.
- [162]
- S.H. Muggleton.
Completing inverse
entailment.
In C.D. Page, editor, Proceedings of the Eighth International Workshop on
Inductive Logic Programming (ILP-98), LNAI 1446, pages 245-249.
Springer-Verlag, Berlin, 1998.
- [163]
- S.H. Muggleton.
Inductive logic
programming: issues, results and the LLL challenge.
In H. Prade, editor, Proceedings of ECAI98, page 697. John Wiley,
1998.
Abstract of keynote talk.
- [164]
- S.H. Muggleton.
Knowledge discovery
in biological and chemical domains.
In H. Motoda, editor, Proc. of the first Conference on Discovery
Science, Berlin, 1998. Springer-Verlag.
Abstract of keynote talk.
- [165]
- S.H. Muggleton,
A. Srinivasan, R.D. King, and M.J.E. Sternberg.
Biochemical
knowledge discovery using Inductive Logic Programming.
In H. Motoda, editor, Proc. of the first Conference on Discovery
Science, Berlin, 1998. Springer-Verlag.
- [166]
- R. Parson and
S.H. Muggleton.
An experiment with
browsers that learn.
In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine
Intelligence 15. Oxford University Press, 1998.
- [167]
- S. Roberts, W. Van
Laerand, N. Jacobs, S.H. Muggleton, and J. Broughton.
A comparison of
ILP and propositional systems on propositional data.
In C.D. Page, editor, Proc. of the 8th International Workshop on
Inductive Logic Programming (ILP-98), LNAI 1446, pages 291-299,
Berlin, 1998. Springer-Verlag.
- [168]
- M. Turcotte, S.H.
Muggleton, and M.J.E. Sternberg.
Protein fold
recognition.
In C.D. Page, editor, Proc. of the 8th International Workshop on
Inductive Logic Programming (ILP-98), LNAI 1446, pages 53-64, Berlin,
1998. Springer-Verlag.
- [169]
- S. Moyle and S.H.
Muggleton.
Learning programs in the event calculus.
In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh
Inductive Logic Programming Workshop (ILP97), LNAI 1297, pages
205-212, Berlin, 1997. Springer-Verlag.
- [170]
- S.H. Muggleton.
Declarative knowledge
discovery in industrial databases.
In H.F. Arner, editor, Proceedings of the First International Conference
and Exhibition on The Practical Application of Knowledge Discovery and Data
Mining (PADD-97), pages 9-24. Practical Application Company Ltd.,
1997.
- [171]
- S.H. Muggleton, editor.
Proceedings of the Sixth International Workshop on Inductive Logic
Programming.
Springer-Verlag, Berlin, 1997.
LNAI 1314.
- [172]
- A. Srinivasan, , R.D.
King S.H. Muggleton, and M.J.E. Sternberg.
Carcinogenesis
predictions using ILP.
In N. Lavrac and S. Dzeroski, editors, Proceedings of the Seventh
International Workshop on Inductive Logic Programming, pages 273-287.
Springer-Verlag, Berlin, 1997.
LNAI 1297.
- [173]
- A. Srinivasan, , R.D.
King S.H. Muggleton, and M.J.E. Sternberg.
The predictive
toxicology evaluation challenge.
In Proceedings of the Fifteenth International Joint Conference Artificial
Intelligence (IJCAI-97), pages 1-6. Morgan-Kaufmann, 1997.
- [174]
- R.D. King, S.H. Muggleton,
A. Srinivasan, and M.J.E. Sternberg.
Structure-activity
relationships derived by machine learning: the use of atoms and their bond
connectives to predict mutagenicity by inductive logic programming.
Proceedings of the National Academy of Sciences, 93:438-442,
1996.
- [175]
- S.H. Muggleton.
Experimental
acquisition of grammar from early reader books.
PRG-TR 18-96, Oxford University Computing Laboratory, Oxford, 1996.
- [176]
- S.H. Muggleton.
Learning from
positive data.
In S.H. Muggleton, editor, Proceedings of the Sixth International
Workshop on Inductive Logic Programming (Workshop-96), LNAI 1314,
pages 358-376, Berlin, 1996. Springer-Verlag.
- [177]
- S.H. Muggleton.
Stochastic logic
programs.
In L. de Raedt, editor, Advances in Inductive Logic Programming,
pages 254-264. IOS Press, 1996.
- [178]
- S.H. Muggleton and
D. Michie.
Machine intelligibility
and the duality principle.
British Telecom Technology Journal, 14(4):15-23, 1996.
- [179]
- S.H. Muggleton, C.D.
Page, and A. Srinivasan.
An initial experiment into stereochemistry-based drug design using ILP.
In S.H. Muggleton, editor, Proceedings of the Sixth Inductive Logic
Programming Workshop (ILP96), LNAI 1314, pages 25-40, Berlin, 1996.
Springer-Verlag.
- [180]
- A. Srinivasan,
S.H. Muggleton, R.D. King, and M.J.E. Sternberg.
Theories for
mutagenicity: a study of first-order and feature based induction.
Artificial Intelligence, 85(1,2):277-299, 1996.
- [181]
- I. Bratko and
S.H. Muggleton.
Applications of
Inductive Logic Programming.
Communications of the ACM, 38(11):65-70, 1995.
- [182]
- K. Furukawa, D. Michie, and
S.H. Muggleton.
Machine Intelligence 14: machine intelligence and inductive
learning.
Oxford University Press, Oxford, 1995.
- [183]
- S.H. Muggleton.
Inverse entailment
and Progol.
New Generation Computing, 13:245-286, 1995.
- [184]
- S.H. Muggleton.
Inverting entailment and Progol.
In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine
Intelligence 14. Oxford University Press, 1995.
- [185]
- A. Srinivasan, S.H. Muggleton, , and R.D. King.
Comparing the
use of background knowledge by inductive logic programming systems.
In L. De Raedt, editor, Proceedings of the Fifth International Inductive
Logic Programming Workshop. Katholieke Universteit Leuven, 1995.
- [186]
- A. Srinivasan, S.H. Muggleton, R.D. King, and M.J.E. Sternberg.
The effect of background knowledge in inductive logic programming: a case
study.
Technical Report PRG-TR-9-95, Oxford University Computing Laboratory, Oxford,
1995.
- [187]
- K. Furukawa, D. Michie, and
S.H. Muggleton.
Machine Intelligence 13: machine intelligence and inductive
learning.
Oxford University Press, Oxford, 1994.
- [188]
- John R Koza and
James P Rice.
Genetic programming II: automatic discovery of reusable programs,
volume 40.
MIT press Cambridge, 1994.
- [189]
- D. Michie, S.H.
Muggleton, C.D. Page, D. Page, and A. Srinivasan.
To the
international computing community: a new east-west challenge, 1994.
Distributed email document available from
http://www.doc.ic.ac.uk/~shm/Papers/ml-chall.pdf.
- [190]
- S.H. Muggleton.
Bayesian
Inductive Logic Programming.
In W. Cohen and H. Hirsh, editors, Proceedings of the Eleventh
International Machine Learning Conference, pages 371-379, San Mateo,
CA, 1994. Morgan-Kaufmann.
Keynote presentation.
- [191]
- S.H. Muggleton.
Bayesian
Inductive Logic Programming.
In M. Warmuth, editor, Proceedings of the Seventh Annual ACM Conference
on Computational Learning Theory, pages 3-11, New York, 1994. ACM
Press.
Keynote presentation.
- [192]
- S.H. Muggleton.
Inductive logic
programming: derivations, successes and shortcomings.
SIGART Bulletin, 5(1):5-11, 1994.
- [193]
- S.H. Muggleton.
Logic and learning:
Turing's legacy.
In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine
Intelligence 13, pages 37-56. Oxford University Press, 1994.
- [194]
- S.H. Muggleton.
Predicate invention and
utilisation.
Journal of Experimental and Theoretical Artificial Intelligence,
6(1):127-130, 1994.
- [195]
- S.H. Muggleton
and C.D. Page.
A learnability
model for universal representations.
Technical Report PRG-TR-3-94, Oxford University Computing Laboratory, Oxford,
1994.
- [196]
- S.H.
Muggleton and C.D. Page.
Self-saturation of definite clauses.
In S. Wrobel, editor, Proceedings of the Fourth International Inductive
Logic Programming Workshop, pages 161-174. Gesellschaft fur
Mathematik und Datenverarbeitung MBH, 1994.
GMD-Studien Nr 237.
- [197]
- S.H. Muggleton
and D. Page.
Beyond first-order learning: inductive learning with higher-order logic.
Technical Report PRG-TR-13-94, Oxford University Computing Laboratory, Oxford,
1994.
- [198]
- S.H. Muggleton and
L. De Raedt.
Inductive logic
programming: Theory and methods.
Journal of Logic Programming, 19,20:629-679, 1994.
- [199]
- A. Srinivasan,
S.H. Muggleton, and M. Bain.
The justification
of logical theories based on data compression.
In K. Furukawa, D. Michie, and S.H. Muggleton, editors, Machine
Intelligence 13, pages 87-121. Oxford University Press, 1994.
- [200]
- A. Srinivasan, S.H.
Muggleton, R.D. King, and M.J.E. Sternberg.
Mutagenesis: ILP
experiments in a non-determinate biological domain.
In S. Wrobel, editor, Proceedings of the Fourth International Inductive
Logic Programming Workshop. Gesellschaft fur Mathematik und
Datenverarbeitung MBH, 1994.
GMD-Studien Nr 237.
- [201]
- M.J.E.
Sternberg, J. Hirst, R. Lewis, R.D. King, A. Srinivasan, and S.H. Muggleton.
Application of machine learning to protein structure prediction and drug
design.
In S. Schulze-Kremer, editor, Advances in Molecular
Bioinformatics, pages 1-8. IOS Press, 1994.
- [202]
- M.J.E. Sternberg,
R.D. King, R. Lewis, and S.H. Muggleton.
Application of machine learning to structural molecular biology.
Philosophical Transactions of the Royal Society B, 344:365-371,
1994.
- [203]
- S. Dzeroski, S.H. Muggleton, and S. Russell.
Learnability of constrained logic programs.
In Proceedings of the European Conference on Machine Learning,
pages 342-347, London, UK, 1993. Springer-Verlag.
- [204]
- S.H. Muggleton.
Optimal layered
learning: A PAC approach to incremental sampling.
In K. Jantke, S. Kobayashi, E. Tomita, and T. Yokomori, editors,
Proceedings of the 4th Conference on Algorithmic Learning
Theory, LNAI 744, pages 37-44. Springer-Verlag, 1993.
- [205]
- S.H. Muggleton, editor.
Proceedings of the Third International Workshop on Inductive Logic
Programming.
Jozef Stefan Institute, Bled, Slovenia, 1993.
- [206]
- B. Dolsak and
S.H. Muggleton.
The application of
Inductive Logic Programming to finite element mesh design.
In S.H. Muggleton, editor, Inductive Logic Programming, pages
453-472. Academic Press, London, 1992.
- [207]
- S. Dzeroski,
S.H. Muggleton, and S. Russell.
PAC-learnability of
determinate logic programs.
In Proceedings of the 5th ACM Workshop on Computational Learning
Theory, pages 128-135, New York, NY, 1992. ACM Press.
- [208]
- C. Feng and S.H.
Muggleton.
Towards inductive
generalisation in higher order logic.
In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth
International Workshop on Machine Learning, pages 154-162, San Mateo,
CA, 1992. Morgan Kaufmann.
- [209]
- R.D. King, S.H.
Muggleton, R. Lewis, and M.J.E. Sternberg.
Drug design by
machine learning: The use of inductive logic programming to model the
structure-activity relationships of trimethoprim analogues binding to
dihydrofolate reductase.
Proceedings of the National Academy of Sciences,
89(23):11322-11326, 1992.
- [210]
- S.H. Muggleton.
Developments in
Inductive Logic Programming.
In Proceedings of the International Conference on Fifth Generation
Computer Systems 1992, pages 1071-1073, Tokyo, 1992. Ohmsha.
- [211]
- S.H. Muggleton, editor.
Inductive Logic Programming.
Academic Press, 1992.
- [212]
- S.H. Muggleton.
Inverting
implication.
In Proceedings of the Second Inductive Logic Programming Workshop,
pages 19-39, Tokyo, 1992. ICOT (Technical report TM-1182).
- [213]
- S.H. Muggleton, editor.
Proceedings of the Second International Workshop on Inductive Logic
Programming.
ICOT, Tokyo, Japan, 1992.
- [214]
- S.H. Muggleton,
R.D. King, and M.J.E. Sternberg.
Protein secondary
structure prediction using logic-based machine learning.
Protein Engineering, 5(7):647-657, 1992.
- [215]
- S.H. Muggleton,
A. Srinivasan, and M. Bain.
Compression,
significance and accuracy.
In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth
International Machine Learning Conference, pages 338-347, San Mateo,
CA, 1992. Morgan-Kaufmann.
- [216]
- A. Srinivasan, S.H.
Muggleton, and M. Bain.
Distinguishing
exceptions from noise in non-monotonic learning.
In Proceedings of the Second Inductive Logic Programming Workshop,
pages 97-107, Tokyo, 1992. ICOT (Technical report TM-1182).
- [217]
- M.J.E. Sternberg,
R. Lewis, R.D. King, and S.H. Muggleton.
Modelling the structure and function of enzymes by machine learning.
Proceedings of the Royal Society of Chemistry: Faraday
Discussions, 93:269-280, 1992.
- [218]
- M. Bain and
S.H. Muggleton.
Non-monotonic
learning.
In D. Michie, editor, Machine Intelligence 12, pages 105-120.
Oxford University Press, 1991.
- [219]
- I. Bratko, S.H.
Muggleton, and A. Varsek.
Learning qualitative
models of dynamic systems.
In Proceedings of the Eighth International Machine Learning
Workshop, San Mateo, Ca, 1991. Morgan-Kaufmann.
- [220]
- S.H. Muggleton.
Inductive Logic
Programming.
New Generation Computing, 8(4):295-318, 1991.
- [221]
- S.H. Muggleton.
Inverting the
resolution principle.
In Machine Intellience 12, pages 93-104. Oxford University Press,
1991.
- [222]
- S.H. Muggleton, editor.
Proceedings of the First International Workshop on Inductive Logic
Programming.
University of Porto, Porto, Portugal, 1991.
- [223]
- S.H. Muggleton,
A. Srinivasan, and M. Bain.
Mdl codes for non-monotonic learning.
TIRM 91-049, The Turing Institute, Glasgow, 1991.
- [224]
- P. Brazdil and S.H. Muggleton.
Learning to relate terms in a multiple agent environment.
Technical report, LIACC, Porto, Portugal, 1990.
- [225]
- S.H. Muggleton.
Inductive Acquisition of Expert Knowledge.
Addision-Wesley, Wokingham, England, 1990.
- [226]
- S.H. Muggleton
and C. Feng.
Efficient induction of
logic programs.
In Proceedings of the First Conference on Algorithmic Learning
Theory, pages 368-381, Tokyo, 1990. Ohmsha.
- [227]
- S.H. Muggleton,
M.E. Bain, J. Hayes-Michie, and D. Michie.
An experimental
comparison of human and machine learning formalisms.
In Proceedings of the Sixth International Workshop on Machine
Learning, Los Altos, CA, 1989. Kaufmann.
- [228]
- S.H. Muggleton.
Inductive acquisition of chess strategies.
In Machine Intellience 11, pages 375-390. Oxford University
Press, 1988.
- [229]
- S.H. Muggleton.
A strategy for
constructing new predicates in first order logic.
In Proceedings of the Third European Working Session on Learning,
pages 123-130. Pitman, 1988.
- [230]
- S.H. Muggleton
and W. Buntine.
Machine invention of
first-order predicates by inverting resolution.
In Proceedings of the 5th International Conference on Machine
Learning, pages 339-352. Kaufmann, 1988.
- [231]
- S.H. Muggleton
and W. Buntine.
Towards constructive
induction in first-order predicate calculus.
TIRM 88-03, The Turing Institute, Glasgow, 1988.
- [232]
- S.H. Muggleton.
Duce, an oracle
based approach to constructive induction.
In IJCAI-87, pages 287-292. Kaufmann, 1987.
- [233]
- S.H. Muggleton.
Inductive
Acquisition of Expert Knowledge.
University of Edinburgh, Edinburgh, 1986.
- [234]
- D. Michie, S.H.
Muggleton, C. Riese, and S. Zubrick.
Rulemaster: a second-generation knowledge-engineering facility.
In Proceedings of the First Conference on Artificial Intelligence
Applications, pages 591-597. IEEE Computer Soc., 1984.